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1. Introduction
Throughout this paper, unless otherwise stated, » and L stand for positive
integers and a, ¢, x, x;, X5, ... for positive real numbers. Let

“ X
SX1s cees Xp) = e e 1
(s ) ';1 Xpp1FXes2 W
where
Xpor =X, @I T), oo, )}
and
A =1 inf S(Xes e X erreereernn G)
n XiyeeeyXp

Then, it is known (see (2)) that
An) =% (n=9),
<4 (even nx=14, odd n=27).

Also, as Rankin (4) has proved, 4(n) has a finite limit as n— co and

A=lim An)=infA(n). ..ccooviiiiiiiien, C))
Further (6),
AZA(24)<0-49950317.  creniiiiiriiirieeieean &)
In a paper (1) to appear shortly, we have shown that
Am2Az23(/2-1 = 0457107, .ccovvniriiiiiiinens (6)
thus improving Rankin’s result (5)
An)=A=0-330232,

which he obtained by a method involving the use of properties of convex
functions. Our result (6) was first obtained by a development of Rankin’s
method, although later a simpler proof was found (see (1)). In this paper we
shall develop Rankin’s method further and prove that

M) ZAZ 0461238, oo, 0

We shall also prove that
AZS2(24)<0499197. i, ®)
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The upper and lower bounds for A, appearing in (7) and (8), have a gap
which is less than 90 per cent. of that between the best previously known
bounds which are given in (5) and (6).

2. Some Lemmas

Lemma 1. Let a, x,, X,, ... be any real numbers satisfying (2). Then there
are integers a,, a,, ..., ay41(s>0), with

Aoy =a; (Modn), .cooeevniiiiiiiiiiiiiiirieann, C)]

such that, fork =1, 2, ..., s, ‘

@) L PP A U (10)
and

(ii) either a4 —ay; is even, x,,, =X, . +1 } )
and Xap+2<0Xg43<Xg4s<0Xgts<eo.<Xa,i |
or Ay —ag is 0dd, ax, , 2X, . +1 } )
and Xap 42 <UXgy 43 <Xgpps <UXgs5<.. <CXg,. )

Proof. First let g, be an arbitrary integer. Consider the infinite chain C
of inequalities S

xak+2<otxak+3<xak+4<axak+5<xak+5'< e

If all these inequalities are true then

Xa42<Xg +4<Xg+6<::-
and so
Xap+2<Xg+2n+2¢

This contradicts (2). Hence the inequalities in C are not all true. Suppose
that the first b, = a,+, —(a;+2) inequalities in C are true and the next one
false. Then we have (10) since #,2>0. Also we have (11) if b, is even and
{12) if b, is odd. Thus there is an integer a,+, satisfying both (i) and (ii).

Hence, starting with an arbitrary integer a,, we can find successively
integers a,, a;, a,, ... satisfying (i) and (ii) for &k = 1, 2, 3, ... respectively.
Consider now the infinite sequence of integers a,, @, as, ... . Since there are
only n residue classes (mod n), it follows that there are positive integers s
and ¢ such that a.,, = a,(mod n). Also (i) and (ii) are satisfied for k =1,
t+1,...,5s+t—1. Since (for any fixed s and ) a,, @,+, ..., 4,4+, can be renamed
a,, a,, ..., a4, respectively, the lemma follows. (I am indebted to the referee
for commenting that my original proof needed further clarification.)

Following Rankin (5), we write

L-1

(¢Lx09 Xy oens xL+1) = Z

r=0Xp11+X1

X,
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We write also

' X Xp_3+Xp_
Wi(Xor Xg5 oves Xp) = —22 g XatXe  XatXe | Xro3tXiog

Xy+X;  X3+Xs Xs+Xg Xp—y+x.
! 4+ 2=t (even L> 2), e 14)
(1+a)x, :
—- Xo +x1+X2+X3+X4+‘“+XL_4+XL_3
X1+Xx; X3+Xs Xs+Xg Xp—o+Xp-1
Xe=2F X1 (644 L23) o, (15)
(Q+a)x,
Lemma 2. Let L be even and =2. Suppose that
Xy <OUX3 <Xy <AX5<...<Xp ANAd XpZAXL 410 coerrenennenns (16)
Then
DL(X0s Xps eees XL 1) ZWE(X0s X1y vees XL)o cevenvvnninnennss 17

Proof. This follows from (13), (14) and (16).
Lemma 3. Let L be odd and =3. Suppose that
Xy <OUX3 <Xy <OUX5<... <OUXy ANA AXLZ X 410 cenvnvernonnnns (18)

Then (17) is true.

Proof. This follows from (13), (15) and (18).
For each ¢, we define functions f,(x), g(x), F(x) and G(x) for x>0 as

follows.
3L
fi(x) = 3tx? forx< (2,
1+«
wx \2/E+D) . B (19)
=3}t+2)| — - — forxz|{—) .
14+a 1+« 1+«a
x \2/a+D )
x)=30¢+1D{ — e et et eet e ter et et titeat e eateeateetiaaeaasares 20)
0.9 = K )(1+a) (
Fx) = 2 fi(e*) = x for x< ~%,
t 1+a @1
= .H_z(L)Z/(t+z)x'/('+2)_ g __a for xg ._a_
t \l+«a t1+a 1+a
t+1( 1 \HerD
G(x) = -g,(x*') ; (1+a) XMEED (22

The functions defined above are all convex functions of log x for x>0,
but we shall use this convexity property only of F,(x) and G5(x).
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Lemma 4.
Fy(x) = x for x< —a—,
14+«
.................. (23)
ox
= — -~ forxz —/—;
1+a 1+4a 1+«
4 x*
and Ga(X) = = s 24
W =3 e @4
are convex functions of log x for x>0. Also
oax o
Fo(X) 22 [ — e 25
92 14a 1+4a (25)

Proof. The convexity properties follow from the following facts: For
x>0 (i) F,(x) and Gi(x) are continuous and have continuous derivatives,

(ii) except at x = %, F3(x) exists and xF3(x)+ F3(x)=0 and (iii) G3(x)
a
exists and xG3(x)+ G5(x)=0.
(25) follows from (23) since x+ . =2 &, by the inequality of the
1+a 14+a
(arithmetic and geometric) means.
Lemma 5. F/(x)=F,(x)fort=t>0.

Proof. From (21), the result is true for x< % . When x= i,
= 14« 1+a

o 2/(t+2) « 2/’ +2)
F{(x)— F(x) = - >0.
(Q+a)x (14+a)x
Hence
o o
FX-FX)ZF,|— | —-F.| — }=0.
(- FAx)2 ,(m) '(m)
Lemma 6. G, (x)= F,(x)
t—1
if t>1and a(l+9)< (t—’1> e, (26)
Proof. Let
ox o
F(x) =2 | — s 27
) 14+a 14« @7

Then, from (22) and (27),

G;(x)—'F'(x) =(1+a)—2/(t+l)x—1/(,+l)_ o )i'x_i‘
14+a

a
=0at x= — {a(l4+ax)}?/¢" Y,
1+a{ ( )}
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where G (x) — F(x) has the minimum value

@ _ =l e-n(g pgy@-nie-n 3

1+a ¢
from (26). Hence G,(x)=F(x) = F,(x) for x ﬁ from (23) and (27).
o

For x= I—z—, G (x) = F,(x) is equivalent, from (22) and (27), to
o
t+1
x< (#) (1+a2)~?

t+1
which is satisfied if a(1+a) < (itl) . But (26) is true, and

t t—1< t+1 t+1 i t t—1 t t+1
_ £ — since [ —— —_—
t—1 t t—1 t+1

by the inequality of the means. Hence G (x)= F,(x) for x< 1—_%— also.
[+ 4

A

1

Lemma 7. Yy (xo, X1, -.., X)) fr(xo/xy) (evenLZ=2), .......o.oevee.n.... (28)
2g.(xo/x) (0ddL=3). .cooevvevrninnan.n... (29)

Proof. For odd L=3, (29) follows from (15), (20) and the inequality of
the means. Let x = xo/x,.

a
Foreven L=2 and x= (——) s
1+a

a Xo

x X3+ x
+ 1+x2+ 3+ 44

Xgs X15 -oes X))+ =
Yo, X1s oo X 1+ x34x; X3+x; Xs+Xg

Xp-3tXp-2 a(xp—y +x1)

+ ,
Xp—1+Xg (1+a)x,

from (14). Hence (28) follows from the inequality of the means and (19).

o
Foreven L=2 and x< (-—— s
1+a

Vi(xo, X15 - xL);J}L<

2/L
Xo )’+ & X,

)
Xp_1+xg t+a xg

from (14) and the inequality of the means. Hence

!/,L(an X1y oo XL)gh (-x—q, Eu)

XL XL
where
x ¥ au
h(x, u) = 1L{ — + —.
(x u) =14 (1+u> 1+a
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Now
2/L
-a—h(x,u)=— 1 [ x +
du 14+u\l+u 1+«
a \*
20foruz0and xs|— ) .
14a

Thus Y(xe, Xq, ..., X)ZA(x0/x, 0) = fr(xo/x.), from (19). This completes
the proof of the lemma.

t t—1 .
Lemma 8. <—1) increases for t>1.

Proof. This follows from Theorem 140 of (3).

Lemma 9. G, (x)=F,(x) for t23 if (1 +a)< 2.

Lemma 10. G,(x)=F,(x) for t=5 if a(l + )< $25.
Proofs. Lemmas 9 and 10 follow from Lemmas 6 and 8.
Lemma 11. ./x—}x increases for 0Sx<1.

Lemma 12. (1+x)e™* decreases for x=0.

Proofs. Lemmas 11 and 12 have obvious proofs.

3. First Improvement of (6)
We can improve (6) to

M= Az = 0461012, ..ooorvveeeeenn, (30)

8,/10—17
18
without much computational work, as follows.
Let a, x4, X;, ... be positive and (2) be satisfied. Then we can find an
increasing sequence of integers a,, a,, ..., a,+, in accordance with Lemma 1.

From (1), (2) and (13),
s+1 @ :
% Sai(Xys -o0r Xp) = kzl DaXas Xyt 15 -5 Xapyy41)s  weeees 31
where

from (10). From (31), (32) and Lemmas 2, 3 and 7,

a5 1—a 3 )
——-—S+1n ! Sn(xly ceny Xn)g kzl fdk(xak/xdk+l)+ kzl gdk(xak/xakﬂ)’
di :vcn :’dd

since (11) or (12) is satisfied. Hence, by (21) and (22),

Qo170 G (xyy s X)Z Y 3 Fy (X2/%[x20%)
k=1

ax g + 1
n

di even

+ Y 3d, G (xEefx2y, (33)
4 odd
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Suppose that a(1+a)<2. Then, by (32), (33) and Lemmas 5, 6 and 9,

pa Rt S I 2 3\ Fy(x2l%/x3%) 2 }(a,. 1 — a1 Fa(1),
n

by the convexity property of F,(x), given in Lemma 4, and the fact that, as a
consequence of (2) and (9),

ﬁ S T T (34)

_Snxa~ .y Ap
(x1 w2 \/1+a 1+a

and so, from (3) and (4),

Hence, by (25),

A=Az \/_— —3 m ........................... (35)

when a(l+a)<$. If « =1 we get the inequality (6); and if a(l+o) = %,
so that « = 4}(\/ 10—1), we get the inequality (30). That this is the best in-
equality, obtainable from (35), for a(l +a) <% follows from Lemma 11.

4. Further Improvements of (6)
We next consider a(2 1) satisfying

625
140 S . e 36
(1+0)= 556 (36)
As in § 3, we can obtain (33) in this case also. It is convenient to write
kz d, = p, Z di=q and p+g=N. ............... 3N
g+ 3 et :
Then,
as+1-—-al=N§p20, ................................. (38)
from (32) and (37). Itis also convenient to write, in conformity with (34),
H =x and H S 39
k=1 x,,k“ =1 xak“ X
dx + 3 =13

Then, using (32), (37) to (39) and Lemmas 4 to 6 and 10, we get, from (33),

—’:;’s,(xl, s XY ZIPFL(7) + 346

3 3
a RV 1 -3/2¢
—3p > +p(-2 x
ety (1+ ) éq(1+ )

o 1\
- — +(p+ el a!-p/(p+iq)’
i 140a (p+3q) (1 +a>
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by the inequality of the means. Thus we get, using (37),

1 px PH2N{ « \* ,_ax
Si(x1s ooy X )2 H(et, p) = — - + Kp+2N) (40

Thus, from (3), (4), (38) and (40),
Am=Aiz max min H(, P), covvrnreenenanenneneenans 41

afao OSpsN

6898
where (36) is equivalent to a <ay = \L—— = 1-14055. Now

16
% —
6ii=_ o + 2 (> 1+3N10gaz exp 3Nloga, ..(42)
dp 2N(14a) 3N\l+a P+2N p+2N
and, in virtue of (38),
3N loga
loga2> ———— >log «.
$logaz p+2N — g

From Lemma 12, it follows that

1 1\ o0H o 1 a
—(— ) A+%loga)s — + ———— = — — ) (1 +log o).
3N(1+a)( togn= o+ N+ 3N(1+a)( 82)
Hence, for all p satisfying (38),
+
OH i _"‘_) >2(1+logq), ie. a<a, = 108571
ap 1+a
+
and (25120 ifa<—1—> <%+loga, ie aza,= 109277
ap 14a

(since 1 fa=<a,). Itis seen that 1 <oy <a,<aq.

If a;Sa<a, then gi{ = 0 for some p satisfying (38). For this p, from

(40) and (42),
" 3N loga\™! 3N loga
a(l+a)}* =314+ —— EXP ———— iiireieeenanes 43
(a+ o)t = 3 (14 2108E) 7 o S Lo @
P 3Nloga\~!
d H@, pp=%—<2-31o 1+ e eeerenas 44
. wn=t i sas AL
oH
Ifa<a,, ™ <0 for all p. Thus, from (40),
P
min H(e, p) = H(x, N) = & _.}_“_
ospsN ’ 1+a “1+a

Hence we have (35) and thus, from Lemma 11, the best inequality obtainable
from (35) is when « = «,. This is

Mr)Z A 20461216 oo, (45)
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Ifaza,, Z—H 20 for all p. Thus, from (40),
4

min H(x, p) = H(x, 0) = %\/I—i—aﬁ

O<psN
and we have
1
Mnm)ziz —
which is best when « = «,. The inequality then is
AMn)=21=0-460838,

which is not so good as (45).

If o, La <L ey, from (43) and (44) we find (by computation) that, for « and
p satisfying (43), H(z, p) has its maximum value when « = 1-0868 and
p = 0-7214N. This maximum value is 0-461238. Thus (41) is equivalent to
(7) which, we note, is only a slight improvement of (45), which itself is better

than (6).

5. Proof of (8)

From (1) and (3), we easily get (8) if we let n be 24 and x,, ..., x,4 be 0, 15,
0,17,0,19,0,21,2,22,5,21,7,18,7, 16, 6, 14, 5, 13, 3, 13, 1, 14 respectively,
in (1), and use considerations of continuity.

6. Addendum to (1)
Near the end of (1) we proved an inequality equivalent to

Z.(X15 ooy Xn) = 4 y Xr >2o0nlin L%—n]-...(46)
nr=1 3%, 1+ X2t [ Xpe 1 —Xpe2 | n

if (2) is satisfied. We can now prove more, namely, that

inf T(xp, ., x)= e O 47
X5 oo Xpy n

if (2) is satisfied.
Proof. For even n, (47) follows from (46) since we have equality in (46) if

Xy =X3=..=X,_pand x, = x; = ... = x, = ({/2—1x,,
x x
when = — 4+ 22 = /24
.x2+X3 ZX3 ‘\/ %

For n = 1, (47) is trivially true. For odd n>1, (47) follows from (46)
since we have equality in (46) if

Xy 1XpiX3 = X3iXgiXs= e = Xp_g Xy g iX, =272 20 "2 _1 .9,
n—1 x X X _ n—1
when = 4 22 ) ¢ Zn oty DT
n \X,+x;3; 2x; nx, 2n
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