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1. Introduction

Let S{X) denote the semigroup of all continuous selfmaps of the topological space X.
Let &(S(X)) and @{S(X)) denote the partially ordered families of all & -classes and
^-classes, respectively, of S{X) where the partial orders are the usual ones [3, p. 29].
In [6], we made the following

Conjecture. The following statements are equivalent about any two compact 0-
dimensional metric spaces X and Y:

(1) &(S(X)) and ^C{S(Y)) are order isomorphic.

(2) ®{S(X)) and &(S{Y)) are order isomorphic.

(3) The semigroups S{X) and S(Y) are isomorphic.

(4) The spaces X and Y are homeomorphic.

The equivalence of (1), (3) and (4) had previously been shown in [5] and, of course, it
is immediate that (3) implies (2) so that in order to prove the conjecture, it is sufficient
to show that statement (2) implies any one of the others. We show, in fact, that (2)
implies (4) for a class of spaces which properly includes the class of compact 0-
dimensional metric spaces as well as all dendrites. These spaces are defined and some of
their properties deduced in Section 2. The main theorem of the paper is formally stated
and proved in Section 3.

2. ^-admissible spaces

We assume that all topological spaces are Hausdorff. By a retract of a space X, we
mean the range of an idempotent continuous selfmap of X. We will denote the range of
a function / by Ran / We first recall a definition from [8].

Definition (2.1). A space X is retractably generated if the family of all retracts of X
forms a subbasis for the closed subsets of X.

In [8] it was shown that products of retractably generated spaces are retractably
generated and since it is immediate that both the closed unit interval and the real line
arc retractably generated, this implies that all Euclidean Af-cells and N-spaces are
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retractably generated and so is Hilbert space and the Hilbert cube. In addition, all 0-
dimensional spaces are retractably generated as was also noted in [8]. By 0-dimensional,
we mean a space which has a basis of sets which are both closed and open. There is yet
another well-known class of spaces which are all retractably generated. Recall that a
Peano continuum is a compact, connected locally connected metric space and that a
dendrite is a Peano continuum which contains no simple closed curves.

Proposition (2.1). All dendrites are retractably generated.

Proof. Let X be a dendrite, F a nonempty closed subset of X and p a point in
X — F. For any xeX, let N(x,e) denote the open neighborhood about x with radius e.
Choose e>0 so small that N(p, 2e)nF = 0. Since X is locally connected, there exists for
each x e X, a connected open subset Gx such that x e Gx and, moreover, we may choose
Gx so that cl Gx<=N(x, e). Then {Gx:xeF} is an open cover of F and since F is compact,
some finite subcollection {Gx)^=i is sufficient to cover F. Thus we have

and

Now each cl Gx. is a subcontinuum of X and hence a dendrite by [10, p. 80]. Since a
dendrite is an absolute retract [1, p. 138], it follows that each clGXj is a retract of X and
the proof is completed.

For a space which is not retractably generated consider the following

Example (2.2). Let R2 denote the Euclidean plane and let

An = {(x,y)eU2:y = x/n and O g x ^ l } .

Then define X = u {An}™=l. We claim that X is not retractably generated. Let

and let p = (0,0). Then F is closed, p£F but any closed subset H satisfying p£H and
FcH will have an infinite number of components and consequently, cannot be a finite
union of retracts of X.

Thus far, our retractably generated spaces have been either connected or totally
disconnected but there are many retractably generated spaces which satisfy neither of
these two conditions. Evidence of this is given by

Proposition (2.3). The free union of any collection of retractably generated spaces is a
retractably generated space.

Proof. Let X be the free union of the retractably generated spaces {Xx:<xe A}. Let F
be a closed subset of X and let peX — F. We may assume p e l , . Since X1 is retractably
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generated, there exists a finite collection {tf,}f=1 of retracts of Xx such that
/ ^ , and pi u {#,•}{*= t. Now each //, ( l g i ^ N ) is also a retract of X and
:a^=l} is a retract of X. Consequently, {H,}f=V ' s a n m t e collection of

retracts of A" whose union contains F but not the point p.

We introduce another term.

Definition (2.4). A space X is range retractable if the range of each continuous
selfmap of X is a retract of X.

Among the O-dimensional metric spaces, the range retractable spaces can be easily
characterized.

Proposition (2.5). A O-dimensional metric space is range retractable if and only if it is
either compact or discrete.

Proof. Let X be any O-dimensional metric space. We assume it is not discrete and
prove, by contradiction, that it is compact. If it is not compact, then it is not countably
compact since the two notions coincide for metric spaces. Thus, for any open basis,
there will exist a countable sequence {Vn}™= t of basic open sets which covers X and has
the property that no finite subcollection covers X. Since X is O-dimensional, we may
take each Vn to be closed as well as open. Define a sequence {Wn}™= 1 by Wx = Vx and

for n>\. Each of the sets Wn is both open and closed and Wnr\Wm = 0 when n±m.
Moreover, {W^,}"=1 is a cover of X and no finite subcollection will serve as a cover.
There is no loss of generality if we assume that Wn ± 0 for all n. Since X is not discrete,
there exists a sequence of distinct points {yn} f- x converging to a point p where p £ yn for
all n. Define a selfmap / of X by f(x) = yn for x e Wn. The map / is continuous but
R a n / = {>>„}"=! is not closed since it lacks the limit point p. Consequently, R a n /
cannot possibly be a retract and we have the contradiction.

Now suppose that X is either compact or discrete. In either case, X is a
O-dimensional metric space with the property that R a n / is closed for each feS(X).
It now follows from [4, p. 281] that R a n / is a retract for each feS{X).

As it turns out, most range retractable spaces are compact. The latter result together
with our next one, gives evidence of this. Recall that a space is realcompact if it can be
embedded into a product of real lines as a closed subspace. Evidently all realcompact
spaces are completely regular. The converse is not true but the usual examples to the
contrary require some effort to produce. The best known example of a completely
regular space which is not realcompact is perhaps the space of ordinals less than the
first uncountable ordinal. References on realcompact spaces include [2] and [9].

Proposition (2.6). Every realcompact, range retractable space which contains an arc is
compact.
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Proof. Suppose X is not compact. Then it is not pseudocompact [2, p. 79] and there
exists an unbounded continuous function / from X into the reals U. Let A be an arc in
X with endpoints a and b and let h be any homeomorphism from U onto A — {a,b}.
Then h° f eS(X) and Ranhofis not closed since at least one of the points a or b is a
limit point of Ran ho f. Consequently, Ranho/ is not a retract of X and a contradiction
has been reached.

Thus far we have shown that most range retractable spaces must necessarily be
compact and that the converse holds whenever the spaces involved are 0-dimensional.
In general, however, the converse is far from valid.

Example (2.7). Let X be any compact space which contains a copy of the Euclidean
plane U2. Then X contains a copy D of the closed unit disk whose boundary B is a
simple closed curve. Choose any two distinct points a,beD and let / be any continuous
function from X into the closed unit interval / such that /(a) = 0 and f(b)= 1. Since D is
connected Ran / = 7. Now, let g be any continuous function from / onto B. Then
gofeS(X) and Ra.ngof=B. However, no continuous selfmap of X can retract X onto
B since no disk can be retracted onto its boundary. Thus, X is not range retractable.

Connectivity is also closely tied to the notion of a range retractable space.

Proposition (2.8). A range retractable space is either connected or totally disconnected.

Proof. Suppose X is range retractable and not totally disconnected. Then X has a
component A containing two distinct points a and b. We assume X is not connected.
Then it is the union of two nonempty disjoint open subsets G and H. Define f(x) = a for
xeG and f(x) = b for xeH. The function / belongs to S(X) and Ran/ = {a,b).
However, {a, b} cannot possibly be the range of an idempotent map in S(X). Any such
map g would fix both a and b so that {a, fr}<=g[/4]. Since A is connected, g[/4] is also
and we couldn't possibly have Rang = {a, b}. Thus, a contradiction has been reached.

Our next definition introduces the spaces with which the main theorem is concerned.

Definition (2.9). A topological space is ^-admissible if it is both retractably
generated and range retractable.

Proposition (2.10). The following statements are equivalent about a 0-dimensional
metric space X:

(2.10.1) X is ^-admissible,

(2.10.2) X is range retractable,

(2.10.3) X is either compact or discrete.

Proof. It is immediate that (2.10.1) implies (2.10.2) and it follows from Proposition
(2.5) that (2.10.2) implies (2.10.3). The comments following Definition (2.1) together with
Proposition (2.5) allow us to conclude that (2.10.3) implies (2.10.1) and the proof is
complete.

https://doi.org/10.1017/S0013091500028029 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028029


PARTIALLY ORDERED FAMILY OF ALL ^-CLASSES OF S(X) 11

Our next result gives still another source for ^-admissible spaces.

Proposition (2.12). All dendrites are Si-admissible.

Proof. Let X be any dendrite. Then X is retractably generated in view of
Proposition (2.2). Let feS(X). Then R a n / is a subcontinuum of X and is therefore,
itself, a dendrite [10, p. 89]. Again, we recall that dendrites are absolute retracts [1, p.
138] so that R a n / is a retract of X. This proves the result.

We now see that all dendrites and all compact 0-dimensional metric spaces are 01-
admissible. We give an example of an ^-admissible space which belongs to neither of
these two classes.

Example (2.13). Our space X is a subspace of the Euclidean plane. Let

2 ^ l / w and y = |jcsin l/x|}

and y= - | x s in

and then let Z = / luBu{(0,0)}. Topologically, what we have here is an infinite
sequence of circles, each one tangent to the next, converging down to a point. The space
X is certainly not 0-dimensional and it is far from being a dendrite. Nevertheless, it is
^-admissible. We will omit the details.

3. The main theorem

Let us recall that M(S{X)) denotes the partially ordered family of all ^-classes of the
semigroup S(X) where one defines Rt^R2 when the principal right ideal generated by
any of the elements of Rt is contained in the principal right ideal generated by any of
the elements in\R2- And now we are in a position to state and prove our

Main theorem. The following statements about any two M-admissible spaces X and Y
are equivalent:

(1) The partially ordered sets &{S(X)) and &(S(Y)) are order isometric,

(2) The semigroups S(X) and S(Y) are isomorphic,

(3) The spaces X and Y are homeomorphic.

It is evident that (3) implies (2) and that (2) implies (1). The proof will therefore be
complete when we have shown that (1) implies (3) and to do this, it will be convenient
to have some lemmas to assist us.

Lemma (3.1). Let X be any topological space whatsoever and let Rf be the Si-class in
S(X) which contains f. Then Rf is a minimal element of SH(S{X)) if and only if f is a
constant function.
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The proof is an easy exercise and will not be given.

Definition (3.2). For any Rfe0t(S(X)) we define SPT(Rf) = {Rge@(S(X)):Rg is a
minimal element and Rg^Rf} and we refer to SPT(Rf) as the support of Rf.

Lemma (3.3). Let X be any topological space whatsoever and let fgeS(X). Then
Ran / = Rang if and only if SPT(Rf) = SPT(Rg).

This proof is also straightforward and will be omitted. Our next lemma concerns
regular ^-classes. By a regular ^-class, we mean, of course, one which consists entirely
of regular elements.

Lemma (3.4). Let X be any topological space whatsoever and let fgeS(X). Suppose
that Rf is regular, Rf^Rg and SPT(Rf) = SPT{Rg). Then Rf = Rg.

Proof. Since Rf^Rg, we have f=g°k for some keS(X). Since X is regular,
Theorem (3.1) of [7] assures us that Ran/ is a retract of X and that / maps some
subspace A of X homeomorphically onto Ran/ Then k is injective on A, g is injective
on k\_A~] and

g[ /c |X|]=/[X|=Ran/

That is, g maps fc[/i] bijectively onto Ran/ Now let H be any closed subset of k[A~\.
One verifies that

Since / is a homeomorphism on A and A n k~ *[//] is a closed subset of A, it follows that
g[W] is a closed subset of Ran/ Consequently, g maps fe[/l] homeomorphically onto
Ran / Since SPT{Rf) = SPT(Rg), it follows from Lemma 3 that Ran/ = Rang and we
have now shown that g maps /c[/l] onto Rang which is a retract of X. In view of
Theorem (3.1) of [7], this means that g is also regular. It now follows from Theorem
(3.2) of [7] that / and g are ^-equivalent or, in other words, that Rf = Rg.

Lemma (3.5). Let X be a range retractable space and let feS(X). Suppose that for
every geS(X), Rf^Rg and SPT(Rf) = SPT(Rg) together imply Rf = Rg. Then Rf is a
regular (%-class.

Proof. Since X is a range retractable space, there exists an idempotent veS(X) such
that Ran/=Rani;. Then f=vof which means Rf^R0 and it follows from Lemma (3.3)
that SPT(Rf) = SPT(Rv). The hypothesis now applies and we have Rf = Rv which means
that Rf is a regular ^-class.

From Lemmas (3.4) and (3.5), we immediately get the following

Lemma (3.6). Let X be a range retractable space and let Rfe3&{S(X)). Then Rf is a
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regular M-class if and only if for every Rge@(S(X)), Rf^Rg and SPT{Rf) = SPT(Rg)
together imply Rf = Rg.

Now we are in a position to complete the proof of the main theorem and, as we have
observed previously, we need only show that (1) implies (3). With this in mind, let X
and 7 be ^-admissible spaces and let q> be an order isomorphism from M{S(X)) onto
@{S{Y)). Let ®R{S{X)) and 3lR(S{Y)) denote the partially ordered families of regular M-
classes of S(X) and S{Y) respectively. Lemmas (3.1), (3.3) and (3.6) together characterise
the regular ^-classes of S(X) and S(Y) within the partially ordered sets @(S(X)) and
@(S(Y)) respectively by means of those partial orders. Consequently, the order
isomorphism <p must map 3$R(S(X)) isomorphically onto MR{S(Y)). Since X and Y are
both retractably generated, Theorem (3.4) of [8] applies and we conclude that X and Y
are homeomorphic. It should be noted that in [8], the symbol 0$(S(X)) was used to
denote the collection of regular ^-classes of S(X). This completes the proof of the main
theorem.

As we observed in the introduction, the equivalence of statements (1), (3) and (4) of
the conjecture was established in [5]. Since compact O-dimensional metric spaces are ffl-
spaces, it follows from the main theorem of this paper that the latter statements are also
equivalent to (2). Hence, the conjecture, first made in [6] is now a theorem.
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