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Abstract. In this paper, we show that if T ¼ SþN, where S is similar to a
hyponormal operator, S and N commute and N is a nilpotent operator of order m
(i.e., Nm ¼ 0), then T is a subscalar operator of order 2m. As a corollary, we get that
such a T has a nontrivial invariant subspace if its spectrum �ðT Þ has the property
that there exists some non-empty open set U such that �ðT Þ \U is dominating for
U.

1991 Mathematics Subject Classification. 47B20, 47B38.

1. Introduction. Let H be a separable, complex Hilbert space and let L(H,K)
denote the space of all bounded linear operators from H to K. If H=K, we write
L(H) in place of L(H,K). Recall that S 2 LðHÞ is called a hyponormal operator if
SS� 	 S�S, or equivalently, if S�hk k 	 Shk k for every h 2 H and N 2 LðHÞ is called
a nilpotent operator of order m if Nm ¼ 0 for some positive integer m. An operator
T 2 LðHÞ is said to be hypo-Jordan of order m if T ¼ SþN where S is similar to a
hyponormal operator, S and N commute and N is a nilpotent operator of order m.

A bounded linear operator R on H is called scalar of order m if it possesses a
spectral distribution of order m; i.e., if there is a continuous unital morphism of
topological algebras

� : Cm
0 ðCÞ ! LðHÞ;

such that �ðzÞ ¼ R, where z stands for the identity function on C, and Cm
0 ðCÞ stands

for the space of compactly supported functions on C, continuously differentiable of
order m ð0 	 m 	 1Þ. An operator is subscalar if it is similar to the restriction of a
scalar operator to an invariant subspace. As the weaker form of a subscalar operator,
we introduce the following: an operator T 2 LðH Þ is quiasisubscalar if there exists a
one-to-one V 2 LðH;KÞ such that VT ¼ RV where R (=�ðzÞ in the above defini-
tion) is a scalar operator. There are examples of quasisubscalar operators in [1].

An operator T 2 LðH Þ is said to satisfy the single valued extension property if for
any open subset U in C, the function

z
 T : OðU;HÞ ! OðU;HÞ

defined by the obvious pointwise multiplication is one-to-one, where OðU;HÞ de-
notes the space of H-valued analytic functions on U. If, in addition, the above
function z
 T has closed range on OðU;HÞ, then T satisfies Bishop’s conditions (�).
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In 1984 M. Putinar proved that any hyponormal operator is subscalar. His
theorem was used to show that hyponormal operators with thick spectra have
invariant subspaces, a result due to Scott W. Brown [2]. In this paper, we show that
if T ¼ SþN, where S is similar to a hyponormal operator, S and N commute and N
is a nilpotent operator of order m, then T is a subscaler operator of order 2m. As a
corollary, we get that such a T has a nontrivial invariant subspace if its spectrum
�(T) has the property that there exists some non-empty open set U such that
�ðT Þ \U is dominating for U.

The paper is organized as follows. In Section 2, we give some preliminary facts.
In Section 3, we characterize hypo-Jordan operators and deal with applications of
the main result.

2. Preliminaries. Let z be the coordinate in the complex plane C and d�(z)
denote the planar Lebesgue measure. Fix a complex (separable) Hilbert space H and
a bounded (connected) open subset U of C. We shall denote by L2ðU;HÞ the Hilbert
space of measurable functions f : U ! H, such that

f
�� ��

2;U
¼

Z
U

fðzÞ
�� ��2d�ðzÞ� �1

2

< 1:

The space of functions f 2 L2ðU;HÞ that are analytic on U (i.e. �@@f ¼ 0) is denoted by

A2ðU;HÞ ¼ L2ðU;H Þ \ OðU;HÞ:

Then A2ðU;H Þ is called the Bergman space for U. It is known that A2ðU;H Þ is
complete.

Let us define now a special Sobolev type space. Let U be again a bounded open
subset of C and m a fixed non-negative integer. The vector valued Sobolev space
WmðU;HÞ with respect to �@@ and of order m will be the space of those functions
f 2 L2ðU;HÞ whose derivatives �@@f; � � � ; �@@mf in the sense of distributions still belong to
L2ðU;H Þ. Endowed with the norm

f
�� ��2

Wm¼
Xm

i¼0
�@@if

�� ��2
2;U

;

WmðU;HÞ becomes a Hilbert space contained continuously in L2ðU;H Þ.
Let U be a (connected) bounded open subset of C and let m be a non-negative

integer. The linear operator M(=Mz) of multiplication by z on WmðU;HÞ is
continuous and it has a spectral distribution of order m, defined by the functional
calculus

�M : Cm
0 ðCÞ ! LðWmðU;HÞÞ; �Mð f Þ ¼ Mf:

Therefore, M is a scalar operator of order m.

3. Main results. In this section, it is shown that any hypo-Jordan operator of
order m is subscalar. The starting point of this section deals with the basic inequality
for the proof of the main result.

412 EUNGIL KO

https://doi.org/10.1017/S001708950103004X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950103004X


Lemma 3.1. [8, Proposition 2.1]. For a bounded open disk D in C there is a con-
stant CD such that, for an arbitrary operator T 2 LðH Þ and f 2 W2ðD;HÞ, we have

ðI
 PÞf
�� ��

2;D
	 CD ðzI
 T Þ

� �@@f
�� ��

2;D
þ ðzI
 T Þ

� �@@2f
�� ��

2;D

� �
;

where P denotes the orthogonal projection of L2ðD;HÞ onto the Bergman space
A2ðD;H Þ.

Corollary 3.2. [8, Corollary 2.2]. If S is hyponormal, then

ðI
 PÞf
�� ��

2;D
	 CD ðz
 SÞ �@@f

�� ��
2;D

þ ðz
 SÞ �@@2f
�� ��

2;D

� �
;

where z denotes zI.

Lemma 3.3. Let T 2 LðH Þ be an operator such that T ¼ SþN, where S is similar
to a hyponormal operator, S and N commute and N is a nilpotent operator of order m.
Let D be a bounded disk which contains �ðT Þ. Then the operator V : H ! HðDÞ,
defined by Vh ¼ 1� hþ ðz
 T ÞW2mðD;H Þð¼ g1� h1� hÞ, is one-to-one and has closed
range, where HðDÞ ¼ W2mðD;H Þ=ðz
 TÞW2mðD;HÞ for m ¼ 1; 2; � � � and 1� h
denotes the constant function sending any z 2 D to h.

Proof. It suffices to prove the following assertion: if hn 2 H and fn 2 W2mðD;HÞ

are sequences such that

lim
n!1

ðz
 T Þfn þ 1� hn
�� ��

W2m¼ 0; ð1Þ

then limn!1 hn ¼ 0.
By the definition of the norm a Sobolev space, the assertion (1) implies that

lim
n!1

ðz
 T Þ �@@ifn
�� ��

2;D
¼ 0 ð2Þ

for i ¼ 1; 2; � � � ; 2m. Since T ¼ SþN, we have

lim
n!1

ðz
 SÞ �@@ifn 
N �@@ifn
�� ��

2;D
¼ 0 ð3Þ

for i ¼ 1; 2; � � � ; 2m. From the equation (3) and SN ¼ NS, we have

lim
n!1

ðz
 SÞ �@@iðNkfnÞ 
Nkþ1 �@@ifn
�� ��

2;D
¼ 0 ð4Þ

for i ¼ 1; 2; � � � ; 2m and k ¼ 0; 1; � � � ;m
 1. If in particular k ¼ m
 1, then

lim
n!1

ðz
 SÞ �@@iðNm
1fnÞ
�� ��

2;D
¼ 0 ð5Þ

for i ¼ 1; 2; � � � ; 2m.

Claim. limn!1 ðz
 SÞ �@@iðNm
jfnÞ
�� ��

2;D
¼ 0 for i ¼ 1; 2; � � � ; 2ðmþ 1
 jÞ and

j ¼ 1; 2; � � � ;m.
We prove this claim by induction. If j ¼ 1, it is clear from the equation (5). We

assume that the above claim holds for some given j ¼ 1; 2; � � � ;m
 1. Indeed,
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lim
n!1

ðz
 SÞ �@@iðNm
jfnÞ
�� ��

2;D
¼ 0 ð6Þ

for i ¼ 1; 2; � � � ; 2ðmþ 1
 jÞ and j ¼ 1; 2; � � � ;m
 1.
We only need to verify that

lim
n!1

ðz
 SÞ �@@iðNm
ð jþ1ÞfnÞ
�� ��

2;D
¼ 0

for i ¼ 1; 2; � � � ; 2ðmþ 1
 ð jþ 1ÞÞ and j ¼ 1; 2; � � � ;m
 1.
Since S is similar to a hyponormal operator B, there exists an invertible opera-

tor R such that RS ¼ BR. From the equation (6) we have

lim
n!1

Rðz
 SÞ �@@iðNm
jfnÞ
�� ��

2;D
¼ 0 ð7Þ

for i ¼ 1; 2; � � � ; 2ðmþ 1
 jÞ and j ¼ 1; 2; � � � ;m
 1. From the equation (7) and
RS ¼ BR we get

lim
n!1

ðz
 BÞR �@@iðNm
jfn
�� ��

2;D
¼ 0 ð8Þ

for i ¼ 1; 2; � � � ; 2ðmþ 1
 jÞ and j ¼ 1; 2; � � � ;m
 1. By Corollary 3.2,

ðI
 PÞ �@@iðRNm
jfnÞ
�� ��

2;D
	 CDð ðz
 BÞ �@@iþ1ðRNm
jfnÞ

�� ��
2;D

þ ðz
 BÞ �@@iþ2ðRNm
jfnÞ
�� ��

2;D
Þ

for i ¼ 1; 2; � � � ; 2ðmþ 1
 ð jþ 1ÞÞ and j ¼ 1; 2; � � � ;m
 1. From the equation (8),

lim
n!1

ðI
 PÞ �@@iðRNm
jfnÞ
�� ��

2;D
¼ 0 ð9Þ

for i ¼ 1; 2; � � � ; 2ðmþ 1
 ð jþ 1ÞÞ and j ¼ 1; 2; � � � ;m
 1. By the equations (8) and
(9) we see that

lim
n!1

ðz
 BÞP½ �@@iðRNm
jfnÞ�
�� ��

2;D
¼ 0 ð10Þ

for i ¼ 1; 2; � � � ; 2ðmþ 1
 ð jþ 1ÞÞ and j ¼ 1; 2; � � � ;m
 1. Since every hyponormal
operator has the property (�) (see [7, Theorem 5.5]), we get that for
i ¼ 1; 2; � � � ; 2ðmþ 1
 ð jþ 1ÞÞ and j ¼ 1; 2; � � � ;m
 1,

Pð �@@iRNm
jfnÞ ! 0

uniformly on compact subsets of D. Therefore, it is easy to show that

lim
n!1

P½ �@@iðRNm
jfnÞ�
�� ��

2;D
¼ 0 ð11Þ
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for i ¼ 1; 2; � � � ; 2ðmþ 1
 ð jþ 1ÞÞ and j ¼ 1; 2; � � � ;m
 1: From the equations (9)
and (11), we have

lim
n!1

�@@iðRNm
jfnÞ
�� ��

2;D
¼ 0 ð12Þ

for i ¼ 1; 2; � � � ; 2ðmþ 1
 ð jþ 1ÞÞ and j ¼ 1; 2; � � � ;m
 1. Since R is invertible, we
get from (12) that

lim
n!1

�@@iðNm
jfnÞ
�� ��

2;D
¼ 0 ð13Þ

for i ¼ 1; 2; � � � ; 2ðmþ 1
 ð jþ 1ÞÞ and j ¼ 1; 2; � � � ;m
 1. From the equations (4)
and (13),

lim
n!1

ðz
 SÞ �@@iðNm
ð jþ1ÞfnÞ
�� ��

2;D
¼ 0

for i ¼ 1; 2; � � � ; 2ðmþ 1
 ð jþ 1ÞÞ and j ¼ 1; 2; � � � ;m
 1, and so this completes the
proof of the claim stated above.

Let us come back now to the proof of Lemma 3.3. By the claim, the following
equation holds:

lim
n!1

ðz
 SÞ �@@ifn
�� ��

2;D
¼ 0 ð14Þ

for i ¼ 1; 2. Since R is bounded,

lim
n!1

Rðz
 SÞ �@@ifn
�� ��

2;D
¼ 0 ð15Þ

for i ¼ 1; 2. Since RS ¼ BR, from the equation (15) we have

lim
n!1

ðz
 BÞ �@@iðRfnÞ
�� ��

2;D
¼ 0 ð16Þ

for i ¼ 1; 2. By Corollary 3.2 and the equation (16), we get

lim
n!1

ðI
 PÞRfn
�� ��

2;D
¼ 0: ð17Þ

Set gn ¼ R
1P½Rfn�. The gn 2 A2ðD;HÞ. Since

fn 
 gn
�� ��

2;D
	 R
1

�� �� Rfn 
 P½Rfn�
�� ��

2;D;

the equation (17) implies that

lim
n!1

fn 
 gn
�� ��

2;D
¼ 0: ð18Þ
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Now from (1) and (18) we obtain the following equation.

lim
n!1

ðz
 T Þgn þ 1� hn
�� ��

2;D
¼ 0:

Let � be in a circle in D surrounding �ðTÞ. Then for z 2 �

lim
n!1

gnðzÞ 
 ðz
 T Þ

1
ð1� hnÞ

�� �� ¼ 0

uniformly. Hence, by the Riesz functional calculus,

lim
n!1

1

2	i

Z
�

gnðzÞdzþ hn

����
���� ¼ 0;

where it is assumed that � is described once counterclockwise.
But

R
� gnðzÞdz ¼ 0 by Cauchy’s theorem. Hence limn!1 hn ¼ 0. Thus V is one-

to-one and has closed range. &

Now we state and prove the main theorem.

Theorem 3.4. If T is any operator such that T ¼ SþN, where S is similar to a
hyponormal operator, S and N commute and N is a nilpotent operator of order m
(i.e. T is any hypo-Jordan operator of order m), then T is a subscalar operator of
order 2m.

Proof. Consider an arbitrary bounded open disk D in the complex plane C that
contains �(T) and the quotient space

HðDÞ ¼ W2mðD;HÞ=ðz
 T ÞW2mðD;H Þ

endowed with the Hilbert space norm. Let M(=Mz) be the operator of multi-
plication by z on W2mðD;HÞ: Then M is a scalar operator of order 2m and its
spectral distribution is given by

� : C2m
0 ðCÞ ! LðW2mðD;H ÞÞ; �ð f Þ ¼ Mf;

where Mf is the operator of multiplication by f. Since M commutes with z
 T, ~MM on
HðDÞ is still a scalar operator of order 2m, with ~�� as a spectral distribution.

Let V be the operator

Vh ¼ 1� hþ ðz
 T ÞW2mðD;HÞ ð¼ 1� hÞ;

from H into H(D), denoting by 1� h the constant function h. Then VT ¼ ~MMV. By
Lemma 3.3, V is one-to-one and has closed range. Therefore, ran V is a closed
invariant subspace for the scalar operator ~MM. Hence T is a subscalar operator of
order 2m. &

Recall that if U is a non-empty open set in C and if � � U has the property that
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sup
2� fð
Þ


 

 ¼ sup�2U fð�Þ



 


for every function f in H1ðUÞ (i.e. for all f bounded and analytic on U), then � is
said to be dominating for U.

Corollary 3.5. Let T 2 LðH Þ be any hypo-Jordan operator of order m. If �ðT Þ

has the property that there exists some non-empty open set U such that �ðT Þ \U is
dominating for U, then T has a nontrivial invariant subspace.

Proof. The proof follows that Theorem 3.4 and [4]. &

Corollary 3.6. Any hypo-Jordan operator has the property ð�Þ.

Proof. Since every scalar operator has the property ð�Þ (see [8]) and the property
ð�Þ is transmitted from an operator to its restrictions to closed invariant subspaces,
it follows from Theorem 3.4 that any hypo-Jordan operator has the property ð�Þ. &

Corollary 3.7. If T ¼ SþN is hypo-Jordan of order m and quasinilpotent, then
T is a nilpotent operator of order m.

Proof. Since �ðSÞ ¼ �ðT Þ ¼ f0g, an operator S is quasinilpotent and is similar to
a hyponormal operator. Therefore, S is a zero operator. Hence T ¼ N. &

Recall that an operator X 2 LðH;KÞ is called a quasiaffinity if it has trivial ker-
nel and dense range. An operator A 2 LðHÞ is said to be a quasiaffine transform of
an operator T 2 LðKÞ if there is a quasiaffinity X 2 LðH;KÞ such that XA ¼ TX.

Corollary 3.8. Let T 2 LðH Þ be any hypo-Jordan operator. If A is any qua-
siaffine transform of T, then �ðT Þ � �ðAÞ.

Proof. The proof follows from Corollary 3.6 and [6, Theorem 3.2]. &

Corollary 3.9. Let T 2 LðH Þ be any hypo-Jordan operator. If A is any qua-
siaffine transform of T, then A is quasisubscalar.

Proof. Let X 2 LðH;KÞ be a quasiaffinity such that XA ¼ TX. Since V (in The-
orem 3.4) and X are one-to-one, VX is one-to-one. Therefore, VX implements the
quasisubscalar properties. Thus A is quasisubscalar. &

In the following theorem we establishes an analogue of the single valued exten-
sion property for the space WkðD;H Þ.

Proposition 3.10. If T 2 LðHÞ is a hypo-Jordan operator of order m, then the
operator

z
 T : W2mðD;HÞ ! W2mðD;H Þ

is one-to-one, for an arbitrary bounded disk D in C.
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Proof. Let f 2 W2mðD;H Þ be such that ðz
 T Þf ¼ 0. Then by a similar method
as in the proof of Lemma 3.3, we can show that Rf ¼ PRf 2 A2ðD;HÞ (c.f. (17)).
Since T is subscalar, by Theorem 3.4, we know that T has the single valued extension
property. Therefore, PRf ¼ 0; i.e., f ¼ 0. Thus z
 T is one-to-one. &

Corollary 3.11. Let T ¼ SþN be such that SN ¼ NS, where S is similar to a
normal operator and N is quasinilpotent. Let �ðT Þ lie in a C1-Jordan curve. Suppose
that there exists a constant M such that

ðz
 T Þ

1

�� �� 	 M= distðz; �ðT ÞÞ
� �m

for all z 2 �ðT Þ with zj j 	 Tk k þ 1. Then T is subscalar of order 2ð4mþ 4Þ.

Proof. We know that N4mþ4 ¼ 0 by [9, Corollary 1.10] and so it follows from
Theorem 3.4 that T is subscalar of order 2ð4mþ 4Þ. &
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