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This paper studies questions connected with when the Rees algebra of an ideal or the formring of an ideal is
Gorenstein. The main results are for ideals of small analytic deviation, and for m-primary ideals of a regular
local ring {R,m). The general point proved is that the Gorenstein property forces (and is sometimes equivalent
to) lowering the reduction number of the ideal by one from the value predicted if one only assumes the Rees
algebra or formring is Cohen-Macaulay.
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1. Introduction

In this note we discuss under various aspects the Gorenstein property of the formring
G(I) = Q)n^0I"/r+1 of ideals / having small analytic deviation in local Noetherian rings
A. Our premise is that in several situations the Gorensteinness of G(/) is closely related
to low reduction exponents of /. By way of illustration consider first the ideal /
generated by the Pfaffians of a generic skew symmetric matrix or secondly the ideal
generated by the maximal minors of a generic mxn-matrix, m>n; in both cases G(I) is
Gorenstein and the reduction exponent r(I)^\ (cf. [12, Theorem 2.2]). We prove in
Theorems 2.1 and 2.3 that this situation in particular holds for ideals / of analytic
deviation 1 or 2 satisfying some mild additional conditions. These results are shared
with Goto and Nakamura as they were independently obtained by them too but with
other methods [3,4]. Recently N. V. Trung and Z. Tang tried to formulate similar
results also for ideals of analytic deviation > 3 by using quite a different approach.

A third example which illustrates our premise is an ideal / which is a power of the
maximal ideal m in a regular local ring A of dim/4^2. Then the Gorensteinness of G(/)
implies that r(I)^d-2 by [9, (2.4), (2.6), (3.7), and (3.9)]. One of our main results (see
Theorem 2.5) shows that this conclusion is true for any m-primary ideal in a regular
local ring (A,m). It turns out that the proof of this result uses a new Briancon-Skoda
theorem, which was conjectured by the second author and recently proved by J. Lipman
([13]). Note that if one just assumes that G(/) is CM for an m-primary ideal / in a
regular local ring of dimension d, then one can conclude from the usual Briancon-

*The first author was partially supported by the LMS and EMS while visiting the University of Sheffield
and the University of Edinburgh. The second author was partially supported by the NSF.

449

https://doi.org/10.1017/S0013091500019258 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019258


450 M. HERRMANN, C. HUNEKE AND J. RIBBE

Skoda theorem that r(I)<d — 1. When G(/) is Gorenstein we obtain bounds better by 1.
Moreover the proof requires a better Briancon-Skoda theorem.

On the other hand one cannot expect a corresponding result for an m-primary ideal
in a non-regular local ring. As a case in point consider the ideal I: = m in the local ring
(A,m) of a hypersurface singularity with multiplicity e = e(A)>2. Then we have
r(m) = e— 1 by [6, (26.4)], hence r(m) can be any number although G(m) is always
Gorenstein.

Finally we relate in Corollary (2.7) the Gorensteinness of G(/) to the Gorenstein
property of the Rees ring R(Ir) for some r ̂  1 assuming that / is an m-primary ideal / in
a regular local ring A with a Cohen-Macaulay formring. (Recall that the Rees algebra
R(J) of an ideal J in a ring R is the ring, R © J © J2 © ... .)

2. Results and comments

We always assume that A/m is infinite. We denote the height of an ideal / c / 1 by
ht(/) or h and the analytic spread of / by /(/) or (. The analytic deviation of / is
defined by ad(/)=/(/) — ht(/)>0. The case when ad(/) = 0 has been studied a great deal.
In this case / is said to be equimultiple. See [6] for more information.

The term "/ is generically a complete intersection" means that v(/P) = ht(P) for
Pe Min(A/I), where v( ) is the least number of generators of an ideal in a local ring A.

An ideal J <= / is called a minimal reduction of / if J is minimal with respect to the
property In+1=JI" for some integer n>0. The least such n for which r + l=JI" is
denoted by r,(/), the reduction number of / with respect to J. The minimum of all such
r,(7) is denoted by r(/), called the reduction number of /.

For an element a e A, a* denotes the initial form of a in G(I). In other words, a* is
the image of a in I"/l"+l if ael" and a$ln+l. We will often make use of the fact that
the initial forms of the elements forming a minimal reduction of / sit in degree 1 in G(/).
Moreover, the minimal primes of / and any reduction J of I are the same. Occasionally
if it is clear from context, we will drop the dependence on / of G{I), r(I), etc.

Theorem 2.1. Let I be an ideal o/ad(/) = l in a Gorenstein local ring A. Assume that I
is generically a complete intersection. Then the following hold:

(i) ifG(I) is Gorenstein then r(I)^l;
(ii) if r(I) ^ 1 and A/1 is Cohen-Macaulay, then G(I) is Gorenstein and r(I) = 0.

The following corollary is an immediate consequence of Theorem 2.1 and of [10,
Theorem 2.2].

Corollary 2.2. Under the assumptions as in Theorem 2.1 assume that A/1 is Cohen-
Macaulay and there exists a minimal reduction J of I such that rjQ(/Q) ^ 1 for every prime
ideal Q=>I with ht(g//) = l. Then r(/) = 0.

The proof of Theorem 2.1 is based on the explicit calculation of socle elements in
G{I)/S, where S is a suitable parameter ideal in G(I). We don't quite see that this

https://doi.org/10.1017/S0013091500019258 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019258


REDUCTION EXPONENTS OF IDEALS WITH GORENSTEIN FORMRING 451

strategy applies also to deviation 2 ideals. Therefore we use homological methods in this
case, i.e. we compute the a-invariant of G(/),

a(G(I)): = max {n e Z | [Hj,(G(/))]. * 0},

where d = dimA and Hd
M(G(I)) is the d'h (graded) local cohomology of G(7) with respect

to the unique maximal homogeneous ideal M of G(/). In [3, Proposition 2.4], the a-
invariant of G(I) was computed for ideals of deviation 1. We describe in the following
Theorem 2.3 an analogous formula for deviation 2 ideals.

Theorem 2.3. Let 1 be a Cohen-Macaulay ideal o/ad(/) = 2 and ht(/) = / i>2 in a
Gorenstein local ring A. Assume that G(I) is Cohen-Macaulay and IP is a complete
intersection for all P 2 / such that ht(P//)g 1. Then the following hold:

h if r(/)<l;
(ii) if G(I) is Gorenstein then r ( / )^ 1.

The next proposition is another version of Theorem 9.1 in [7]. It presents a typical
example of a deviation 2 ideals with reduction exponent r(/) = 0; see also [10, Theorem
3.1], and [16, Theorem 10.17], where ideals / generated by weak d-sequences are
considered.

Proposition 2.4. Let A be a Gorenstein local ring and I an ideal of height > 0 with
v(/) = ht(/) + 2. Assume that A/I is Cohen-Macaulay and v(/P)<ht(P) for every prime
P=>/. Then I is an ideal of ad(/) = 2 with Gorenstein formring G{I) and reduction
exponent r(/) = 0. Moreover I is generated by a d-sequence.

Remark. If we replace the condition v(/P)<ht(P) for all P=>I in Proposition 2.4 by
the stronger one v(/P)<^ht(P) for all P 3 / and if we assume that IP is a parameter idedal
in AP for all PeMin{A/I) then G(I) is /4//-torsion free (cf. [7, Theorem 9.2]). Hence if
I = Q is a prime ideal, then the ordinary and the symbolic powers of Q coincide:
Q" = Q"I) for all n>l. Since v(Q0) = £(QQ) in our case, this fact is closely related to
Theorem 3.5 in [10]. One has the following example (cf. [12, Theorem 2.2]): Let
X = (X-,j) be a generic skew-symmetric 5 by 5 matrix with zeros down the diagonal over
a field k. Let / be the ideal generated by the corresponding Pfaffians in fc[.Xy]. Then / is
a height 3 Gorenstein ideal of linear type, minimally generated by 5 elements, and in
fact v(/P)^ht(P) for all P=>/ by [12, Theorem 1.16].

Theorem 2.5. Let (A,m) be a noetherian local ring of dimension d. Let I be an
m-primary ideal with minimal reduction J = (x1,...,xd), and let xf be the initial form of x,
in G = G(I). Assume that G is Cohen-Macaulay. Let
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Then k>l and G/(x*,...,x*) has socle elements in degree k—l. If G is Gorenstein then
k—l = r,(/). Moreover, if d>2 and A is regular then k<d—\, so in this case r,(/)^d —2.

Corollary 2.6. Adopt the assumptions of Theorem 2.5. Also assume that A is regular
and that G{I) is Gorenstein. Then k= 1 if and only if A/1 is Gorenstein.

The ideal / is equimultiple in Theorem 2.5, hence if r(I)<d — 1 then G(I) is
Cohen-Macaulay if and only if R(I) is Cohen-Macaulay (see [6]). This last condition is
satisfied in the regular ring A by the Briancon-Skoda Theorem ([1]). In the following
corollary to Theorem 2.5 we formulate an analogous statement for the Gorenstein
property of G(/) and R{1"), q>\\ see also Theorem 2.3 in [8].

Corollary 2.7. Let {A, m) be a regular local ring of dimension > 2 and I an m-primary
ideal in A. Assume that G(l) is Cohen-Macaulay. Then the following are equivalent:

(i) G(/) is Gorenstein;
(ii) there exists an integer q^. 1 such that R(lq) is Gorenstein.

3. Proof of Theorems 2.1 and 2.3

Before we begin the proofs of Theorems 2.1 and 2.3, we state a fundamental lemma of
Goto and Huckaba [3, Lemma 2.2] which we will use several times:

Lemma 3.0. Let R = @n>o^n be a noethehan graded ring over a local ring (R0,m).
Let X be a finitely generated graded R-module with Xn = 0 for all n»0. Then for all
integers k,n we have an isomorphism [Hk

N(X)~\n^Hk
m(Xn) of R0-modules, where iV =

mR + R+ is the maximal homogeneous ideal of R.

3.1. Proof of Theorem 2.1. First note that in parts (i) and (ii) of this theorem G(l)
is Cohen-Macaulay by [11, Theorem 2.1]. Then Theorem 2.1 (and Corollary 2.2) reduce
to the case d\mA = l, ht(/) = O, I is generically 0 and /( /)=1 by [3, proof of
Proposition 2.4].

Before we begin the proof in this case, we note a couple of facts concerning the
annihilators of ideals and the primary decomposition of (0). Since / is generically 0, it
follows that for every prime P minimal over /, the primary component of / along P is
the same as that of (0) along P. In particular (0: /) will lie outside all of these minimal
primes and is also unmixed, as A is Cohen-Macaulay. It is easy to see from primary
decompositions that / = (0:(0:/)) iff / is unmixed. Since the dimension of A is 1, this
holds iff A/I is Cohen-Macaulay, which we assume for part (ii), but not in part (i).

Choose an element xel such that J = (x) is a minimal reduction of/. Choose ce(0:/)
but not in the union of primes P 2 / such that ht(P) = 0. This choice is possible since / is
generically 0. Then 0:c = 0:0: / and x + c is a parameter in A. Moreover x* + c* is a
regular element on G = G(I) and we observe the following (for details see in particular
[l, §5]);
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* + c*) = y/(x*, c*) = M, the unique maximal homogeneous ideal. (1)

For an ideal Q in G(/) let Q a j signify Qn(Gj@Gj+1@--•). Since c*G+ = 0, we have

(x* + c % 2 = (x*)a2 = (x*,c*)a2. (2)

(x* + c*)5(x*,c*). (3)

If G is Gorenstein then G/(x* + c*) is an Artinian Gorenstein ring and soc(G/(x* + c*)) is
1-dimensional. Since x* is not in (x* + c*), an element representing the socle can be
chosen to be a multiple of x*. We claim that this forces G2£(x* + c*). If not, another
socle representative w* could be chosen which is homogeneous of degree at least two.
But then that element will be in the ideal (x* + c*,x*) and by (2) this forces
w*e(x* + c*), which is a contradiction. Hence G2s(x* + c*), and by (2), it follows that
/•(/)< 1, which proves (i) of Theorem 2.1.

To prove (ii) it is enough to show that

dim[soc(G/(x* + c*)] = l.

Now since /^(x + c) (note that /:(x + c) = / :c = /) and dim(soc(A/(x + c)) = 1, we can
choose an element we I which represents the socle modulo (x + c)A. We claim that the
initial form w*eGl (note that w cannot be in I2 since /2 = x/£(x + c)) represents the
socle of G/(x* + c*). To prove this, observe first that G>2c(x* + c*), hence any socle
element modulo (x* + c*) can be represented by aj + aj, where a$eG0,a*eG1 (possibly
one is zero). Let a* + a i De a n arbitrary nonzero socle element modulo (x* + c*).

Step 1: Since G + (a5 + a}")=0 mod(x* + c*) we get

x*(at + aV = (x* + c*)-{bt + bX + b*2 + •••).

Then we must have that cboel, hence c fc o e /n(0 : / ) = (0) (by definition of c). Then
6 o e0 :cs0 :0 : / = / (note that in part (ii) we are assuming that A/1 is Cohen-Macaulay),
i.e. frg = 0. This implies x* • a% = c* • b* = 0, since c* G + = 0. Therefore xaoel2 = x-1 (note
that r(/)<l). Hence

(To see that (0;x)=(0:/), observe that (x) and / have the same minimal primes as x is a
reduction of /. Since / and therefore (x) is generically 0, their annihilators are simply the
intersection of the primary components of 0 whose primes do not contain /.) Therefore
we may assume aoe0:l in the sequel.

Step 2: Let yem\I; since m(a$ + a*) = 0 mod(x* + c*) we get y*(ao+a*) =
(x* + c*)-(6g + 6? + •••)• As c*6f =0 we get the following equations:
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yao-cboel

yai-xb0el2.

Since c,a0e0:I, we have ya0 — cboel n(O:/) = (O), hence yao = cbo. Moreover yax —
xboel2 = xl. Therefore we can freely change b0 by an element of / (noting that c/=0, so
that the first equation does not change) and assume that

yao=cbo and ya, =xb0.

Thus y(ao + a1) = bo(x + c).
Since y is arbitrary in m\I we get finally m(ao + a1)Q{x + c). So ao +

 a i is m t n e socle
of Aj(x + c), hence

, a,teA. (4)

Step 3: If aem in (4), then ao +
 a i =(x + c)-u,ue,4; hence

a0 — CM= - a j +xue /n (0 : / ) = 0,

i.e. ao = cu and a! = xw. This implies that a* + aT = (c* + x*)-w*, which contradicts the
fact that a% + aX is nonzero modulo (c* + x*). (Here u* is considered as an element of
degree zero in G.) Therefore a in (4) is a unit, say w.l.o.g. a= 1, and

ao+a1 =w+(x + c)t.

Since w was chosen in /, we get as above

ao = ct and at =w + x£, (5)

i.e. by (5)

so that a$+af = w* modulo (x* + c*). Thus soc(G/(x* + c*)) is 1-dimensional. Since G is
Cohen-Macaulay, G must be Gorenstein.

For the proof of r(/) = 0 we prove in our situation (ht(/) = O) the following formula for
the Cohen-Macaulay type of G(/).

Claim: type (G(/)) = v(/)
For the basic facts on graded local cohomology used in the proof of this claim and

for other proofs below, we refer the reader to [6]. We consider the following two exact
sequences

0-»(i/if(x*G))v(-l)^wc-»(lfif(0:Gx*))v-»0 (6)
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O-*(Hl
M(G/x*G)r^WG^(H1

M(x*G)r-*(H°M(G/x*G)r^O, (7)

where ( )v: = Homc( — ,EG) = HomA( — ,EA) denotes the dual with respect to the injective
hull EG (resp. EA) of the residue field k = G/M = A/m, and wG = HomG(H1

M(G),EG) is the
canonical module of G (observe that ( )v switches the grading). Note that

[0 -G **]»=0 for n > 1 and [G/x* G]n = 0 for n > 2, (8)

since I2 = xl, and (0 : / )n / = 0. Furthermore, a(G) = 0 by [3, Proposition 2.4]. Since the
Cohen-Macaulay-type of G coincides with the minimal number of homogeneous
generators of wG, it is enough to show that wG is generated by elements of degree zero
and that v([wG]0) = v(7). Concerning the first assertion, note that in (6) above we have
[(//•f((0:cx*)))vL = ([HU0:Gx*))]_Jv=(//i,([(0:Gx*)]_J)v=0 for all n>\ (the first
equality holds since the dual v switches the grading, and the second equality holds by
Lemma 3.0). Furthermore in (7) above we have [(H^(G/x*G))v]n =
([//X,(G/x*G)]_Jv=0 for all n>0 (that is clear for n>\, since H°M(G/x*G) is a
submodule of the positively graded module G/x*G; for n = 0 the argument is as follows:

[ /OG/x*Gr ] 0 =([<(G/x*G)] 0 r =H°m(A/I)v =0,

since A/I is 1-dimensional Cohen-Macaulay); now we get, by (6), for n > l [wG]n =
x*[//i,(x*G)v]n_i, where lH}n(x*G)v'\n-i is a homomorphic image of [><;]„_! by (7);
we conclude that wG = G[wG]0 . To show that v([wG]0) = v(7), consider sequence (6) in
degree 0; note that

= (//i,([0:Gx*]0))v, by Lemma 3.0

= HomA(Hl,((0:Ax)),EA(k)), since [0:Gx*]os(0:/4x)

S Hom^((0 :A x), A), by local duality and the fact that wA = A

= Homj4(Hom(/l//,/l),/l), since (0:x) = (0:7)

= A/I, since A/1 is 1-dimensional Cohen-Macaulay, (cf. [2, Thm. 3.6]).

Hence sequence (6) in degree 0 is a split-sequence of A/I-modu\es. We conclude that

[wc]0 = [//i ,(x*G)v]_1e/l// . (9)

Now we determine [//if(x*G)v]_1 as follows:

[//if(x*G)v]_1s[WSr(G/x»C)v]_i, by (7) (since [wc]_1 =0)

=(LH°M(G/X* G)],)v = Horn A(LH°M (G/x* G)] UEA)

= UomA(H°m(I/xA),EA), (by Lemma 3.0)
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which by local duality is isomorphic to Extl
A(I/xA, A).

Finally we show that Extl
A(I/xA,A) = I/xA (together with (9), this proves the claim).

Note that ExiA(I/xA, A) ^ ExtA(A/xA, A), since Ext2
A(A/I,A) = 0 (because A is 1-

dimensional Gorenstein) and ExtA(A/I,A) = HomA(H^,(A/I),EA)=0 (because A/1 is
1-dimensional Cohen-Macaulay). Now the sequence

0 -> A/(0: /) = A/(0: x) ±> A -> A/xA -> 0

induces the exact sequence

A = HomA(A, A) ±> HomA(A/(0: /), /4) -> ExtA{A/xA, /I) -> 0, (10)

where UomA{AI(Q:/), A) s0 : (0 :/) = /, since A/1 is Cohen-Macaulay. Thus by (10),

Extl
A(A/xA,A)^I/xA. •

3.2. Proof of Theorem 2.3. As in the proof of Theorem 2.1(ii) we will frequently
apply Lemma 3.0, without mentioning it permanently. Furthermore, we have to use the
following description of a minimal reduction of /, given by [11], Proposition 3.3 and its
proof].

Lemma 3.3. Under the assumptions of Theorem 2.3, a minimal reduction J of I can be
generated by elements alt...,ah,c,d satisfying the following properties:

(i) al,...,ah is an A-regular sequence (a: = a1,...,ah, for short);
(ii) Ip = JP = 2ip for Pem\nA(A/I);

(iii) Iq = Jq = (a,c)Aq for q^I, ht(q/I) = 1; more precisely:

:AI), ht(q/I)=l

and

(iv) (a:c) = (a:/);
(v) (a:c) n / = a;
(vi) ((a,c):d)n/ = (a,c).

If moreover r(I)< 1, then

(viii) a n /" = a/" ~l for n>\; equivalently, the sequence af,..., ajf of initial forms forms
a regular sequence on G(I).

Remark. (1) The proof of Prop. 3.3 in [11] shows that properties (iv)-(viii) are
consequences of the first three properties. Furthermore, property (vi) follows from the
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"first part" of (iii), by a result of Kustin, Miller and Ulrich. This was pointed out in the
proof of Prop. 3.3 in [11].

(2) In case r(I) < 1 we know by (viii) that a%,..., aj form a regular sequence on G(I).
In case r(/)>2 this is not clear a priori. But in Lemma 3.4 below we shall construct a
system of parameters for G(7), with af,...,ajf being part of it. If G(I) is CM, we have
property (viii) also in the case r(/) > 2. This knowledge allows us to reduce questions to
the case ht(/) = O.

Lemma 3.4. There is a s.o.p. of G(I) of the type

where xe(a:Ac) and ye(a,c):AI are chosen such that a,c + x,d + y is a regular sequence
on A and such that c + x,d + y is a A/1 regular sequence; moreover zl,...,zi_h_2,c,y + d is
a s.o.p. of A/1. Furthermore z,c,d are a reduction of I as in Lemma 3.3.

Proof of Lemma 3.4. We first note that this s.o.p. is more precisely an s.o.p. for GM.
However, we later will show that M is the only maximal ideal containing these
elements.

Using properties (ii) and (iii) in Lemma 3.3 together with McAdam's prime avoidance
theorem, it is easy to see that

(»:Ac)£ (J -c + P;
PzAssMA/a)

hence there is xe(a:Ac) such that x + c is regular on A/a. Now \ssA(A/a)^ AssA(A/I),
because A/1 is CM; thus x + c is also regular on A/1. Similarly one shows that

and finds ye{a,c):Al such that y + d is regular on A/(a,x + c) and hence on A/(I,x + c),
too. More precisely, if

( a . c j ^ / s (J -d + P;
PeAssA(AH*.x + c))

then by McAdam's prime avoidance lemma [14, Theorem 5], there is a prime P
associated with A/(a,x + c) such that (a,c):AI+(d)^P. Note that height (P) = h+ 1, since
x + c is regular on A/a). Of course, (a,c,d) = J^P, and hence / s P . This implies that
PAP contains ([a,c):AI)P = IP:IP = AP which is a contradiction.

Now, let x + c,y + d,zu...,zd-h-2 be a s.o.p. of A/I.
We need to prove that af,...,aj,c* + x*,rf* + 3'*,z5',...,zj_fc_2 is a s.o.p. for G(7). It

suffices to prove that the ideal G+ of positive degree elements of G = G(l) is in the ideal
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Q generated by these elements up to radical, since G/G + s A/I, and the images of these
elements are a s.o.p. for A/1. Up to radical G+ is generated by the images of the
reduction of l,a^,...,a^,c*,d*, and it therefore is enough to prove that both c* and d*
are in the nilradical of Q. But the choice of x and y prove that (c*)2 = c*(c* + x*)
modulo (af,...,af), and (d*)2 = d*(d*+y*) modulo af,...,aj,c*. •

The next two results show that we may reduce to the case h = 0, d = 2 without
changing the properties mentioned in Lemma 3.4, provided that G(l) is
Cohen-Macaulay.

Lemma 3.5. Assume that G(I) is Cohen-Macaulay. Let a,c,d,x,y be as in Lemma 3.4.
Set A: = A/a, /: = //a, J: = J/a, G: = G(T). Then

(a) J is a min. reduction of T and r3(T) = rj(I); G = G(/)/a* is CM and a(G) = a(G(I)) + h;
(b) the corresponding properties (ii), (iii), (iv), (v), (vi) in Lemma 3.3 hold for I in place

of I, and if r(I) < 1 then (vii) in Lemma 3.3 holds for T instead of I.

Proof, (a) is well-known and (b) is easy to see. •

Lemma 3.6. Adopt the notation and assumptions of Lemma 3.5. Let I be the ideal T of
Lemma 3.5 (i.e. ht(/) = O). / / d>3(d = dim A), there is an element uem\I, such that u* is
regular on G(I) and which satisfies the following properties (where A: = A/uA,T: = (I,u)/
(u),J=(J,u)/(u),G: = G_(T)y.

(a) ht(I)=O,dim(A)=d-l, a(G) = a(G(I));
(b) J is a minimal reduction of T and rj(T) = rj(I);
(c) Tj = 0 for P e minj(.4/7j;
(d) TQ = CAQ for Q^l ht(G//) = 1.

Proof. Consider the sets

B: = {PeSpec(/l)|ht(P)=l,/sP,/p#O}

and

Since B^minAA/(I + (0:AI)) and C^minA(A/(I + annA(I/cA)), B and C are both finite
sets. Now

PeAssG(/) i+m PeB m +i QeC m +1

(otherwise (m//)cp for some PeAss(G(/)) (note that m$BvC, since ht(m) = d>3) and
hence grade (wiG(/)) = 0; but on the other hand ht(mG(/)) = rf-^(/)> 1 (since d>3 and

I = 2), a contradiction).
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Hence we may choose uem\I, such that u* is regular on G(/) and u$\JPsBP,
u$\JQeCQ- Properties (a) and (b) are already well-known (and easy to check). We
demonstrate here only (d). Part (c) can be done similarly. Note that a prime Q^T,
1 =ht(Q/7) corresponds to a prime Q2(/,u),ht(Q) = 2 and that

Q \ u

since ueQ, we have Q$C (by choice of u), hence IQ=cAQ, so that also in this case the
fraction is zero. This establishes property (d). •

Remark 3.7. Using Lemma 3.5 and Lemma 3.6 we restrict from now on to the
situation h = 0, d = 2, in which we shall prove the assertions of Theorem 2.3. For
convenience we describe this situation here: ht(/) = O, dim(A) = 2, IP=0 for
PeminA(A/I), J=(c,d) is a minimal reduction of I,IQ = cAQ if / s g and h t (0 = l, A is
Gorenstein and A/I Cohen-Macaulay; moreover the following relations hold
(0;/) = (0:c),(0:/)n/=(0),((c):d)n/=(c). In case r(/)<l, we know moreover that
(c)nr = cl"~1 for all n> l . Moreover x/=0, and yl^(c).

For the computation of the a-invariant as announced in Theorem 2.3 we need the
following Lemma 3.8.

Lemma 3.8. Let the situation (h = 0,d = 2, etc.) be as described in Remark 3.7. Further
assume that G(I) is Cohen-Macaulay. Then:

(a) [(0:Gc*)]n = 0 / O r n > l ;
(b) [(c*):cd*)/(c*)]n = 0forn>2. If r(/)<2, then this equation holds for n = 1.

Proof of (a). By Lemma 3.4, c* + x*,d* + y* form an s.o.p. for G. Since G is
Cohen-Macaulay, these two elements form a regular sequence. Let a e / \ cccel"+2. Here
n>l. Since xI = 0, we then obtain that a*(c* + x*) = 0. It follows that a*=0, which
proves (a).

Proof of (b). Fix n>2, and let u* represent an element in [(c*):cd*)/(c*)]n. Then
there exists an element v*eGn such that u*d* + v*c* = 0. Since yl^(c), we know that
yueyr = (yl)(r~1)^cl"~1. Hence we can write u*(d* + y*)+(w* + v*)c* = 0 for some
w*eGn_!. Since n>2, it follows that x*(w* + v*) = 0, so that
u*(d* + y*) + {w* + v*)(c* + x*) = 0. Since c* + x*,d* + y* form a regular sequence, we
obtain that u*e(c* + x*)G. As x* kills all positive degree elements of G it follows that
u*ec*G, as required.

Now assume that r(/)<2. Let u* be as above except assume it has degree 1. Lift u*
and v* to A, where v* is as in the above paragraph. Then there is an equation
ud + vceI3=(c,d)I2. Changing u by an element of I2 (which doesn't change M*), we see
that ue((c):d)nl=(c). Hence u*ec*G, as needed. •
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Proof of Theorem 2.3. Now we compute that the a invariant a(G(I)) = r—2 in case
r > 2 (the case r<\ being similar), /i = 0, d = 2. We work with the following four exact
sequences of graded G-modules, where G: = G(I).

0->(0:cc*)-+G4(c*G)(l)-»0

0->c*G->G-»G/c*G->0

0-»(c*,d*)/(c*)->G/(c*)->G/(c*,<i*)->0.

Consider the induced long exact cohomology sequences (//'(—)' = H'M(

(1) 0->H1(c*G)(lH//2(0:Gc*)->tf2(G)->tf2(c*G)(l)-+0

(2) H°(G/c*G)^H\c*G),
0->H1{G/c*G)^>H2(c*G)->H2(G)->H2(G/c*G)^0

(3) ... ^H'((c*:rf*)/(c*))->
tfi+1((c*:rf*)/(c*))----

(4) ... - > / / ' - '(GAc*.d*))- //'((c*,d*)

Note that in (3) [/f'((c*,d*)/(c*))]n = O = [f/'+1((c*,rf*)/(c*))]n for n>2 by Lemma 3.8,
while in (4) [f/'-1(G/(c*,d*))]n = 0 = [H'(G/(c*,d*))]n = 0 for n>r+l. Thus we have
isomorphisms

(3)' [//'(G/(c*))]n^[//i((C*,d*)/(c*))]n + 1 forn>2,and

(4)' [tf'((cV*)/(c*))LMtf'-(G/(C*))L for

Since [//'(G/(c*))]n = 0 for all n»0, we conclude that [tf'(G/(c*))]n = 0 for «>r.
Moreover, in (1) we have [H2((0:cc*))]n=0 for n> l (by Lemma 3.8) and in (2)
[H1(G/(c*))]n = 0 = [//2(G/c*G)]n for n>r (as we have just shown). Hence the sequences
(1) and (2) give isomorphisms

(5) [

(6) [

As [H2(G)]B = 0 for all n»0, we conclude that [H2(G)]n = 0 for n>r-\. This means
a(G(/))<r-2. It remains to show that [7f2(G)]r_2#0. For that, note that in (4)
[H°(G/c*G)]r=0 and [//°(G/(c*,d*))]r#0 (because [H°(G/(c*,d*))]r = H°(/7(c,d)/'-1) =
/7(c,«/)/'"^O); thus [//1((c*,d*)/(c*))]r^0 by (4). Now (3)' with i = l gives

) ] , . - , ^ . Hence in (2) [H2(c*G)]r_1 # 0 and since, by (1), [//2(c*G)]r_, # 0 is

https://doi.org/10.1017/S0013091500019258 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019258


REDUCTION EXPONENTS OF IDEALS WITH GORENSTEIN FORMRING 461

a homomorphic image of [//2(G)],_2, we conclude that [H2(G)]r_2#0, proving
a(G) = r - 2 .

Since the proof of the formula a(G) = 0 in case r< 1 uses similar arguments, we omit it
here. Instead, we prove now the second part of Theorem 2.3, saying that G cannot be
Gorenstein if r>2. Denote by wG the canonical module of G, i.e. wc =
HomG(H2(G),EG(k)). Since a(G) = r - 2 , it is enough to show that

For that, apply the functor HomG( — ,EG(k)) = HomA( — ,EA(k)) to the above sequences
(1), (2), (3), (4); the new sequences are:

(2)v Hl{c*G)v^H°(G/c*G)\
0-»//2(G/c*G)v ->wc->tf2(c*G)v-+Hl{Glc*G)w->0

(3)" Hi+l({c*:d*)l(c*)y^H\(c*,d*)l{c*)y(-\)^H\Glc*Gy^
H%c*:d*)l{c*)Y

(4)v H'(G/{c*,d*))v -H'(G/c*G)v - Hl((c*,d*)/(c*))v -»Hl-\GI{c\d*))

Consider the first module in (1)v in degree — r + 2:

[//2(c*G)v(-l)]_r+2 = [f/2(c*G)v]_r+1

n - ^ , , by (2)v (use [wG]_r+1=0, since a(G) = r -2)

IAc*))"].,, by (3)v (use [ ( c* :^ ) / ^ ) ] , . ^* ) )

,d*))v]_r, by (4)v (use [tf'(

which is a module #0 of finite length over A (since lq = cAq for all primes q, such that

We have shown that [wc]_ r + 2 , in sequence (l)v, contains a non-zero submodule of
finite length; hence H°([wG]_r + 2)/0 and we conclude [wG]_r+2£A/I. That finishes the
proof of Theorem 2.3. •

Proof of Theorem 2.5. First observe that k exists, because / J :m£ / J : / = / J"1 as G is
Cohen-Macaulay, and IJ~l^J for ; »0 . Let ueIk:m\(Ik + J). Then u e / ' " ' \ / 1 .

Claim, u* is in the socle of G: = G/(xf,..., xj).
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Proof of the claim. : If y e / \ / 2 , then

the last containment by choice of k. This implies

as G is Cohen-Macaulay. Hence y*u* = 0. If zem\I, then zuelk by definition of u, and
so also z * u * = 0, which proves the claim.

Hence G = G/(x*, . . . ,x*) has a non-zero socle element in degree k — 1, i.e. [G] n =0 if
n^fc since G is Gorenstein. Thus Ik = Ik + 1+JIk~l which implies that lk = J-Ik~l, i.e.
r,(/) ^ f c - 1. Therefore r,(/) = k - 1 since /* " » £ J (else I": m<=/).

Now assume that /4 is regular. It remains to see that k^d—l. For this we use a result
of Lipman [13], saying that for any m-primary ideal in a regular local ring (A, m) with
minimal reduction J we have

Hence Id:m^Id:md~l^J which proves that k<Ld-l. •

Proof of Corollary 2.6. The "only if" part is obvious. On the other hand, if A/I is
Gorenstein then / is a complete intersection by [15, Theorem 2.6] since / is a perfect
ideal, so r(/) = fc-l=0.

Proof of Corollary 2.7. (i) implies r(I)^d-2 by Theorem 2.5. Hence we get for the
a-invariant of G:

a: = a(G) = r(I)-dg, - 2 , see [9, (2.4)].

Then q:= — a— 1^1 is the desired exponent of / such that R(lq) is Gorenstein by [9,
Theorem 3.5], which proves (ii). We also note that the remark following Corollary 2.6
shows that R(l) is Cohen-Macaulay.

Conversely assuming (ii), G(/) must be Gorenstein by [8, Theorem 2.3], because G(/)
is Cohen-Macaulay (by the general assumption) which implies also the Cohen-
Macaulayness of R(I) in the situation (ii). •
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