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QUASI-SOCLE IDEALS IN BUCHSBAUM RINGS

SHIRO GOTO, JUN HORIUCHI, and HIDETO SAKURAI

Abstract. Quasi-socle ideals, that is, ideals of the form I = Q : m
q (q ≥ 2),

with Q parameter ideals in a Buchsbaum local ring (A,m), are explored in

connection to the question of when I is integral over Q and when the associated

graded ring G(I) =
⊕

n≥0 In/In+1 of I is Buchsbaum. The assertions obtained

by Wang in the Cohen-Macaulay case hold true after necessary modifications
of the conditions on parameter ideals Q and integers q. Examples are explored.

§1. Introduction

Let A be a Noetherian local ring with maximal ideal m, d = dimA > 0,
and infinite residue class field A/m. Let

G(m) =
⊕
n≥0

mn/mn+1

be the associated graded ring of m. For each m-primary ideal I in A, we
denote by ei

I(A) (0 ≤ i ≤ d) the ith Hilbert coefficient of A with respect to
I , whence the Hilbert polynomial of I is given by the formula

�A(A/In+1) = e0
I(A)

(
n + d

d

)
− e1

I(A)
(

n + d − 1
d − 1

)
+ · · · + (−1)ded

I(A)

for all n � 0, where �A(∗) denotes the length of the module.
With this notation, the purpose of this article is to prove the following.

Theorem 1.1. Suppose that A is a Buchsbaum local ring and suppose
that depthG(m) ≥ 2. Let q ≥ 2 be an integer, and let Q = (a1, a2, . . . , ad) be
a parameter ideal in A such that Q ⊆ mq+2. Assume that ad = ab for some
a ∈ mq, b ∈ m, and put I = Q : mq. Then

mqI = mqQ, I ⊆ mq+2, and I2 = QI,

and the following assertions hold true.
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(1) The first Hilbert coefficient e1
I(A) of A with respect to I is given by

e1
I(A) = e0

I(A) + e1
Q(A) − �A(A/I).

(2) The Hilbert function of I is given by

�A(A/In+1) = e0
I(A)

(
n + d

d

)
− e1

I(A)
(

n + d − 1
d − 1

)

+
d∑

i=2

(−1)i[ei−1
Q (A) + ei

Q(A)]
(

n + d − i

d − i

)

for all n ≥ 0.
(3) The associated graded ring G(I) =

⊕
n≥0 In/In+1 of I is a Buchs-

baum ring with

Hi
M

(
G(I)

)
=
[
Hi

M

(
G(I)

)]
1−i

∼= Hi
m(A)

as A-modules for all i < d and

max
{
n ∈ Z

∣∣ [Hd
M

(
G(I)

)]
n

	= (0)
}

≤ 1 − d.

Here M = mG(I) + G(I)+ and [Hi
M (G(I))]n (i, n ∈ Z) denotes the homoge-

neous component with degree n in the ith graded local cohomology module
Hi

M (G(I)) of G(I) with respect to M .

Thus, the quasi-socle ideals I = Q : mq behave very well, inside Buchs-
baum rings also, under the conditions stated in Theorem 1.1. Notice that,
because A is a Buchsbaum ring, the Hilbert coefficients ei

Q(A) of the para-
meter ideal Q are given by the formula

(−1)iei
Q(A) =

⎧⎪⎪⎨
⎪⎪⎩

e0
Q(A) if i = 0,

�A(H0
m(A)) if i = d,∑d−i

j=1

(
d−i−1
j−1

)
�A(Hj

m(A)) if 1 ≤ i ≤ d − 1,

and one has the equality �A(A/Qn+1) =
∑d

i=0(−1)iei
Q(A)

(
n+d−i
d−1

)
for all

n ≥ 0 (see [Sch, Korollar 3.2]), so that {ei
Q(A)}1≤i≤d are independent of the

choice of Q and are invariants of A. The crucial point in Theorem 1.1 is the
equality I2 = QI ; assertions (1), (2), and (3) readily follow from this fact via
[GO, Section 2] and [GN, Section 5], since (a1, . . . , ǎi, . . . , ad) : m ⊆ I for all
1 ≤ i ≤ d. Here we should also note that the condition in Theorem 1.1 that
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ad = ab for some a ∈ mq and b ∈ m is rather technical, but at this moment,
we do not know whether this additional condition is superfluous.

We now briefly explain the background of Theorem 1.1. Our research
dates back to works of A. Corso, C. Polini, C. Huneke, W. V. Vasconcelos,
and the first author in which the socle ideals Q : m for parameter ideals Q

in Cohen-Macaulay rings A were explored with the following result.

Theorem 1.2 (see [CHV], [CP1], [CP2], [CPV], [G2]). Let Q be a parame-
ter ideal in a Cohen-Macaulay ring A, and let I = Q : m. Then the following
conditions are equivalent:

(1) I2 	= QI;
(2) Q is integrally closed in A;
(3) A is a regular local ring, and the A-module m/Q is cyclic.

Hence, if A is a Cohen-Macaulay ring that is not regular, then I2 = QI for
every parameter ideal Q in A, so that G(I) and F(I) = G(I)/mG(I) are both
Cohen-Macaulay rings, where I = Q : m. The Rees algebra R(I) =

⊕
n≥0 In

is also a Cohen-Macaulay ring, if dimA ≥ 2.

This result has led to two directions of research to better understand the
quasi-socle ideals I = Q : mq in arbitrary local rings. One direction is to
weaken the assumption on base rings A, which was performed by the first
and the third authors (see [GSa1], [GSa2], [GSa3]). They explored the socle
ideals I = Q : m inside Buchsbaum local rings A and showed that I2 = QI

and that G(I) is a Buchsbaum ring if e0
m(A) ≥ 2 and if Q is contained in a

sufficiently high power of the maximal ideal m. The other direction was inde-
pendently performed by Wang [Wan] and also by the first author, Matsuoka,
Takahashi, Kimura, Phuong, and Truong (see [GMT], [GKM], [GKMP],
[GKPT]). In [GMT] the quasi-socle ideals Q : m2 in Gorenstein local rings
A with dimA > 0 and e0

m(A) ≥ 3 are explored, and in [GKM], [GKMP],
and [GKPT] the quasi-socle ideals Q : mq (q ≥ 1) in Cohen-Macaulay local
rings of dimension 1 are closely studied. However, at least in the case where
dimA ≥ 2, Wang [Wan] made a great achievement in this area, settling affir-
matively a conjecture of Polini and Ulrich [PU, page 663]. Let us note one
of his results in the following form.

Theorem 1.3 ([Wan, Theorem 3.2]). Suppose that A is a Cohen-Macaulay
ring, and let q ≥ 1 be an integer. Let Q be a parameter ideal in A such that
Q ⊆ mq+1, and put I = Q : mq. Then

mqI = mqQ, I ⊆ mq+1, and I2 = QI,
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provided that depthG(m) ≥ 2.

Since Buchsbaum rings are very akin to Cohen-Macaulay rings, it seems
quite natural to expect that similar results of the Cohen-Macaulay case,
such as Theorem 1.3, should be true also in the Buchsbaum case after suit-
able modifications of the corresponding conditions, which we now report in
Theorem 1.1.

The proof of Theorem 1.1 is given in Section 2, which we divide into two
parts. The first part shows that mqI = mqQ. The second part proves that
I2 = QI . Since A is not necessarily a Cohen-Macaulay ring, the equality
I2 = QI does not readily follow from the fact that mqI = mqQ. We care-
fully analyze this phenomenon in Section 2. A similar but more restricted
result also holds true in the case where G(m) is a Buchsbaum ring with
depthG(m) = 1, which we discuss in Section 3. In Section 4, we give exam-
ples of Buchsbaum rings A with depthG(m) = d − 1, which satisfy the con-
ditions required in Theorems 1.1 and 3.1

In what follows, unless otherwise specified, let (A,m) denote a Noetherian
local ring with d = dimA > 0. For simplicity, we assume throughout the
article that the residue class field A/m of A is infinite. For an ideal I in A,
let

G(I) =
⊕
n≥0

In/In+1

be the associated graded ring of I . Let Hi
m(A) denote, for each i ∈ Z, the

ith local cohomology module of A with respect to m.

§2. Proof of Theorem 1.1

For each f( 	= 0) ∈ A, let om(f) = max{n ∈ Z | f ∈ mn}, and let f ∗ =
f modmn+1 denote the initial form of f in G(m). The aim of this section is
to prove Theorem 1.1. Let us begin with the following.

Lemma 2.1. Suppose that depthG(m) ≥ 1. Then mα : mβ = mα−β for all
α,β ∈ Z with β ≥ 0.

Proof. We have to show only that mα : mβ ⊆ mα−β . Let us choose a ∈
m \ m2 so that a∗ is G(m)-regular. Let x ∈ mα : mβ . Assume that x /∈ mα−β .
Then, since om(x) ≤ α − β − 1 and aβx ∈ mα, we have a∗βx∗ = 0 in G(m),
which is impossible.

After suitable modifications of conditions on parameter ideals Q and inte-
gers q, Wang’s [Wan] technique still works in the case where A is a gener-
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alized Cohen-Macaulay ring. We summarize this fact in the following, for
which we note a detailed proof in order to clarify where and why we need
such modifications.

Proposition 2.2. Suppose that depthG(m) ≥ 2. Assume that A is a
generalized Cohen-Macaulay ring, and choose an integer � > 0 so that m� is
standard (see [T, Section 3]). Let q ≥ 2 be an integer, and let Q = (a1, a2, . . . ,

ad) be a parameter ideal in A such that Q ⊆ mq+�+1. We put I = Q : mq.
Then mqI = mqQ and I ⊆ mq+�+1, whence I2 ⊆ Q.

Proof. Once we have mqI = mqQ, by Lemma 2.1 we get that I ⊆ mqQ :
mq ⊆ m2q+�+1 : mq = mq+�+1. We now show that mqI ⊆ mqQ.

Let F denote the set of all the products
∏q

i=1 fi, where fi ∈ m \ m2 for
all 1 ≤ i ≤ q and f ∗

i , f ∗
j form a regular sequence in G(m) for all integers

1 ≤ i < j ≤ q. Then mq = (F ). Let α ∈ I , and let f =
∏q

i=1 fi ∈ F , where the
family {fi}1≤i≤q of elements in m \ m2 is assumed to satisfy the conditions
stated above. Let us write

αf =
d∑

i=1

aixi

with xi ∈ A. It suffices to show that xi ∈ mq for all 1 ≤ i ≤ d.
We put gj =

∏
1≤k≤q,k �=j fk for each 1 ≤ j ≤ q, and we choose g ∈ m \ m2

so that g∗, f ∗
j is a regular sequence in G(m) for all 1 ≤ j ≤ q. Let

α(gjg) =
d∑

i=1

aixij

with xij ∈ A. Then, since f = fjgj , we have

d∑
i=1

ai(fjxij) =
d∑

i=1

ai(gxi),

whence, for all 1 ≤ i ≤ d and 1 ≤ j ≤ q, we get

gxi − fjxij ∈ (a1, . . . , ǎi, . . . , ad) : ai.

Therefore, since (a1, . . . , ǎi, . . . , ad) : ai = (a1, . . . , ǎi, . . . , ad) : m� by [T, Pro-
position 3.1] (recall that m� is standard) and Q : m� ⊆ mq+�+1 : m� = mq+1

by Lemma 2.1, we get
gxi − fjxij ∈ mq+1.
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Consequently, since g∗, f ∗
j form a regular sequence in G(m), we have

gxi − fjxij ∈ (g, fj) ∩ mq+1 = (g, fj) · mq

(see [VV]), so that gxi − fjxij = gx′
i − fjx

′
ij with x′

i, x
′
ij ∈ mq. Hence,

xi − x′
i ∈ (fj) : g = (fj),

and so xi ∈ mq + (fj) for all 1 ≤ i ≤ d and 1 ≤ j ≤ q. Thus,

xi ∈
q⋂

j=1

[mq + (fj)].

Claim 1.
⋂k

j=1[m
q + (fj)] ⊆ mq +

(∏k
j=1 fj

)
for all 1 ≤ k ≤ q.

Proof. We may assume that k > 1 and that our assertion holds true for
k − 1. Hence,

k⋂
j=1

[mq +(fj)] ⊆
[
mq +

(k−1∏
j=1

fj

)]
∩ [mq +(fk)] = mq +

[(k−1∏
j=1

fj

)
∩ [mq +(fk)]

]
.

Let y ∈ A, and assume that x =
(∏k−1

j=1 fj

)
· y ∈ mq + (fk). Let A = A/(fk),

and let m = m/(fk). Let ∗ denote the image in A. Then y ∈ mq−(k−1), because∏k−1
j=1 fj · y ∈ mq and f ∗

j , f ∗
k form a regular sequence in G(m) for all 1 ≤ j ≤

k − 1. Hence, y ∈ mq−k+1 +(fk), so that x =
(∏k−1

j=1 fj

)
· y ∈ mq +

(∏k
j=1 fj

)
.

Thus,
(∏k−1

j=1 fj

)
∩ [mq + (fk)] ⊆ mq +

(∏k
j=1 fj

)
, whence

k⋂
j=1

[mq + (fj)] ⊆ mq +
( k∏

j=1

fj

)
.

Thanks to Claim 1, we get xi ∈ mq +
(∏q

j=1 fj

)
= mq for all 1 ≤ i ≤ d,

whence αf ∈ mqQ, which proves Proposition 2.2.

We need the following to show the equality I2 = QI .

Lemma 2.3 ([GSa3, Lemma 2.3]). Let W,L, and M be ideals in a commu-
tative ring R, and let a, b ∈ R. Assume that a ∈ M,aW = (0),L : a = L : a2,

and L : ab = L : b. Then
(
L + (ab) + W

)
: M = [(L + W ) : M ] +

[(
L + (ab)

)
: M
]
.
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If L : a = L : M , we furthermore have
(
L + (ab) + W

)
: M =

(
L + (ab)

)
: M.

Proof. The former assertion is proved exactly in the same way as [GSa3,
Lemma 2.3], where we have no utility of the assumption that b ∈ M . To see
the latter equality, let x ∈ (L + W ) : M . Then, since a2x ∈ L, we get

x ∈ L : a2 = L : a = L : M ⊆
(
L + (ab)

)
: M.

Thus, (L + W ) : M ⊆ (L + (ab)) : M , whence
(
L + (ab) + W

)
: M = [(L + W ) : M ] +

(
L + (ab)

)
: M =

(
L + (ab)

)
: M,

as required.

The heart of our proof of Theorem 1.1 is the following.

Proposition 2.4. Suppose that A is a generalized Cohen-Macaulay ring,
and choose an integer � > 0 so that m� is standard. Let q ≥ 1 be an integer,
and let Q = (a1, a2, . . . , ad) be a parameter ideal in A. Let I = Q : mq, and
assume that the following three conditions are satisfied:

(1) mqI = mqQ, I2 ⊆ Q, and ai ∈ m� for all 1 ≤ i ≤ d − 1;
(2) there exist elements a ∈ mq and b ∈ m such that ad = ab and both

systems {a1, a2, . . . , ad−1, a} and {a1, a2, . . . , ad−1, b} of parameters in A are
standard;

(3) either d = 1 or q ≥ �.
We then have I2 = QI.

Proof. We notice that the system {a1, a2, . . . , ad} of parameters is stan-
dard, because {a1, a2, . . . , ad−1, a} is also standard (see [T, Corollary 3.3]).
We put W = H0

m(A),L = (a1, a2, . . . , ad−1) and M = mq. Then a ∈ M , aW =
(0), and

L : a = L : a2 = L : ab = L : b =
⋃
n≥0

[L : mn],

since all the systems {a1, a2, . . . , ad−1, a}, {a1, a2, . . . , ad−1, b}, and {a1,

a2, . . . , ad−1, ab} of parameters are standard. On the other hand, we have⋃
n≥0[L : mn] = L : m� by [T, Proposition 3.1] because L ⊆ m� and m� is

standard. Hence, L : a = L : M , if q ≥ �. Consequently, since W = W : M ,
by Lemma 2.3 we get

(Q + W ) : mq = W + [Q : mq] = W + I,
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if d = 1, and
(Q + W ) : mq = Q : mq = I,

if q ≥ �.
Suppose now that d = 1, and let A = A/W , m = m/W , I = IA, and

Q = QA. Then I = Q : mq and mq · I = mq · Q. Let x ∈ I
2. Then, since

I
2 ⊆ Q, we have x = a1y with y ∈ A. Let α ∈ mq. Then, since a1(αy) = αx ∈

mq · I
2 = mq · Q

2, we get a1(αy) = a2
1z for some z ∈ A. Therefore, αy ∈ Q

(notice that a1 is A-regular), so that x = a1y ∈ Q · I , because y ∈ Q : mq = I .
Thus, I

2 = Q · I , so that I2 ⊆ QI + W . Since W ∩ Q = (0) and I2 ⊆ Q, we
get I2 ⊆ (QI + W ) ∩ Q = QI , as required.

Suppose now that d ≥ 2 and that our assertion holds true for d − 1. Let
B = A/(a1). Then all the conditions (1), (2), and (3) are satisfied for the
parameter ideal Q/(a1) in B, and we get I2 ⊆ QI + (a1). Let x ∈ I2, and
write x = y + a1z with y ∈ QI and z ∈ A. Let α ∈ mq. We then have

αx = αy + a1(αz) ∈ Q2,

because x ∈ I2 and mqI = mqQ. Consequently, a1(αz) ∈ Q2 (notice that
αy ∈ Q2), so that a1(αz) ∈ (a1) ∩ Q2 = a1Q, because a1, a2, . . . , ad form a
d-sequence in A (see [T, Proposition 3.1]). Hence, αz − v ∈ (0) : a1 ⊆ W for
some v ∈ Q, which guarantees that z ∈ (Q+W ) : mq = I , since q ≥ �. Thus,
x = y + a1z ∈ QI , so that I2 = QI as claimed.

Summarizing Propositions 2.2 and 2.4, we have the following. Taking
� = 1 in the case where A is a Buchsbaum ring, Theorem 1.1 now follows
from Theorem 2.5.

Theorem 2.5. Suppose that A is a generalized Cohen-Macaulay ring and
suppose that depthG(m) ≥ 2. Choose an integer � ≥ 1 so that m� is standard.
Let Q = (a1, a2, . . . , ad) be a system of parameters in A, and put I = Q : mq,
where q is an integer such that q ≥ max{�,2}. Assume that the following
two conditions are satisfied:

(i) Q ⊆ mq+�+1;
(ii) there exist elements a ∈ mq and b ∈ m such that ad = ab and the

system a1, . . . , ad−1, b of parameters in A is standard.

Then I2 = QI, and the following assertions hold true:

(1) e1
I(A) = e0

I(A) + e1
Q(A) − �A(A/I);
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(2) the Hilbert function of I is given by

�A(A/In+1) = e0
I(A)

(
n + d

d

)
− e1

I(A)
(

n + d − 1
d − 1

)

+
d∑

i=2

(−1)i[ei−1
Q (A) + ei

Q(A)]
(

n + d − i

d − i

)

for all n ≥ 0;
(3) the graded ring G(I) =

⊕
n≥0 In/In+1 is Buchsbaum, if A is also;

(4) Hi
M (G(I)) = [Hi

M (G(I))]1−i
∼= Hi

m(A) as A-modules for all i < d and

max
{
n ∈ Z

∣∣ [Hd
M

(
G(I)

)]
n

	= (0)
}

≤ 1 − d,

where M = mG(I) + G(I)+.

Proof. The equality I2 = QI follows directly from Propositions 2.2
and 2.4. See [GO, Section 2] (resp., [GN, Section 5]) for assertions (1) and (2)
(resp., (3) and (4)).

§3. The case where depthG(m) = 1

In this section, we study the question of what happens in the case where
depthG(m) = 1. Our goal is the following.

Theorem 3.1. Let A be a Buchsbaum ring with d = dimA ≥ 2, and sup-
pose that G(m) is a Buchsbaum ring with depthG(m) = 1. Let

n = min
{
n ∈ Z

∣∣ [H1
M

(
G(m)

)]
n

	= (0)
}
,

where M = G(m)+. Then n ≥ 0, and for every integer 1 ≤ q ≤ n + 1 and
for every parameter ideal Q = (a1, a2, . . . , ad) of A such that Q ⊆ mq+2 we
have

(1) mqI = mqQ, and
(2) I ⊆ mq+2,

where I = Q : mq. Consequently, I2 = QI, so that assertions (1), (2), and
(3) in Theorem 1.1 hold true also in the present setting, provided that ad =
ab for some a ∈ mq and b ∈ m.

The proof of Theorem 3.1 is essentially the same as that of Theorem 1.1.
However, we note a detailed proof to show where we use the assumption
that 1 ≤ q ≤ n + 1.
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Proof. Choose f ∈ m \ m2 so that f ∗ is G(m)-regular. Then, since G(m)
is a Buchsbaum ring, we get

H0
M

(
G(m)

)∼=
[
H1

M

(
G(m)

)]
(−1)

as graded G(m)-modules, where m = m/(f). Hence,

n + 1 ≥ min
{
n ∈ Z

∣∣ [H0
M

(
G(m)

)]
n

	= (0)
}

≥ 1,

so that n ≥ 0.
To show assertion (1), we may assume that q ≥ 2 (see [GSa1], [GSa2],

[GSa3] for the case where q = 1). Let F denote the set of all the products∏q
i=1 fi, where fi ∈ m \ m2 for all 1 ≤ i ≤ q and f ∗

i , f ∗
j form, for all integers

1 ≤ i < j ≤ q, a part of a homogeneous system of parameters in G(m). Then
mq = (F ). Let α ∈ I , and let f =

∏q
i=1 fi ∈ F , where the family {fi}1≤i≤q of

elements in m \ m2 is assumed to satisfy the conditions stated above. Let us
write

αf =
d∑

i=1

aixi,

with xi ∈ A. We will now show that xi ∈ mq for all 1 ≤ i ≤ d.
We put gj =

∏
1≤k≤q,k �=j fk for each 1 ≤ j ≤ q, and we choose g ∈ m \ m2

so that g∗, f ∗
j is a part of a homogeneous system of parameters in G(m) for

all 1 ≤ j ≤ q. Let

α(gjg) =
d∑

i=1

aixij ,

with xij ∈ A. Then, since f = fjgj , we have

d∑
i=1

ai(fjxij) =
d∑

i=1

ai(gxi),

whence, for all 1 ≤ i ≤ d and 1 ≤ j ≤ q, we get

gxi − fjxij ∈ (a1, . . . , ǎi, . . . , ad) : ai.

Therefore, since (a1, . . . , ǎi, . . . , ad) : ai = (a1, . . . , ǎi, . . . , ad) : m and Q : m ⊆
mq+1 by Lemma 2.1, we have

gxi − fjxij ∈ mq+1.
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Let A = A/(fj), and let ∗ denote the image in A. We then have

g · xi ∈ mq+1,

where m = m/(fj). Hence, xi ∈ mq. In fact, assume that xi /∈ mq, and let
� = om(xi). Then � ≤ q − 1, while

0 	= xi
∗ ∈ H0

M

(
G(m)

)∼=
[
H1

M

(
G(m)

)]
(−1).

Hence, [H1
M (G(m))]�−1 	= (0), and so n ≤ � − 1 ≤ q − 2. This is impossible,

since q ≤ n + 1 by our assumption.
Thus, xi ∈ mq + (fj) for all 1 ≤ i ≤ d and 1 ≤ j ≤ q, so that the proof of

Claim 1 shows that xi ∈ mq for all 1 ≤ i ≤ d. In fact, with the same notation
as in the proof of Claim 1, the crucial point is to check that y ∈ mq−(k−1).
Suppose that y /∈ mq−(k−1). Then, since

∏k−1
j=1 fj · y ∈ mq and

(∏k−1
j=1 fj

)∗ is a
part of a homogeneous system of parameters in the Buchsbaum ring G(m),
we get y∗ ∈ H0

M (G(m)), so that n+1 ≤ om(y) ≤ q − k ≤ q − 2, which is impos-
sible, since q ≤ n + 1. Hence, mqI = mqQ, so that I ⊆ mq+2 by Lemma 2.1.
The other assertions follow similarly as in the proof of Theorem 1.1.

§4. Example

Let d > 0 and n ≥ 0 be integers. We look at the graded ring

R = k[X1,X2, . . . ,Xd, Y1, Y2, . . . , Yd]/
[
(Yi | 1 ≤ i ≤ d)n+2 +

( d∑
i=1

XiY
n+1
i

)]
,

where U = k[X1,X2, . . . ,Xd, Y1, Y2, . . . , Yd] denotes the polynomial ring with
2d indeterminates over a field k. Let M = R+, A = RM , and m = MRM .

Example 4.1. The following assertions hold true:

(1) dimR = d and depthR = d − 1;
(2) Hd−1

M (R) ∼= [R/M ](−(n + 2 − d)) as graded R-modules;
(3) R is a Buchsbaum ring;
(4) e0

m(A) =
(

d+n+1
d

)
− 1.

Since R ∼= G(m), Example 4.1 provides Buchsbaum rings A which satisfy
the conditions required in Theorem 1.1 (take d ≥ 3) and Theorem 3.1 (take
d = 2).
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Proof. Let p = (Yi | 1 ≤ i ≤ d), and let f =
∑d

i=1 XiY
n+1
i . Let a = pn+2 +

(f), and let V = U/p. We look at the two short exact sequences

(1) 0 → pn+1/a → R → U/pn+1 → 0,

(2) 0 → a/pn+2 ϕ→ pn+1/pn+2 → pn+1/a → 0

of graded R-modules. Then we see that pn+1/pn+2 is a free V -module with
{Y α modpn+2}α∈Λ a basis, where

Λ =
{

(α1, α2, . . . , αd)
∣∣∣ 0 ≤ αi ∈ Z for 1 ≤ ∀i ≤ d,

d∑
i=1

αi = n + 1
}

and Y α =
∏d

i=1 Y αi
i for each α = (α1, α2, . . . , αd) ∈ Λ. Notice that

a/pn+2 ∼= (f)/[(f) ∩ pn+2] ∼= (f)/fp ∼= V
(

−(n + 2)
)
.

Then, identifying a/pn+2 = V (−(n+2)) and pn+1/pn+2 = V q(−(n+1)) with
q =
(

n+d
d−1

)
, we see that the inclusion map ϕ : a/pn+2 → pn+1/pn+2 in exact

sequence (2) is represented by the matrix of the form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X1 modp

X2 modp
...

Xd modp

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

so that we have

pn+1/a ∼= V q−d
(

−(n + 1)
)

⊕
[
Syzd−1

V

(
V/(X1,X2, . . . ,Xd)V

)](
−(n + 2 − d)

)
,

where Syzd−1
V (V/(X1,X2, . . . ,Xd)V ) denotes the (d − 1)th syzygy module of

the residue class field V/(X1,X2, . . . ,Xd)V of V . Hence, depthR L = d − 1,
where L = pn+1/a, and

Hd−1
M (L) ∼= (R/M)

(
−(n + 2 − d)

)
as graded R-modules. Consequently, thanks to exact sequence (1), we get
depthR = d − 1 and

Hd−1
M (R) ∼= Hd−1

M (L) ∼= (R/M)
(

−(n + 2 − d)
)
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because U/pn+1 is a Cohen-Macaulay ring of dimension d. Thus, R is a
Buchsbaum ring by [SV, Corollary 1.1]. We have

e0
m(A) = �Up

(Rp) =
(

n + d + 1
d

)
− 1

by the associative formula of multiplicity, since MinU R = {p}.

Remark 4.2. Taking n = 0 in Example 4.1, we have

e0
m(A) = d = 1 +

d−1∑
i=1

(
d − 1
i − 1

)
hi(A),

where hi(A) = �A(Hi
m(A)). Hence, our Buchsbaum local ring A has minimal

multiplicity in the sense of [G1, Section 4].

References

[CHV] A. Corso, C. Huneke, and W. V. Vasconcelos, On the integral closure of ideals,
Manuscripta Math. 95 (1998), 331–347.

[CP1] A. Corso and C. Polini, Links of prime ideals and their Rees algebras, J. Algebra
178 (1995), 224–238.

[CP2] , Reduction number of links of irreducible varieties, J. Pure Appl. Algebra
121 (1997), 29–43.

[CPV] A. Corso, C. Polini, and W. V. Vasconcelos, Links of prime ideals, Math. Proc.
Cambridge Philos. Soc. 115 (1994), 431–436.

[G1] S. Goto, On the associated graded rings of parameter ideals in Buchsbaum rings,
J. Algebra 85 (1983), 490–534.

[G2] , Integral closedness of complete intersection ideals, J. Algebra 108
(1987), 151–160.

[GKM] S. Goto, S. Kimura, and N. Matsuoka, Quasi-socle ideals in Gorenstein numerical
semigroup rings, J. Algebra 320 (2008), 276–293.

[GKMP] S. Goto, S. Kimura, N. Matsuoka, and T. T. Phuong, Quasi-socle ideals in local
rings with Gorenstein tangent cones, J. Commut. Algebra 1 (2009), 603–620.

[GKPT] S. Goto, S. Kimura, T. T. Phuong, and H. L. Truong, Quasi-socle ideals and
Goto numbers of parameters, J. Pure Appl. Algebra 214 (2010), 501–511.

[GMT] S. Goto, N. Matsuoka, and R. Takahashi, Quasi-socle ideals in a Gorenstein local
ring, J. Pure Appl. Algebra 212 (2008), 969–980.

[GN] S. Goto and K. Nishida, Hilbert coefficients and Buchsbaumness of associated
graded rings, J. Pure Appl. Algebra 181 (2003), 61–74.

[GO] S. Goto and K. Ozeki, The structure of Sally modules—towards a theory of non-
Cohen-Macaulay cases, preprint, 2009.

[GSa1] S. Goto and H. Sakurai, The equality I2 = QI in Buchsbaum rings, Rend. Sem.
Mat. Univ. Padova 110 (2003), 25–56.

[GSa2] , The reduction exponent of socle ideals associated to parameter ideals
in a Buchsbaum local ring of multiplicity two, J. Math. Soc. Japan 56 (2004),
1157–1168.

https://doi.org/10.1215/00277630-2010-013 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2010-013


106 S. GOTO, J. HORIUCHI, AND H. SAKURAI

[GSa3] , When does the equality I2 = QI hold true in Buchsbaum rings?, Lect.
Notes Pure Appl. Math. 244 (2006), 115–139.

[PU] C. Polini and B. Ulrich, Linkage and reduction numbers, Math. Ann. 310 (1998),
631–651.

[Sch] P. Schenzel, Multiplizitäten in verallgemeinerten Cohen-Macaulay-Moduln,
Math. Nachr. 88 (1979), 295–306.

[SV] J. Stückrad and W. Vogel, Toward a theory of Buchsbaum singularities, Amer.
J. Math. 100 (1978), 727–746.

[T] N. V. Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya
Math. J. 102 (1986), 1–49.

[VV] P. Valabrega and G. Valla, Form rings and regular sequences, Nagoya Math. J.
72 (1978), 93–101.

[Wan] H.-J. Wang, Links of symbolic powers of prime ideals, Math. Z. 256 (2007),
749–756.

Shiro Goto

Department of Mathematics

School of Science and Technology

Meiji University

Kawasaki 214-8571

Japan

goto@math.meiji.ac.jp

Jun Horiuchi

Department of Mathematics

School of Science and Technology

Meiji University

Kawasaki 214-8571

Japan

jhoriuchi@math.meiji.ac.jp

Hideto Sakurai

Department of Mathematics

School of Science and Technology

Meiji University

Kawasaki 214-8571

Japan

hsakurai@math.meiji.ac.jp

https://doi.org/10.1215/00277630-2010-013 Published online by Cambridge University Press

mailto:goto@math.meiji.ac.jp
mailto:jhoriuchi@math.meiji.ac.jp
mailto:hsakurai@math.meiji.ac.jp
https://doi.org/10.1215/00277630-2010-013

