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Abstract. In this paper we consider the integral Volterra operator on the space
L2ð0; 1Þ. We say that a complex number � is an extended eigenvalue of V if there
exists a nonzero operator X satisfying the equation XV ¼ �VX. We show that the set
of extended eigenvalues of V is precisely the interval ð0;1Þ and the corresponding
eigenvectors may be chosen to be integral operators as well.
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1. Introduction and preliminaries. Let H be a complex Hilbert space. Denote by
LðHÞ the algebra of all bounded linear operators on H. Consider an operator A in
LðHÞ. If X 2 LðHÞ it can happen that there is a nonzero operator Y such that

XA ¼ AY: ð1:1Þ

If we denote by EA the set of all X for which there exists an operator Y satisfying
(1.1), then it is easy to see that EA is an algebra. Furthermore, if A has dense range,
one can define the map �A : EA ! LðHÞ by �AðXÞ ¼ Y. One can easily see that �A

is an algebra homomorphism, and we shall verify shortly that it is in fact a closed
(generally unbounded) linear transformation.

When Y ¼ �X, for some complex number �, equation (1.1) becomes

XA ¼ �AX: ð1:2Þ

Clearly, a pair ðX; �Þ in LðHÞ n ð0Þ � C satisfies (1.2) if and only if � is an eigenvalue
for �A and X is an eigenvector for �A. An eigenvalue of �A will be referred to as an
extended eigenvalue of A.

One knows that, when � ¼ 1, equation (1.2) can be used to obtain information
about the operator X based on the properties of the operator A. In particular, a
famous result of Lomonosov [5] asserts that if A is compact then X must have a
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nontrivial hyperinvariant subspace. In fact, the whole commutant fAg0 of A has a
common nontrivial invariant subspace. Later, it was shown independently by S.
Brown [3] and Kim, Pearcy, and Shields [7] that if A is compact and X satisfies (1.2),
for any complex �, then X has a nontrivial hyperinvariant subspace. This extension
naturally leads to the question as to whether there is an algebra A that properly
contains fAg0 and which, under specific conditions, has an invariant subspace. Such
an algebra has been introduced in [6] and it was shown there that it contains not
only those operators that commute with A but also operators that satisfy (1.2) for
some j�j � 1. Furthermore, if A is compact, then this algebra has a nontrivial
invariant subspace. Of course, if A ¼ fAg0 this is just Lomonosov’s theorem. There-
fore it is of interest to find out whether the inclusion

fAg0 � A ð1:3Þ

is proper. It was established in [6] that this happens when the spectral radius of A is
positive. Thus, it remains to consider the case in which A is compact and quasi-
nilpotent.

It is the purpose of this paper to make a first step in this direction by showing
that the inclusion (1.3) is proper when A is a specific compact, quasinilpotent
operator. More precisely, let H ¼ L2ð0; 1Þ, and A ¼ V, the Volterra integral opera-
tor on L2ð0; 1Þ, defined by

VfðxÞ ¼

Zx

0

fðtÞ dt:

We shall show that the set of extended eigenvalues of the Volterra operator V is
precisely the set ð0;1Þ. Moreover, we shall show that for each such an extended
eigenvalue �, the appropriate eigenvector can be found in the class of integral
operators. In other words, for each � > 0,the equation

XV ¼ �VX ð1:4Þ

has a nonzero integral operator as a solution.
The organization of the paper is as follows. In Section 2, we show that if � does

not belong to ð0;1Þ then it cannot be an eigenvalue of �V. As an application of our
method we show as well that, for � 6¼ 1, the operators V and �V are not quasisimilar.

As possible candidates for a solution of (1.4) we consider three classes of
operators: operators of multiplication, integral operators, and composition opera-
tors. Sections 3, 4, and 5, respectively, are dedicated to these classes. We shall show
that if � 2 ð0;1Þ then it is an eigenvalue of �V; that is, in this case (1.4) has non-
trivial solutions. Finally, in Section 6 we present some open problems.

Once we establish the fact that the spectrum of �V is unbounded it will follow
that �V is an unbounded map. Here we show that, whenever A is an operator in
LðHÞ with dense range, �A is a closed linear map.

Theorem 1. For A 2 LðHÞ with dense range, the map �A is a closed map on EA.

Proof. We need to show that if fTng is a norm convergent sequence in EA con-
verging to an operator T, and if �AðTnÞ converges in norm to some S 2 LðHÞ, then
S 2 EA and S ¼ �AðTÞ. Denote Sn ¼ �AðTnÞ. Then
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TnA ¼ ASn: ð1:5Þ

Clearly TnA! TA and ASn ! AS, as n! 1, so that (1.5) yields TA ¼ AS, which
is equivalent to �AðTÞ ¼ S. &

2. Point spectrum of �V. In this section, we take the first step to determine the
point spectrum of �V. In particular, we show that equation (1.4) has no nonzero
operator X as a solution if � 2 C n ð0;1Þ.

We start by noticing that 0 cannot be an eigenvalue of �V. This follows
easily from the observation that V has dense range in L2ð0; 1Þ. (In fact, the
range of V consists of all absolutely continuous functions which are zero at the
origin.) Since we can assume that � 6¼ 0, equation (1.4) is equivalent to the
equation

VX ¼ �XV ð2:1Þ

where � ¼ 1=�. We show in this section that the operator equation (2.1) has no
nontrivial solution in the case in which � 2 C n ð0;1Þ. This will enable us to con-
clude that the point spectrum of �V is a subset of ð0;1Þ. In subsequent sections, it
will be shown that, when � 2 ð0;1Þ, equation (1.4) does indeed have nontrivial
solutions. It will then follow that the point spectrum of �V is ð0;1Þ.

As an application of the techniques that we introduce in this section we also
show that, for � 6¼ 1, the operators V and �V are not quasisimilar.

As usual, when E is a set, the symbol �E denotes the characteristic function of E;
i.e., �EðxÞ ¼ 1 if x 2 E and �EðxÞ ¼ 0 if x =2E. In what follows, whenever necessary,
we regard L2ð0; 1Þ as a closed subspace of L2ð�1;1Þ consisting of all those
(equivalence classes of) functions vanishing outside of ð0; 1Þ. Let D ¼ f f : f is abso-
lutely continuous and fð0Þ ¼ 0g. Also, let D denote the unbounded operator with
domain D defined by Df ¼ d

dx f for f 2 D. In all equations involving D we assume
that they are restricted to D. Thus, we write VD ¼ DV ¼ I. In order to understand
better the spectral behavior of these operators it is useful to consider a certain
semigroup of operators. Namely, for each t � 0, let St be the operator on L2ð0; 1Þ
defined by

St fðxÞ ¼ �½t;1Þ\½0;1�ðxÞfðx� tÞ: ð2:2Þ

It is easy to verify that fSt : 0 � t < 1g is a strongly continuous semigroup on
L2ð0; 1Þ. Notice that, for t � 1; St ¼ 0. The following result is going to be used in the
proof of Theorem 3. For its proof as well as the perusal of this circle of ideas we
recommend [1].

Theorem 2. The infinitesimal generator of St is �D. Moreover, for all
z 2 C; ðzþDÞ�1 exists as a bounded operator and

ðzþDÞ�1
¼

Z 1

0

eztSt dt: ð2:3Þ

We now state and prove the main theorem in this section.
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Theorem 3. Suppose that � 2 C n ð0;1Þ. Then there is no nonzero operator T on
L2ð0; 1Þ satisfying the equation VT ¼ �TV.

Proof. First note that since V is injective, there is no nontrivial solution of the
equation VT ¼ �TV for � ¼ 0 and henceforth for the rest of this section, we assume
� 6¼ 0.

Let T be an operator on L2ð0; 1Þ satisfying the equation

VT ¼ �TV ð2:4Þ

for some � 2 C. Since D is precisely the range of V, equation (2.4) implies that
TðDÞ � D. Consequently, equation (2.4) is equivalent to

TD ¼ �DT: ð2:5Þ

Let z 2 C. Then

TðzþDÞ ¼ ðzþ �DÞT ¼ �ð
z

�
þDÞT:

Since z was arbitrary, the previous equation is equivalent to Tð�zþDÞ ¼ �ðzþDÞT.
Therefore, ðzþDÞ�1T ¼ �Tð�zþDÞ�1. Using Theorem 2, we obtain

Z 1

0

eztStT dt ¼ �

Z 1

0

e�ztTSt dt: ð2:6Þ

Let u and v belong to L2ð0; 1Þ. Define fðtÞ ¼ ðStTu; vÞ and gðtÞ ¼ �ðTStu; vÞ.
Here, ð�; �Þ denotes the standard inner product in L2ð0; 1Þ. Note that since St is a
strongly continuous semigroup, f and g are continuous functions on ½0; 1�. From the
definition of the functions f, g and (2.6) it follows that

R 1

0 e
ztfðtÞdt ¼

R 1

0 e
�ztgðtÞdt.

Next, we expand both sides of this equation as power series in z and we notice that
both series converge uniformly in t, for each z 2 C. Thus we can integrate the series
term by term. Comparing coefficients in these series we obtain

Z 1

0

tnfðtÞdt ¼

Z 1

0

�ntngðtÞdt ðn � 0Þ:

It follows that, for every polynomial p, we have

Z 1

0

pðtÞfðtÞdt ¼

Z 1

0

pð�tÞgðtÞdt: ð2:7Þ

Now suppose that � 2 C n ½0;1Þ: Let S ¼ f�t : 0 � t � 1g [ ½0; 1�. Define a function
h on S by hð�tÞ ¼ gðtÞ; t 2 ½0; 1� and h ¼ 0 otherwise. Then h 2 L2ðSÞ with respect to
the standard Lebegue measure on S. By Mergelyan’s theorem (cf. [8, p. 390]), there
exists a sequence of polynomials pn on S converging to h in L2ðSÞ. But then,R 1

0 pnðtÞfðtÞ dt! 0 and
R 1

0 pnð�tÞgðtÞ dt! kgk2 as n! 1. In view of (2.7), this shows
that g ¼ 0 in L2ð0; 1Þ and, since g is continuous, this means that gðtÞ ¼ 0, for all t in
½0; 1�. In particular, gð0Þ ¼ �ðTu; vÞ ¼ 0. Since � 6¼ 0 and u, v are arbitrary in L2ð0; 1Þ
it follows that T ¼ 0. &
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We now show that for � 6¼ 1 the operators V and �V are not quasisimilar. First,
we need the following lemma. Once again, St is the semigroup defined in (2.2).

Lemma 1. Let � > 0 and let T be an operator on L2ð0; 1Þ. Then VT ¼ �TV if and
only if StT ¼ TSt=�, for all t � 0.

Proof. Suppose that VT ¼ �TV. Just as in the proof of Theorem 3 let u and v
belong to L2ð0; 1Þ. Define fðtÞ ¼ ðStTu; vÞ and gðtÞ ¼ �ðTStu; vÞ.

First we consider the case when 0 < � � 1: Let h 2 L2ð0; 1Þ. Using the fact that
polynomials are dense in L2ð0; 1Þ and (2.7), we have

Z 1

0

hðtÞfðtÞdt ¼

Z 1

0

hð�tÞgðtÞdt ¼
1

�

Z 1

0

�½0;��ðtÞhðtÞgð
t

�
Þ dt:

This implies that fðtÞ ¼ ð1=�Þ�½0;��ðtÞgðt=�Þ a. e. on ½0; 1�. Since fðtÞ ¼ 0 for t � 1 and
gðt=�Þ ¼ 0 for t � �, it follows that fðtÞ ¼ ð1=�Þgðt=�Þ for a. e. t and, thus,

ðStTu; vÞ ¼ ðTSt=�Tu; vÞ:

Since u and v are arbitrary, it follows that StT ¼ TSt=� for all t � 0 and 0 < � � 1.
Next we turn our attention to the case � > 1. Once again using (2.7) we have

that, for any polynomial p,

Z 1

0

pðtÞfðtÞdt ¼

Z 1

0

pð�tÞgðtÞdt ¼
1

�

Z 1

0

pðtÞgð
t

�
Þdtþ

Z �

1

pðtÞgð
t

�
Þdt

� �
: ð2:8Þ

Let h be an arbitrary function in L2ð0; 1Þ and recall that h can be viewed as a func-
tion in L2ð0; �Þ such that h ¼ 0 a. e. on ð1; �Þ. Let fpng be a sequence of polynomials
converging in L2ð0; �Þ to h. Then,

Z 1

0

pnðtÞfðtÞdt�!

Z 1

0

hðtÞfðtÞdt

and

1

�

Z 1

0

pnðtÞgð
t

�
Þdtþ

1

�

Z �

1

pnðtÞgð
t

�
Þdt�!

1

�

Z 1

0

hðtÞgð
t

�
Þdtþ 0:

Since h is an arbitrary function in L2ð0; 1Þ,using equation (2.8) with pn in place of p,
it follows that fðtÞ ¼ ð1=�Þgðt=�Þ a. e. on ½0; 1� and, as before, it means that
StT ¼ TSt=�, for all t � 0.

Suppose now that StT ¼ TSt=�, for all t � 0. It was shown in the proof of
Theorem 3 that the equality VT ¼ �TV is equivalent to (2.6). Again, we consider
separately the cases 0 < � � 1 and � > 1.

Let 0 < � � 1. Using the assumption and a simple change of variables we get
that

Z 1

0

eztStT dt ¼

Z 1

0

eztTSt=� dt ¼ �

Z 1=�

0

e�ztTSt dt ¼ �

Z 1

0

e�ztTSt dt;

where the last equality follows from the facts that 1=� � 1 and St ¼ 0 for t � 1.
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If � > 1 we start with the right hand side of (2.6). Using an analogous argument
we obtain that

�

Z 1

0

e�ztTSt dt ¼

Z �

0

eztTSt=� dt ¼

Z �

0

eztStT dt ¼

Z 1

0

eztStT dt;

and the lemma is proved. &

Recall that two operators X and Y on any two Hilbert spaces X and Y respec-
tively are said to be quasisimilar if there exist operators T1 from X to Y and T2 from
Y to X such that both T1 and T2 are one to one with dense ranges and such that
T1X ¼ YT1 and XT2 ¼ T2Y. Of course, when T1 and T2 are equal and invertible,
this yields the usual definition of similarity.

Theorem 4. For � 6¼ 1, the operators V and �V are not quasisimilar.

Proof. If � is not a positive real number, the claim follows from Theorem 3.
Now suppose that � > 0; � 6¼ 1 and let T be an operator on L2ð0; 1Þ such that
VT ¼ �TV. Then, by Lemma 1, StT ¼ TSt=�: If � < 1, then

S�T ¼ TS1 ¼ 0: ð2:9Þ

If � > 1, then

0 ¼ S1T ¼ TS1
�
: ð2:10Þ

However, note that St ¼ 0 if and only if t � 1. Therefore, from (2.9) and (2.10) it
follows that in case � > 0, � 6¼ 1 the operator T is either not one to one or does not
have dense range. As a result, V and �V cannot be quasisimilar if � 6¼ 1. &

3. Operators of multiplication. Let ’ 2 L1ð0; 1Þ. The operator M’ on L2ð0; 1Þ,
defined by ðM’f ÞðxÞ ¼ ’ðxÞfðxÞ, is called the operator of multiplication by ’. In this
section we are interested in whether M’ can satisfy condition (1.4), for some ’ in
L1ð0; 1Þ. The following result shows that the answer to this question is negative.

Theorem 5. Let ’ 2 L1ð0; 1Þ and let M’ be the operator of multiplication by ’ in
LðL2ð0; 1ÞÞ. If M’V ¼ �VM’, then ’ ¼ 0 almost everywhere in (0,1)

Proof. The equation M’V ¼ �VM’ implies that

’ðxÞ

Zx

0

fðtÞ dt ¼ �

Zx

0

’ðtÞfðtÞ dt; 8f 2 L2ð0; 1Þ; for a: e: x 2 ½0; 1�: ð3:1Þ

Equivalently,

Zx

0

fðtÞ½’ðxÞ � �’ðtÞ� dt ¼ 0;
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for all f in L2ð0; 1Þ and for a. e. x 2 ½0; 1�. Hence,

Z1

0

fðtÞ�½0;x�ðtÞ½’ðxÞ � �’ðtÞ� dt ¼ 0 ð3:2Þ

for all f in L2ð0; 1Þ and for a. e. x 2 ½0; 1�. Notice that the reason that equation (3.2)
is valid only almost everywhere is that ’ is defined only up to sets of measure zero.
Due to the separability of L2ð0; 1Þ the set of numbers x for which (3.2) holds can be
chosen to be the same for any f 2 L2ð0; 1Þ. Thus, the quantifiers on f and on x can
and will be taken to be independent. Therefore, for any x satisfying (3.2), we have
that �½0;x�ðtÞ½’ðxÞ � �’ðtÞ� ¼ 0 for a. e. t, which implies that ’ is constant a. e. Con-
sequently, ’ must be a constant function in L1ð0; 1Þ. Furthermore, if ’ðxÞ ¼ C then
�½0;x�ðtÞ½C� �C� ¼ 0 for a. e. t and, therefore, C ¼ 0. &

Theorem 5 shows that M’ cannot be an eigenvector of �V. In other words, if
�M
V is the restriction of �V to the subspace consisting of operators of multi-

plication, then the point spectrum of �M
V consists of � ¼ 1 alone. Moreover, the

proof of Theorem 5 shows that, in this case, M’ is an eigenvector for �M
V if and

only if ’ðxÞ ¼ C a. e., for some constant C. This leaves open the question about
other parts of the spectrum of �M

V . We conclude this discussion with the following
problem.

Problem 1. Describe the spectrum of �M
V . Describe parts of the spectrum of

�M
V .

4. Integral operators. We now investigate whether there exists a nonzero inte-
gral operator that satisfies equation (1.4), for some � > 0. Throughout this section
we shall be dealing exclusively with Lebesgue measure, both on the line (denoted by
m) and in the plane (denoted by m2). In order to distinguish between the two we will,
when necessary, use notation like a. e. ½m2� meaning that a property holds every-
where in the two-dimensional domain except for a set E such that m2ðEÞ ¼ 0. Fre-
quently, when considering a function Fðx; yÞ defined on a set E in the plane, it will be
useful to pass from separate measurability in each variable to measurability with
respect to m2. More precisely, with each x we associate a function FxðyÞ defined by
FxðyÞ ¼ Fðx; yÞ; similarly, we define FyðxÞ ¼ Fðx; yÞ. Sometimes, the measurability of
Fx and F

y implies the m2-measurability of F. The following elementary result (cf. [8,
p. 176]) will be useful in this direction.

Lemma 2. Suppose that F is a real-valued function on R2 such that each section Fx
is measurable and each section Fy is continuous. Then F is m2-measurable.

Let Kðx; yÞ be a Lebesgue integrable function on ½0; 1� � ½0; 1�. Then, it is possi-
ble to define an operator K on L2ð0; 1Þ as

KfðxÞ ¼

Z1

0

Kðx; yÞfðyÞ dy: ð4:1Þ
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Such operators are called integral operators and we say that the function Kðx; yÞ is its
kernel function, or just the kernel. We are interested in finding eigenvalues and
eigenvectors for �K

V, the restriction of �V to the subspace of integral operators. By
Theorem 3, the set of eigenvalues of �V is a subset of the interval ð0;1Þ. We show
that this inclusion is in fact an equality. The following result is instrumental in this
direction. Namely, it gives a necessary and sufficient condition on the kernel Kðx; yÞ
of an integral operator K to be an eigenvector of �K

V. Recall that, since we assume
that � is a positive real number, there is no loss of generality in considering the
equation VK ¼ �KV.

Theorem 6. Let � be a positive number and let K be an integral operator with
kernel Kðx; yÞ. Then VK ¼ �KV if and only if Kðx; yÞ ¼ gðx� �yÞ, for some measur-
able function g on R such that g ¼ 0 on the interval ½��; 1� �� and alsoR 1

0

R 1

0 jgðx� �yÞjdxdy < 1:

Proof. Let K be an integral operator with kernel Kðx; yÞ and suppose that
VKf ¼ �KVf, for all f 2 L2ð0; 1Þ. Then,

Zx

0

dt

Z1

0

Kðt; yÞfðyÞ dy ¼ �

Z1

0

dt

Zt

0

Kðx; yÞfðyÞ dy ð4:2Þ

for all f 2 L2ð0; 1Þ and a. e. x. Due to separability of L2ð0; 1Þ the exceptional set
where (4.2) fails to hold can be chosen independent of f. Changing the order of
integration on both sides of (4.2) yields

Z1

0

fðyÞ dy

Zx

0

Kðt; yÞ dt

2
4

3
5 ¼ �

Z1

0

fðyÞ dy

Z1

y

Kðx; tÞ dt

2
64

3
75:

In view of the arbitrary choice of f in L2ð0; 1Þ it follows that

Zx

0

Kðt; yÞ dt ¼ �

Z1

y

Kðx; tÞ dt ð4:3Þ

for a. e. x and a. e. y in ½0; 1�. Conversely, if a kernel Kðx; yÞ satisfies (4.3) for a. e. x
and a. e. y in ½0; 1� then it is easy to see that VK ¼ �KV.

Suppose now that K is an integral operator satisfying VK ¼ �KV. Then its ker-
nel Kðx; yÞ must satisfy (4.3). Notice that this kernel is indeed an equivalence class of
functions that agree a. e. ½m2�. Now we pick any particular representative and denote
it again by Kðx; yÞ. The advantage of this strategy is that each side of (4.3) is now
defined, for all ðx; yÞ 2 ½0; 1� � ½0; 1�. With this understanding it is easy to see that
the left hand side of (4.3), which we denote by F1ðx; yÞ, is a measurable function of y
for every x, and that it is a continuous function of x for every y 2 ½0; 1�. Hence,
Lemma 2 shows that F1ðx; yÞ is a measurable function with respect to the two-
dimensional Lebesgue measure. Since a similar argument shows that the right hand
side of (4.3), which we denote by F2ðx; yÞ, is measurable with respect to the two-
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dimensional Lebesgue measure we conclude that F1ðx; yÞ ¼ F2ðx; yÞ a. e. ½m2�. Fur-
thermore, F1ðx; yÞ has partial derivative ðF1Þx for every ðx; yÞ 2 ½0; 1� � ½0; 1� and
F2ðx; yÞ has partial derivative ðF2Þy for every ðx; yÞ 2 ½0; 1� � ½0; 1�. Hence, F1ðx; yÞ
has partial derivative ðF1Þy for a. e. ½m2� point ðx; yÞ 2 ½0; 1� � ½0; 1�. The conclusion
is that we can, and we do denote both sides of (4.3) as Fðx; yÞ.

A calculation shows that Fxðx; yÞ ¼ Kðx; yÞ and Fyðx; yÞ ¼ ��Kðx; yÞ. Since

Fxðx; yÞ ¼ lim
hn!0

Fðxþ hn; yÞ � Fðx; yÞ

hn

and each member of the sequence is a measurable function of ðx; yÞ, it follows that
Fx is m2-measurable. Similarly, Fy is m2-measurable. Finally, we have that

Fyðx; yÞ ¼ ��Fxðx; yÞ; for a: e: ðx; yÞ 2 ½0; 1� � ½0; 1�: ð4:4Þ

Let ða; bÞ be any point in ½0; 1� � ½0; 1�, and let R ¼ Ra;b denote the rectangle
bounded by x ¼ 0, x ¼ a, y ¼ b, and y ¼ 1. Then

ZZ
R

Fxðx; yÞ dx dy ¼

Z1

b

dy

Za

0

Fxðx; yÞ dx ¼

Z1

b

dy

Za

0

Kðx; yÞ dx ¼

Z1

b

Fða; yÞ dy

while

ZZ
R

Fyðx; yÞdydx ¼

Za

0

dx

Z1

b

Fyðx; yÞdy ¼

Za

0

dx

Z1

b

��Kðx; yÞdy ¼ �

Za

0

Fðx; bÞdx:

In view of (4.4), we have

ZZ
R

½Fyðx; yÞ þ �Fxðx; yÞ� dx dy ¼ 0:

Therefore,

�

Z1

b

Fða; yÞ dy�

Za

0

Fðx; bÞ dx ¼ 0

or, equivalently,

Za

0

Fðx; bÞ dx ¼ �

Z1

b

Fða; yÞ dy: ð4:5Þ

We emphasize that (4.5) holds for every ða; bÞ 2 ½0; 1� � ½0; 1�. Denote either side of it
by Gða; bÞ. Then G is an ½m2�-measurable function that satisfies the equation

Gyðx; yÞ ¼ ��Gxðx; yÞ; for all ðx; yÞ 2 ½0; 1� � ½0; 1�: ð4:6Þ
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Although this equation is similar to (4.4) there is an important difference. The
equation (4.6) holds for every ðx; yÞ 2 ½0; 1� � ½0; 1�. Now we exploit this fact by
using a well known argument from classical analysis.

Let c be a fixed number. The function HðxÞ ¼ Gðx; ðcþ xÞ=�Þ is a measurable
function as a composition of a measurable function G and a continuous map

 : x 7! ðx; ðcþ xÞ=�Þ. Moreover, the function H is a differentiable function of x as a
composition of two differentiable functions. Then

H0ðxÞ ¼
@

@x
Gðx; ðcþ xÞ=�Þ ¼ Gxðx; ðcþ xÞ=�Þ þ Gyðx; ðcþ xÞ=�Þ

1

�

and so, using (4.6), H0ðxÞ ¼ 0. We conclude that H is a constant function of x. This
implies that Gðx; ðcþ xÞ=�Þ is a constant function of x so that there exists a mea-
surable function ~gg such that Gðx; yÞ ¼ ~ggðx� �yÞ. Since Gxxðx; yÞ ¼ Kðx; yÞ it follows
that there exists a measurable function g such that Kðx; yÞ ¼ gðx� �yÞ. Moreover,
the integrability condition on K translates to the required integrability condition on
g. Finally, (4.3) implies that

Z x

0

gðt� �yÞdt ¼ �

Z 1

y

gðx� �tÞdt;

for a. e. x and a. e. y in ½0; 1�. A change of variable leads to the equality

Z x��y

��y

gðsÞds ¼

Z x��y

x��

gðsÞds

that holds for a. e. x and a. e. y in ½0; 1�, which in turn means that

Z x��

��y

gðsÞds ¼ 0;

for a. e. x and a. e. y in ½0; 1�. It follows that g ¼ 0 on ½��; 1� ��.
Conversely, if K is an integral operator with kernel Kðx; yÞ ¼ gðx� �yÞ, for

some measurable function g that vanishes on ½��; 1� ��, then it is easy to verify that
K satisfies (4.3) and the theorem is proved. &

As a consequence of this result we obtain that, if � 2 ð0; 1Þ, then it is an exten-
ded eigenvalue of V.

Proposition 1. Let � 2 ð0; 1Þ and let �� be the triangle bounded by y ¼ �x,
y ¼ 0, and x ¼ 1. Also, let K be the integral operator on L2ð0; 1Þ with kernel
Kðx; yÞ ¼ ���

ðx; yÞ. Then KV ¼ �VK.

Proof. The result follows from Theorem 6 with g ¼ �ð0;1Þ since ��ðx; yÞ ¼
gðx� y=�Þ. &

When � > 1 we have to slightly change the definition of ��.
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Proposition 2. Let � > 1 and let �� be the triangle bounded by y ¼ �ðx� 1Þ þ 1,
y ¼ 0, and x ¼ 1. Also, let K be the integral operator on L2ð0; 1Þ with kernel
Kðx; yÞ ¼ ���

ðx; yÞ. Then KV ¼ �VK.

Proof. Again, it is an easy application of Theorem 6 with g ¼ �ð1��;1Þ. &

We conclude our study of integral operators satisfying the equation KV ¼ �VK
with the following fact that may have some independent interest.

Proposition 3. Let � be a positive number and let K be the integral operator on
L2ð0; 1Þ with kernel Kðx; yÞ. If KV ¼ �VK then there exists a nondegenerate rectangle
R ¼ ½0; a� � ½b; 1� "- ½0; 1� � ½0; 1� such that Kðx; yÞ vanishes almost everywhere in R.

Proof. Let M be a nontrivial invariant subspace (n. i. s.) for V and let
N ¼ ðKMÞ

�, where � stands for the closure in the norm topology of L2ð0; 1Þ. It is
easy to see that, in this situation, N is also an invariant subspace for V. Recall that if
M is a n. i. s. for V then there is m 2 ð0; 1Þ such that every function in M vanishes
on ½0;m� a. e. See [9]. Similarly, since N is an invariant subspace (although it could
be the whole L2ð0; 1Þ) there is n 2 ½0; 1Þ such that every function in N vanishes on
½0; n� a. e.

Let f 2 M. Then

KfðxÞ ¼

Z1

0

Kðx; yÞ fðyÞ dy ¼

Z1

m

Kðx; yÞ fðyÞ dy ¼

Z1

0

Kðx; yÞ�½m;1�ðyÞ fðyÞ dy:

Since Kf 2 N it follows that the last integral vanishes for a. e. x 2 ½0; n� and every
f 2 L2ð0; 1Þ. Consequently, Kðx; yÞ�½m;1�ðyÞ ¼ 0 for a. e. x 2 ½0; n� and a. e. y 2 ½0; 1�.
Since Kðx; yÞ is m2-measurable, it follows that Kðx; yÞ ¼ 0 a. e. in ½0; n� � ½m; 1�.

It remains to consider the case in which n ¼ 0. SinceM is an arbitrary n. i. s. for
V we can assume that ðKMÞ

�
¼ L2ð0; 1Þ, for every such M. Let M1 "- M2 both be

n. i. s. for V and let f 2 M2 %M1. If g ¼ Kf, then there exists h 2 M1 such that
Kh ¼ g ¼ Kf. Obviously, h� f is a nonzero vector in KerK, the nullspace of K. In
view of VK ¼ �KV we see that KerK is a n. i. s. for V. Thus, there is n0 2 ð0; 1Þ such
that

KerK ¼ f f 2 L2 : f ¼ 0 on ½0; n0�g:

Let f 2 KerK. Then

0 ¼ KfðxÞ ¼

Z1

0

Kðx; yÞ fðyÞ dy ¼

Z1

n0

Kðx; yÞ fðyÞ dy:

Since f is an arbitrary function in KerK, the last equation shows, once again, that
Kðx; yÞ vanishes a. e. in ½0; 1� � ½n0; 1�. This completes the proof. &

Clearly, we have just started the spectral theory for �K
V and one should try to

address the following problems.
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Problem 2. Describe the spectrum of �K
V. Describe parts of the spectrum of �

K
V.

5. Composition operators. In this section we consider the class of composition
operators on L2ð0; 1Þ. Let ’ : ½0; 1� ! ½0; 1� be a measurable function. A composi-
tion operator C’ is defined as

ðC’ f ÞðxÞ ¼ ð f & ’ÞðxÞ:

We are interested in determining whether a composition operator can be an eigen-
vector of �V. First we notice that if the map ’ : ½0; 1� ! ½0; 1� is defined as
’ðxÞ ¼ �x, for some � 2 ½0; 1�, then the composition operator C’ satisfies the equa-
tion C’V ¼ �VC’. Indeed,

ðC’VfÞðxÞ ¼ ðVfÞð’ðxÞÞ ¼ ðVfÞð�xÞ ¼

Z�x

0

fðtÞ dt

while

ðVC’fÞðxÞ ¼

Zx

0

ðC’fÞðtÞ dt ¼

Zx

0

fð’ðtÞÞ dt ¼

Zx

0

fð�tÞ dt

and the substitution s ¼ �t yields the desired conclusion. This shows that C’ is an
eigenvector for �V corresponding to an eigenvalue � 2 ½0; 1�. It turns out that this
example describes the only situation in which a composition operator C’ can satisfy
C’V ¼ �VC’ or, equivalently, VC’ ¼ �C’V.

Theorem 7. Let C’ be a composition operator on L2ð0; 1Þ that satisfies
VC’ ¼ �C’V, for some � 2 ð0;1Þ. Then � � 1 and ’ðxÞ ¼ x=�.

Proof. Using Lemma 1 we see that VC’ ¼ �C’V if and only if StC’ ¼ C’St=� for
all t � 0. This means that, for any f 2 L2ð0; 1Þ,

�½t;1Þ\½0;1�ðxÞfð’ðx� tÞÞ ¼ �½t=�;1Þ\½0;1�ð’ðxÞÞfð’ðxÞ � t=�Þ: ð5:1Þ

In particular, taking f to be a constant nonzero function, we obtain

�½t;1Þ\½0;1�ðxÞ ¼ �½t=�;1Þ\½0;1�ð’ðxÞÞ; ð5:2Þ

which shows that x � t if and only if ’ðxÞ � t=�. From this we conclude that � � 1.
Indeed, if � < 1, then we could take x ¼ t ¼ ð�þ 1Þ=2 and obtain ’ðð�þ 1Þ=2Þ > 1,
which is a contradiction. Furthermore, it follows from (5.1) and (5.2) that, when
x � t, ’ðx� tÞ ¼ ’ðxÞ � t=�. In particular, taking x ¼ t, we get that
’ðxÞ ¼ ’ð0Þ þ x=�. However, for such a function ’,

C’VfðxÞ ¼

Z’ð0Þþx=�

0

fðtÞ dt
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while

VC’fðxÞ ¼

Zx

0

fð’ð0Þ þ t=�Þ dt:

Using the substitution s ¼ ’ð0Þ þ t=� the last integral becomes

�

Z’ð0Þþx=�

’ð0Þ

fðsÞ ds

and it is easy to see that ’ð0Þ ¼ 0. It follows that ’ðxÞ ¼ x=� and the theorem is
proved. &

Of course, there remains the more general question that concerns the restriction
�C
V of �V to the class of composition operators.

Problem 3. Describe the spectrum of �C
V. Describe parts of the spectrum of �

C
V.

6. Some open problems. In Section 4 we established that the Volterra operator
has a large supply of extended eigenvalues. However, this is not true for arbitrary
operators with dense range. Indeed, it was shown in [2] that there are such operators
for which the only extended eigenvalue is � ¼ 1. Thus, it is of interest to characterize
operators that have nontrivial (meaning different from 1) extended eigenvalues.The
following questions seem natural in this context.

Problem 4. Does every compact operator have a nontrivial extended eigenvalue?
Does every quasinilpotent operator have a nontrivial extended eigenvalue? What other
classes have such a property?

When an operator A has a nontrivial extended eigenvalue one may ask whether
the extended point spectrum has any algebraic or topological structure of interest.
Since in the case of the Volterra operator this set is the multiplicative group of
positive real numbers one may ask whether, for example, such a set is always a
semigroup. Clearly, �AðI Þ ¼ I, so that 1 is an extended eigenvalue for A. However,
when it comes to the semigroup property the situation is not clear. Indeed, let � and
� be two different extended eigenvalues of A. Then there exist nonzero operators X
and Y such that �AðXÞ ¼ �X and �AðYÞ ¼ �Y. Clearly, this implies that �AðXYÞ ¼
��XY. Unfortunately, this does not force �� to be an extended eigenvalue of A since
we could have that XY ¼ 0. We conclude this discussion with the following question.

Problem 5. For which operators A is the set of all extended eigenvalues of A a
unital semigroup?
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