
o'J

Hence for the whole circular strip through S

dW = 2TrKirsin2adrjr3

= 27rKt sin2ac?r/r*

Integrating from r = R t o r = oo,we get for the potential energy
of the circuit and the magnet

•yr _ _ 2iVKsin2a j,27ria2

R ~W
where a is the radius of the circle.

Hence the field at the point P is

. lira?

At the centre this becomes

a

In this last example, it is assumed that the equivalence of cir-
cuits and magnets has been established experimentally. For this
purpose the usual experiments are amply sufficient.

The experimental treatment of the subject of magnetic induction
has been greatly improved in these later days, thanks chiefly to
such men as Swing and Hopkinson, following up along the lines of
Faraday and Maxwell.

Sixth Meeting, April 8, 1892.

Professor J. E. A. STEGGALL, M.A, President, in the Chair.

On a surface of the third order.

By R. E. ALLAKDICE, M.A.

In the second part of Professor Chrystal's Algebra (Exer. V.,
No. 4) the following exercise is given :—

If 2xyz ~xi-y2-z1 + l=0, and x, y, z are all real, then all, or
none, of the quantities as, y, z lie between - 1 and + 1.
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This result follows at once from the fact that, if D be the
a;-discriminant of the above function, then

D = 4foV - j r - 3 r + l ) s 4(jr - 1)(~J - 1).

I t occurred to me to consider the geometrical interpretation of
this theorem, and then to consider the surface itself which the above
equation represents; and finally I made a rough model in clay of
the finite sheet of the surface, got this model cast in plaster, and
exhibited the cast to the Society, giving at the same time some
account of the properties of the surface. The following is a brief
account of some of these properties :—

The geometrical interpretation of the theorem quoted above is,
that part of the surface lies within the cube formed by the planes
a : = ± l > y = ± l > 2 = ± l > but that no part of the surface lies within
any one of the six infinite spaces that can be generated by the
motion of a face of the cube in a direction perpendicular to that
face. From this it follows, that, if the surface is continuous, cer-
tain of the vertices of the cube must be conical points on the surface.
It is easily seen that the points (1, 1, 1), (1, - 1, - 1), ( - 1, 1, - 1),
( - 1 , - 1 , 1) lie on the surface; and they are therefore conical
points. I t may easily be shown that the enveloping cones at the
conical points are right circular cones with their vertical angles
right angles.

The section made by each of the co-ordinate planes is a circle
(with a straight line at infinity).

The section made by a plane that bisects the angle between two
of the co-ordinate planes consists of a parabola and a straight line
(which is a diagonal of one of the faces of the cube referred to
abofe).

All the sections parallel to one of the co-ordinate planes are
ellipses and hyperbolas inscribed in the same square.

There are nine real straight lines on the surface; of which six
are at a finite distance, and consist of one of the diagonals of each
of the six faces of the cube; and the other three are at an infinite
distance in the direction of the co-ordinate planes.

As four is the maximum number of conical points that a cubic
surface may have, the surface under consideration possesses the
maximum number. A cubic surface contains, in general, twenty-
seven straight lines; but when a straight line passes through a
conical point it counts for two, and when it passes through two
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conical points, for four. Thus, in the present case, the six straight
lines at a finite distance, which are the six edges of a tetrahedron
whose vertices are the four conical points, count for twenty-four.
The remaining three straight lines always lie in one plane ; in the
case of the surface we are now considering, this plane is the plane at
infinity.

The projection on the s-plane of tlic section made by any plane
containing the conical points (1, 1, 1) and ( - 1, - 1, \) is a rectan-
gular hyperbola whose asymptotes are parallel to the axes of x
and y.

If we make the equation homogeneous, we get

2xyz - ax" - ay2 - as2 + a3 = 0 ;

the finite sheet of which surface is contained by the planes x = ± a,
y= +a, z= ±a. If we make a zero, the surface degenerates into
the three co-ordinate planes.

The equation may be further generalised in the form

labcxyz - fcVic2 - c2a2if - a W + a W = 0.

ILLUSTRATION OF THE COMPOSITION OP TWO SIMPLE HARMONIC

MOTIONS.

The composition of two simple harmonic motions, of equal
amplitudes, in directions at right angles to one another, may be
illustrated by means of the surface 2xyz - aa? - ay- - az* + a3 = 0, in
the case in which the periods of the motions are very nearly equal.

FIRST METHOD.

We may write

x = acoswt,
y = acos(co'« - a)

= acos{(o< + (*>' - w)t - a} = acos(o>t + $),

where u>' - a> is small, and hence 0, which is equal to (o>' - to)t — a,
varies slowly with the time.

The resultant of these two simple harmonic motions for a small
interval of time, is given by

x2 + y* - ixyco&O = a2sin20. (1)

Multiplying this equation by a, and comparing with the equation
to the surface, we have
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2xyncos9 - aa? - ay1 + a'sin*6? = 0 ;
2xys - aa? - ay* - oz5 + a3 = 0 ;
z = acos# and - as? + a'= assin°8,

and these two equations are consistent.
If we look upon (1) as the equation to a family of curves, it will

always be possible to obtain them as the projection of a family of
curves on any surface; but it will not in general be possible to
obtain 2 as a function of the parameter 8 alone.

SECOND METHOD.

In the equation

2xyz - ax* - ay- - az* + a" = 0,

put x = acosayt, y = acos(<ot + 0).

Then

2a2zcos<i>teos((i>< + 9) - a'cos2ai< - a"cos"(<ot + 6) - az1 + a' = 0 ;

t ha t is

22 - 2azoosii>tcos(<ot + 0) + a2{cos2io< + cos5(<o< + 6) - 1} •= 0.

If D be the discriminant of this equation, we have

D/4a2 = cos2wicos2(w< + 0) - { cos-<at - cos2(a>< + 6) + 1J
= (1 - cos2a)<)(l - cos2(w< + 0)) = sin2<otein2(a)< + 6).

Hence s = {2acosa><cos((o< + 0)± JD}I2
= a{coso><cos(col + 0)± sinoilsinfwt + 0)}
= acos# or acos(2u>< + 6).

The second of these solutions corresponds to the curve traced out
by the one end of a straight line parallel to the axis of z, when the
other end traces out the curve given by the first solution.

In the first method of solution the representation is regarded
rather as approximate and discontinuous, while in the second it is
exact and continuous.

It should be noticed that z = acos0 = acos{(o>' -ta)t-a} is also a
simple harmonic motion; and hence the spiral traced out on the
surface is the resultant of three particular simple harmonic motions.

In the second method of looking at the problem, it is not neces-
sary that (» and u> should be nearly equal.

Tn the case of the second value of z, z = acos(2<ol + 6), if 01' - a> is
small, the period for z is just about half of that for x or y.
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