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ON HYPO-JORDAN OPERATORS
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Abstract. In this paper, we show that if 7= S+ N, where S is similar to a
hyponormal operator, S and N commute and N is a nilpotent operator of order m
(i.e., N = 0), then T'is a subscalar operator of order 2m. As a corollary, we get that
such a T has a nontrivial invariant subspace if its spectrum o(7) has the property
that there exists some non-empty open set U such that o(7) N U is dominating for
U.
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1. Introduction. Let H be a separable, complex Hilbert space and let £(H,K)
denote the space of all bounded linear operators from H to K. If H=K, we write
L(H) in place of L(H,K). Recall that S € L(H) is called a hyponormal operator if
SS§* < §*S, or equivalently, if ||S*Ah|| < ||Sh| for every h € H and N € L(H) is called
a nilpotent operator of order m if N™ =0 for some positive integer m. An operator
T € L(H) is said to be hypo-Jordan of order m if T = S + N where S is similar to a
hyponormal operator, S and N commute and N is a nilpotent operator of order m.

A bounded linear operator R on H is called scalar of order m if it possesses a
spectral distribution of order m; i.e., if there is a continuous unital morphism of
topological algebras

D : CJ(C) — L(H),

such that ®(z) = R, where z stands for the identity function on C, and C{'(C) stands
for the space of compactly supported functions on C, continuously differentiable of
order m (0 < m < o0). An operator is subscalar if it is similar to the restriction of a
scalar operator to an invariant subspace. As the weaker form of a subscalar operator,
we introduce the following: an operator T € L(H) is quiasisubscalar if there exists a
one-to-one V € L(H, K) such that VT = RV where R (=®(z) in the above defini-
tion) is a scalar operator. There are examples of quasisubscalar operators in [1].

An operator T € L(H) is said to satisfy the single valued extension property if for
any open subset U in C, the function

2= T:O(U, H) - OU, H)

defined by the obvious pointwise multiplication is one-to-one, where O(U, H) de-
notes the space of H-valued analytic functions on U. If, in addition, the above
function z — T has closed range on O(U, H), then T satisfies Bishop’s conditions (B).

*The author is supported by the KOSEF, under Grant No. 971-0102-007-2, 1997-99.

https://doi.org/10.1017/S001708950103004X Published online by Cambridge University Press


https://doi.org/10.1017/S001708950103004X

412 EUNGIL KO

In 1984 M. Putinar proved that any hyponormal operator is subscalar. His
theorem was used to show that hyponormal operators with thick spectra have
invariant subspaces, a result due to Scott W. Brown [2]. In this paper, we show that
if T =S+ N, where S is similar to a hyponormal operator, S and N commute and N
is a nilpotent operator of order m, then T is a subscaler operator of order 2m. As a
corollary, we get that such a 7 has a nontrivial invariant subspace if its spectrum
o(T) has the property that there exists some non-empty open set U such that
o(T) N U is dominating for U.

The paper is organized as follows. In Section 2, we give some preliminary facts.
In Section 3, we characterize hypo-Jordan operators and deal with applications of
the main result.

2. Preliminaries. Let z be the coordinate in the complex plane C and du(z)
denote the planar Lebesgue measure. Fix a complex (separable) Hilbert space H and
a bounded (connected) open subset U of C. We shall denote by L*(U, H) the Hilbert
space of measurable functions /: U — H, such that

o=

/1l 0= { [ Hf(Z)H2dM(z)} <.

The space of functions /'€ L2(U, H) that are analytic on U (i.e. 3f = 0) is denoted by
A*(U, H) = L*(U, H)Nn O(U, H).

Then A%(U, H) is called the Bergman space for U. It is known that 4*(U, H) is
complete.

Let us define now a special Sobolev type space. Let U be again a bounded open
subset of C and m a fixed non-negative integer. The vector valued Sobolev space
W™(U, H) with respect to  and of order m will be the space of those functions
fe L*(U, H) whose derivatives df, - - -, #"f in the sense of distributions still belong to
L*(U, H). Endowed with the norm

DN 7] %

W™(U, H) becomes a Hilbert space contained continuously in L>(U, H).

Let U be a (connected) bounded open subset of C and let m be a non-negative
integer. The linear operator M(= M) of multiplication by z on W"(U, H) is
continuous and it has a spectral distribution of order m, defined by the functional
calculus

Dy CH(C) > LIWTU,H)), Pu(f)= M

Therefore, M is a scalar operator of order m.

3. Main results. In this section, it is shown that any hypo-Jordan operator of
order m is subscalar. The starting point of this section deals with the basic inequality
for the proof of the main result.
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Lemma 3.1. [8, Proposition 2.1]. For a bounded open disk D in C there is a con-
stant Cp such that, for an arbitrary operator T € L(H) and f € W*(D, H), we have

[ = Py, = Co([[1= T, p+ = TYF1], ).

where P denotes the orthogonal projection of L*(D, H) onto the Bergman space
AX(D, H).

COROLLARY 3.2. [8, Corollary 2.2]. If S is hyponormal, then

(=P, p= Co(1 = Sl I = 977, ,):

where z denotes zI.

LeEmMaA 3.3. Let T € L(H) be an operator such that T = S+ N, where S is similar
to a hyponormal operator, S and N commute and N is a nilpotent operator of order m.
Let D be a bounded disk which contains o(T). Then the operator V : H — H(D),
defined by Vh=1Q h+ (z— T)W?m(D, H)(=1® h), is one-to-one and has closed
range, where H(D)= W>"(D,H)/(z — T)W?>"(D,H) for m=1,2,--- and 1®h
denotes the constant function sending any z € D to h.

Proof. It suffices to prove the following assertion: if 4, € H and f, € W?"(D, H)
are sequences such that

lim [z = T)fy + 1 ® hu | ,= 0. ()

then lim,— o /1, = 0.
By the definition of the norm a Sobolev space, the assertion (1) implies that

hm ||(z — T)af,, ”20 2)
fori=1,2,---,2m. Since T = S + N, we have
lim ||z = $)3%, = NFf ], = G)
fori=1,2,---,2m. From the equation (3) and SN = NS, we have
lim [[(z = $)J(NS) — N1, = 4)
n—oo
fori=1,2,---,2mand k=0,1,---,m— 1. If in particular kK = m — 1, then
Tim ||z = SIN"f)],.p= 0 (5)

fori=1,2,---,2m.

Claim. 1im,_.«|(z — 5)5"(]\7’"*-{]”,,)||2’D= 0 for i=1,2,---,2(m+1—j) and
j=1,2,--,m

We prove this claim by induction. If j = 1, it is clear from the equation (5). We
assume that the above claim holds for some given j=1,2,---,m — 1. Indeed,
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Tim ||z = TN, ,= 0 (6)

fori=1,2,---,2m+1—j)andj=1,2,---,m—1.
We only need to verify that

lim |z = TNV, =0

fori=1,2,---,2m+1—-(G+1))andj=1,2,---,m— 1.
Since S is similar to a hyponormal operator B, there exists an invertible opera-
tor R such that RS = BR. From the equation (6) we have

Tim || Rz = TN f)], =0 )

fori=1,2,---,2m+1—j) and j=1,2,---,m—1. From the equation (7) and
RS = BR we get

nango” (Z B B)Réi(Nm_jf” ||2,D: 0 (8)
fori=1,2,---,2(m+1—jandj=1,2,---,m— 1. By Corollary 3.2,
|7 = PFRN")], p= C([[z = BIRN"ZS), o+ (2 = BIFZRN"L)],, )

fori=1,2,---,2m+1—-(j+1))andj=1,2,---,m — 1. From the equation (8),

Tim [[(1 = PYFRN" )], =0 ©)

fori=1,2,---,2m+1—-(G+ 1) andj=1,2,---,m — 1. By the equations (8) and
(9) we see that

lim [[(z = B)P[F(RN" )], ,= 0 (10)

fori=1,2,---,2(m+1—-(j+1))and j=1,2,.---,m— 1. Since every hyponormal
operator has the property (B8) (see [7, Theorem 5.5]), we get that for
i=1,2,---,2m+1—-(G+1)andj=1,2,---, m—1,

P(3RN"7f,) — 0

uniformly on compact subsets of D. Therefore, it is easy to show that

Ji | AFRN" )] = 0 a
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fori=1,2,---,2m+1—-(+ 1) and j=1,2,---,m— 1. From the equations (9)
and (11), we have

nlLrgo” 5i(R]\'ﬂn_jf”)HZ,D: 0 (12)
fori=1,2,---,2(m+1—(j+1))and j=1,2,---,m— 1. Since R is invertible, we
get from (12) that

111Lr§o||5i(Nm7]f;’)”2,D: 0 (13)
fori=1,2,---,2(m+1—(j+1)) and j=1,2,---,m— 1. From the equations (4)
and (13),

lim |[(z — $)d(N""U*Vf)||, ,= 0

n—oo s
fori=1,2,---,2(m+1—(j+1)andj=1,2,---,m— 1, and so this completes the
proof of the claim stated above.

Let us come back now to the proof of Lemma 3.3. By the claim, the following
equation holds:

tim 2= 74 =0 14

for i =1, 2. Since R is bounded,

lim [ RG ~ )], =0 (1)

for i =1, 2. Since RS = BR, from the equation (15) we have

lim [[(z — B)3' (RS, 0 (16)

)”2,0:

for i =1, 2. By Corollary 3.2 and the equation (16), we get

lim |(I = P)Rf||, p= 0. (17)

Set g, = R™'P[Rf;]. The g, € A*(D, H). Since
17 = gully p= [RT[ | RS = PIRA]N, p,

the equation (17) implies that

im [ al,5= 0. as)
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Now from (1) and (18) we obtain the following equation.

Jim |2 = Tygn + 1@ bl = 0.

Let I" be in a circle in D surrounding o(7T). Then for z € T’

lim g(2) =z = )AL @) =0

uniformly. Hence, by the Riesz functional calculus,

1
lim H—/ gn(2)dz + hy,| =0,
27i Jr

n—o0

where it is assumed that I' is described once counterclockwise.
But fr gu(2)dz = 0 by Cauchy’s theorem. Hence lim,_ o i, = 0. Thus V' is one-
to-one and has closed range. O

Now we state and prove the main theorem.

THEOREM 3.4. If T is any operator such that T = S+ N, where S is similar to a
hyponormal operator, S and N commute and N is a nilpotent operator of order m
(i.e. T is any hypo-Jordan operator of order m), then T is a subscalar operator of
order 2m.

Proof. Consider an arbitrary bounded open disk D in the complex plane C that
contains o(7) and the quotient space

H(D) = W"(D, H)/(z — T)W?>"(D, H)

endowed with the Hilbert space norm. Let M(=M.) be the operator of multi-
plication by z on W?"(D, H). Then M is a scalar operator of order 2m and its
spectral distribution is given by

®: Cy"(C) = LIW(D, H)),  ®(f) =My,

where My is the operator of multiplication by f. Since M commutes with z — T, M on
H(D) is still a scalar operator of order 2m, with ® as a spectral distribution.
Let V be the operator

Vh=1®@h+(z—T)W>(D,H) (=1®h),
from H into H(D), denoting by 1 ® / the constant function 4. Then VT = MV. By
Lemma 3.3, V is one-to-one and has closed range. Therefore, ran V' is a closed
invariant subspace for the scalar operator M. Hence T is a subscalar operator of

order 2m. O

Recall that if U is a non-empty open set in C and if Q C U has the property that
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Supke§2|f()\)| = SupﬁeU|f(.3)|

for every function fin H*°(U) (i.e. for all f bounded and analytic on U), then  is
said to be dominating for U.

COROLLARY 3.5. Let T € L(H) be any hypo-Jordan operator of order m. If o(T)
has the property that there exists some non-empty open set U such that o(T)N U is
dominating for U, then T has a nontrivial invariant subspace.

Proof. The proof follows that Theorem 3.4 and [4]. O

COROLLARY 3.6. Any hypo-Jordan operator has the property (B).

Proof. Since every scalar operator has the property (8) (see [8]) and the property
(B) is transmitted from an operator to its restrictions to closed invariant subspaces,

it follows from Theorem 3.4 that any hypo-Jordan operator has the property (8). []

COROLLARY 3.7. If T = S+ N is hypo-Jordan of order m and quasinilpotent, then
T is a nilpotent operator of order m.

Proof. Since o(S) = o(T) = {0}, an operator S is quasinilpotent and is similar to
a hyponormal operator. Therefore, S is a zero operator. Hence 7 = N. O

Recall that an operator X € L£(H, K) is called a quasiaffinity if it has trivial ker-
nel and dense range. An operator 4 € L(H) is said to be a quasiaffine transform of

an operator T € L(K) if there is a quasiaffinity X € £(H, K) such that X4 = TX.

COROLLARY 3.8. Let T € L(H) be any hypo-Jordan operator. If A is any qua-
siaffine transform of T, then o(T) C o(A).

Proof. The proof follows from Corollary 3.6 and [6, Theorem 3.2]. O

COROLLARY 3.9. Let T € L(H) be any hypo-Jordan operator. If A is any qua-
siaffine transform of T, then A is quasisubscalar.

Proof. Let X € L(H, K) be a quasiaffinity such that X4 = TX. Since V' (in The-
orem 3.4) and X are one-to-one, VX is one-to-one. Therefore, VX implements the

quasisubscalar properties. Thus A is quasisubscalar. O

In the following theorem we establishes an analogue of the single valued exten-
sion property for the space W*(D, H).

ProrosiTION 3.10. If T € L(H) is a hypo-Jordan operator of order m, then the
operator

z—T: W (D, H) — W>"(D, H)

is one-to-one, for an arbitrary bounded disk D in C.
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Proof. Let f'e W»"(D, H) be such that (z — T)f = 0. Then by a similar method
as in the proof of Lemma 3.3, we can show that Rf = PRf € A*(D, H) (c.f. (17)).
Since 7'is subscalar, by Theorem 3.4, we know that 7 has the single valued extension
property. Therefore, PRf'= 0; i.e., f = 0. Thus z — T is one-to-one. O

COROLLARY 3.11. Let T =S+ N be such that SN = NS, where S is similar to a
normal operator and N is quasinilpotent. Let o(T) lie in a C'-Jordan curve. Suppose
that there exists a constant M such that

lz—1)7"| = M/{dist(z, o(T))}"
forall z € p(T) with |z| < ||T|| + 1. Then T is subscalar of order 2(4m + 4).

Proof. We know that N*"t4 =0 by [9, Corollary 1.10] and so it follows from
Theorem 3.4 that T is subscalar of order 2(4m + 4). O
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