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1. Introduction

In [7] Plemelj established some fundamental results in two- and three-dimensional
potential theory about the eigenvalues of both the double layer potential operator and
its adjoint, the normal derivative of the single layer potential operator. In [3]
Blumenfeld and Mayer established some additional results concerning the eigenvalues of
these integral operators in the case of R2. The spectral properties established by Plemelj
[7] and by Blumenfeld and Mayer [3] have had a profound effect in the area of integral
equation methods in scattering and potential theory in both R2 and R3.

Some applications that have been made of these results may be found in Colton and
Kress [4]. A complete list, however, of all the different uses that have been made of the
efforts of Plemelj [7] and of Blumenfeld and Mayer [3] would be a formidable task.

This paper arose from the author's long interest in the spectral properties of the
double layer potential integral operator in both IR2 and R3. For sufficiently smooth
boundaries, it can be shown that for both U2 and R3 the point 0 lies in the spectrum of
the integral operator. A fundamental question is what part of the spectrum does 0 lie in?

For the case of U3 some partial results on this topic are known. If the underlying
boundary is either a sphere or a prolate spheroid, it can be shown (see [1]) that the
eigenvalues of the double layer potential integral operator lie in the interval [ — 1,0).
Furthermore, it can be established that for both geometries 0 lies in the continuous
spectrum of the integral operator. As for other geometries, the spectral classification of 0
remains an open question.

For the case of R2, it turns out that the situation is somewhat different for the double
layer potential operator, which in this paper we denote by K and define in equation
(2.1). After encountering some serious difficulties in an attempt to establish a general
theorem about which part of the spectrum of K the point 0 lies in, the author looked at
some specific examples, namely, the circle and the ellipse. For the case of the circle, the
point 0 lies in the point spectrum of K. For the case of an ellipse, 0 lies in the
continuous spectrum of K. Consequently, these examples demonstrate that 0 does not
always lie in the same component of the spectrum of K for all sufficiently smooth
boundaries.

In the next section we give some notation, definitions and basic results which we shall
use. In Section 3, we consider the case of a circle and compute the spectrum of K. It is
shown that 0 is an eigenvalue and moreover, that it has infinite geometric multiplicity.
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In Section 4 we consider the case of an ellipse. There we compute all the eigenvalues for
K and establish that every eigenvalue has a geometric multiplicity of 1. Furthermore, we
prove that the continuous spectrum of K is equal to the set {0}.

2. Notation, definitions and basic results

In this section we give our notation and state some definitions and results which we
shall require. Let £)( be a bounded, simply connected domain in U2 containing the origin
with a C2 boundary 3D, and let De denote the region exterior to Dt. Let n denote a unit
normal directed out of Dt. Let x and y denote typical points in U2.

We now define the following integral operators of potential theory:

^ ^ L , , Xe3D, (21)

(22)

Here it is understood that the integration is taken with respect to arc length.
A standard result in two-dimensional potential theory (e.g. see [9, pp. 78-80]) states

that for closed smooth curves 3D

d 1 1
hm T-TT-ln, | = - - K ( } - ) , (2.3)
x-y dn(y) \x-y\ 2

x.yedD

where tc(y) denotes the curvature of 3D at y. Consequently, unlike the weakly singular
nature of the double layer kernel in IR3, the double layer kernel in IR2 is continuous for
all points x and y on 3D, including when x = y.

Let C(8D) denote the Banach space of complex-valued, continuous functions defined
on 3D equipped with the maximum norm. Since the integral operator K has a
continuous kernel, it follows that K is a compact linear operator on C(3D) (see [4,
Theorem 1.10]).

Let 4- and — denote the limits obtained for the double layer potential (D\J/)(x) by
approaching the boundary 3D from De and Dh respectively, that is

(D+u)(x)=lim(Du)(xe), xedD, (2.4)

(D_w)(x)=lim(Du)(x,), xedD. (2.5)
x ->x
x\eD.

It can be shown (e.g. see [5, p. 49] or [8, p. 392]) that

(D±u)(x)=(Ku)(x)±u(x), xedD. (2.6)
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Let A denote any bounded linear operator mapping a Banach space X into itself. By
an eigenvalue of A we mean a complex number X such that the nullspace N(?J —
A) ± {0} where / denotes the identity operator. Let p(A) denote the resolvent set of A.
Let a(A) denote the spectrum of A. Let ac(^)> 0>(̂ )> a nd GR(A) denote the continuous
spectrum, point spectrum, and residual spectrum of A, respectively. It is known (e.g. see
[2, Chapter 18] or [4, Theorem 1.34]) that if X is an infinite dimensional Banach space
and if A is a compact linear operator then X = 0 lies in a(A) and a(A)\{0} consists of at
most a countable number of eigenvalues, with X = 0 the only possible limit point.

It can be shown (see [3]) that the eigenvalues of the integral operator K, defined in
equation (2.1), lie in the interval [—1,1) and are symmetric with respect to the origin.
The only exception is the eigenvalue — 1 corresponding to constant eigenfunctions.

Finally, we shall denote the set of positive integers by N.

3. The Circle

In this section dD is taken to be a circle of radius a. Under this assumption, we
compute the spectrum of the integral operator K and also determine the spectral
properties of the point X = 0 for K.

With respect to polar coordinates, let the points x and y be given by (rx,(px) and
(r, </>), respectively. Then

^ ^ >-0J]. (3.1)

From equation (3.1), for x,yedD, we have the following known result (e.g. see [5, p.
52])

1. - , ,

dn{yr\x-y\ 8r { I'—

1
~~2a

Before proceeding to the stated purposes of this section, it is worthy of note to
examine the result in equation (3.2) in the context of equation (2.3). It is a well known
result in differential geometry that the curvature of a circle of radius a is I/a.
Consequently, the results in equations (2.3) and (3.2) are seen to be compatible.

From equations (2.1) and (3.2) it follows that

(3.3)

Letting ij/ equal 1, cos m<p, and smm<j>,meH, respectively, in equation (3.3) we have

K ( l ) = - 1 , (3.4)
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K(cosro</>) = /C(sinm<£) = 0. (3.5)

Thus 1= — 1 is an eigenvalue of K with corresponding eigenfunction 1, and 1 = 0 is
also an eigenvalue of K with corresponding eigenfunctions {cos m(f>, sin mfr.meN}. From
the completeness of the orthogonal set of eigenfunctions {1, cos trufr, sin met).me M} in
L2[0,2n~], it follows, by a similar argument as used in [1], that with respect to the
underlying Banach space C(dD)

M * ) = {-l,0}. (3.6)

That is, 1 = — 1 and 1 = 0 are the only eigenvalues of K for the case when dD is a circle.
In view of the fact that K is a compact linear operator on C(3D), it follows that if

l=/=0 then either lep(K) or keaP{K). Consequently, 1= —1 and 1 = 0 are the only
elements of <r(K). Furthermore, since cosm$ and sin mcj), meN, are all eigenfunctions of
K corresponding to 1 = 0, it follows that

dimJV(K) = oo. (3.7)

4. The ellipse

The elliptical coordinates (fi,4>) are related to the rectangular Cartesian coordinates
{y\.>yi) by the transformation

yl=-ccoshfxcos(f>,

j/2=-csinh/isin</>, (4.1)

where 0 ^ < o o , 0^<j)^2n. The closed curves corresponding to n = constant, 0^</>_27t
are confocal ellipses of interfocal distance c, eccentricity e=(cosh/z)"1, major axis
ccosh/z and minor axis csinh/i. The limiting case ^ = 0 represents the line segment
between the foci.

In this section 3D will denote the ellipse corresponding to n = b, 0^</) = 27t, where b is
some constant. To avoid the degenerate case, we will assume that b > 0.

In terms of elliptical coordinates it can be shown that the gradient of a scalar
function <!>(//, <j>) is given by

where

T: = [cosh2 n sin2 4> + sinh2 \i cos2 0]1 / 2 , (4.3)
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and where eM and e^ denote the orthonormal vectors

£„: = (sinh \i cos 4> i+cosh [/. sin 0 j)/-c,

e^. = (— cosh n sin $ i + sinh fi cos <j> j)/x. (4.4)

Furthermore, it can be shown that the element of arc length ds is given by

ds=-xd<f>. (4.5)

From [6, p. 1202] we have

lni r= —I fi> + l n - 1+ Y, -e~r"l> [cosh«/i< cosn#cosn<px

\x — y\ \ 4 / n = i n

+ sinh n/i < sin n<f> sin n^^], (4.6)

where fi> =max{fix,ny}, fi<=min{nx,ny}, and (nx,<px) and (|/r</>) denote the elliptical
coordinates of the points x and y, respectively.

At the point (b, <$>) e 3D the unit tangent vector t and the outer unit normal vector n
are given, respectively, by

t = ^ , h = e,. (4.7)

For y=(b,(p)e8D and x=(fix(j)x)eDi it follows from equations (4.2) and (4.6) that

3 1 —2 f °°
——-In, f= -{1 + 2 y e~nb[coshn/xxcos«0cosn(j>x

3n(y) \x-y\ c% { a=i

+ sinh nnx sin ncp sin n0x] >. (4.8)

Consequently, from equations (2.4), (4.5) and (4.8) we have

1 2? f £
D\p(x) = f {//(/i,^){lt2 X e [coshn/*xcosn<pcosn0x

71 0 (. n =1

+ sinh nnx sin ncj) sin n^)^] >d(t>, x e Z);. (4.9)

Letting tj/ equal 1, cosm<j), and sinm<£, where meN, respectively, in equation
(4.9), then using the orthogonality of the trigonometric functions, and finally letting

https://doi.org/10.1017/S0013091500017843 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017843


410 JOHN F. AHNER

fix^>b, we have from equation (2.6)

K(\)=-l, (4.10)

K(cosm4>)=-e~2mb cos m<f>, meN, (4.11)

K(sin m(l))=e~2mb sin m<j), meM. (4.12)

Thus it is seen that — 1, — e~2mb, and e~2m*,meN, are eigenvalues of K with
corresponding eigenfunctions 1, cosm<£, and siamcj), respectively. From the completeness
of the orthogonal set of eigenfunctions {l,cosm(/>,sinm0:me^J} in L2[0,2TT], it follows,
by an argument similar to one used in [1], that with respect to the underlying Banach
space C(dD)

ap(K) = {-l,±e'2mb:meN}. (4.13)

That is, the above eigenvalues are the only eigenvalues of K. Consequently, unlike
the situation when 3D is a circle,

(4.14)

when 3D is an ellipse. Furthermore, it is seen that

- 2 m ' ' / - K ) = l (4.15)

for each meN. Therefore each eigenvalue has a geometric multiplicity of 1.
To complete the analysis of this section we establish the following result which

determines the spectral nature of the point X = 0.

Theorem 4.1 Let 3D denote the ellipse corresponding to fi = b,O^4>^2n, where b is
some positive constant. Then

{0} = ac(K).

Proof. Since K is a compact linear operator on C(3D),

Oea(K). (4.16)

Furthermore, since each eigenfunction must necessarily lie in the range of K, R(K), we
have

(4.17)

It follows that R(K) is dense in C(dD). Consequently, from equations (4.14) and (4.16) it

https://doi.org/10.1017/S0013091500017843 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017843


SOME SPECTRAL PROPERTIES OF AN INTEGRAL OPERATOR 411

follows that

Oeac(K). (4.18)

Finally, by using the fact that K is a compact linear operator on C(dD), we have from
equation (4.18)

{0} = ac(K). |
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