
JFP 29, e5, 39 pages, 2019. c© Cambridge University Press 2019 1
doi:10.1017/S0956796819000029

A theory of RPC calculi for client–server model

K W A N G H O O N C H O I
Chonnam National University, Gwangju, Republic of Korea

(e-mail: kwanghoon.choi@jnu.ac.kr)

B Y E O N G - M O C H A N G
Sookmyung Women’s University, Seoul, Republic of Korea

(e-mail: chang@sookmyung.ac.kr)

Abstract

With multi-tier programming languages, programmers can specify the locations of code to run in
order to reduce development efforts for the web-based client–server model where programmers write
client and server programs separately and test the multiple programs together. The RPC calculus, one
of the foundations of those languages by Cooper and Wadler, has the feature of symmetric commu-
nication in programmer’s writing arbitrarily deep nested client–server interactions. The feature of
the calculus is fully implemented by asymmetric communication in trampolined style suitable for
the client–server model. However, the existing research only considers a stateless server strategy in
which all server states are encoded for transmission to the client so that server states do not need
to be stored in the server. It cannot always correctly handle all stateful operations involving disks
or databases. To resolve this problem, we first propose new stateful calculi that fully support both
symmetric communication from the programmer’s viewpoint and asymmetric communication in its
implementation using trampolined style. All the existing calculi either provide only the feature of
asymmetric communication or propose only symmetric implementation suitable for the peer-to-peer
model, rather than the client–server model. Second, the method used to design our stateful server
strategy is based on a new locative type system which paves the way for a theory of RPC calculi
for the client–server model. Besides proposing the new stateful calculi, this theory can improve
the existing stateless server strategy to construct new state-encoding calculi that eliminate runtime
checks on remote procedure calls present in the existing strategy, and it enables us to design a new
mixed strategy that combines the benefits of both kinds of strategies. As far as we know, there are
no typed multi-tier calculi that offer programmers the feature of symmetric communication with the
implementation of asymmetric communication under the three strategies together.

1 Introduction

Modern computing environments such as web systems involve programming not a single
machine but several distributed machines together. For example, a web system basically
consists of a web server that accesses databases and a web client that provides user inter-
faces, and they are connected by a network. Programmers have to develop two individual
programs separately for the two machines, which increases the programmer’s burden.
Further, they need to test the two programs together, which is more complex than they
do with one program on a single machine.

The programmer’s task can be alleviated by the use of multi-tier programming lan-
guages (Murphy VII et al., 2004; Neubauer & Thiemann, 2005; Balat, 2006; Serrano et al.,
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2006; Cooper et al., 2007; Murphy, 2008; Cooper & Wadler, 2009; Rastogi et al., 2014;
Chlipala, 2015; Serrano & Prunet, 2016). Such languages are equipped with the locations
feature, which enables description of the location to describe where a specified part of the
code should execute. Using this feature, programmers develop a single program that can
be used freely in different locations such as the server and the client in one programming
language. Then compilers will automatically generate separate programs for each location,
guaranteeing communication integrity among the differently located programs.

Notably, Remote Procedure Call (RPC) calculus (Cooper & Wadler, 2009) offers the
feature of symmetric communication between client and server. After adding to each func-
tion location annotations specifying where it must run, programmers can write arbitrarily
deep nested client–server interactions by applying only the standard functions. Their com-
pilation method will automatically map the deep interactions onto flat request–response
interactions on the web system. The RPC calculus is the foundation of a practical multi-tier
web programming language called Links (Cooper et al., 2007).

The existing target language of the RPC calculus, called the Client-Server (CS) calculus,
where a client and a server run separate programs, was designed for the server to maintain
no session with individual clients. All server states during client–server interactions are
appropriately encoded in the server for transmission to the client so that server states do
not need to be stored in the server. The CS calculus uses asymmetric communication,
which is almost free in the client–server model, and supports symmetric communication
from the programmer’s viewpoint using trampolined style (Ganz et al., 1999). Thus, the
implementation of the RPC calculus was aligned with the well-known RESTful architecture
of web systems, where web services consist of stateless operations.

However, the existing RPC and CS calculi cannot always correctly handle all state-
ful operations involving disks or databases. Some server states with disks or databases
are not easily serialised, and therefore, when the server calls a client function, for exam-
ple, between two subsequent database operations, it is not easy to encode all server states
left after the client function call. Even when server states are serialisable, passing seri-
alised server states between client and server repeatedly would increase communication
overheads, giving rise to efficiency concerns. To address this problem, a stateful server
strategy for the RPC calculus is necessary. This looks natural because supporting stateful
interactions is common in web systems. For example, Java HttpSession provides a way
to identify a user across more than one page request or visit to a web site and to store
information about that user.

First, we propose new calculi, λstate
rpc and λstate

cs as shown in Figure 1, based on a stateful
server strategy to resolve the problems of the existing calculi. The new calculi explic-
itly represent server states using the runtime stack, as in the conventional programming
languages. Most importantly, the new calculi fully support the feature of symmetric com-
munication in the RPC calculus by using trampolined style that is easy to implement in
the client–server model. There have been several multi-tier web programming languages
adopting stateful strategies, but none of them support both symmetric communication
from the programmer’s viewpoint and asymmetric communication from the implemen-
tor’s viewpoint. Hop (Serrano et al., 2006; Serrano & Prunet, 2016), Ur/Web (Chlipala,
2015) and Eliom (Balat, 2006; Radanne, 2017) only provide programmers asymmetric
communication where only the client invokes server functions freely but, for the other
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Fig. 1. Overview of a theory of RPC calculi.

way around, they must use a special network library, rather than a language construct. For
example, Hop offers a web reactive programming library for server-to-client communica-
tion. The stateful strategies employed by the three works are different from our strategy
fully supporting symmetric communication. Lambda5 (Murphy VII et al., 2004; Murphy,
2008) does provide programmers symmetric communication but with distinct syntactic
constructs for local and remote functions. The idea of its implementation is similar in that
continuations span multiple worlds such as client and server, but it is based on stateful
peer strategies. The semantic rules for all machines in a distributed system are the same,
and so there is a gap between the semantic description for the peer-to-peer model and its
implementation for the client–server model; to make it fit for the client–server model, they
must employ some ad hoc method. Also note that to make it adopt a stateless server strat-
egy, the semantic rules for server must be made different from those for client. A multi-tier
calculus (Neubauer & Thiemann, 2005) is also for concurrently running processes, and so
it suffers from the same limitation that Lambda5 has.

Second, the method used to design our stateful server strategy is based on a new locative
type system, and it paves the way for a theory of RPC calculi for the client–server model.
Under this theory, besides proposing the new stateful calculi, the theory can improve the
existing stateless server strategy to construct new state-encoding calculi, λenc

rpc and λenc
cs as

shown in Figure 1, that eliminate runtime checks on remote procedure calls in the existing
strategy. The theory also enables us to design a new mixed strategy that combines the
benefits of the state-encoding and stateful server strategy. We will elaborate more about
our theory as follows.

A new RPC calculus λrpc in the theory is a typed version of the original RPC calculus

with locative function types τ
a−→ τ ′ of functions that should run at location a. Typing with

locative types can distinguish remote function applications from local ones at the type
level, rather than at the term level by distinct constructs as in all the existing calculi except
the RPC calculus. Using this type information, we are able to design a new type-directed
compilation method. The new method is simpler than the existing untyped method because
it has two kinds of compilation rules, one for client and the other for server, rather than
eight kinds of rules, three for client and five for server, in the existing method. Also, the use
of type information eliminates runtime checks on locations, which is present in the existing
untyped compilation method. For example, due to the absence of location information in
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function application terms, both a local function and a remote one can be invoked through
the same function application term, e.g. f M . So, f is needed to check in runtime if it is
a remote function because an invocation of remote functions is implemented differently
from an invocation of local functions. With the locative types, either f is always a local
function or it is always a remote function.

Our theory not only allows us to enjoy the benefits of the simple type-directed compi-
lation method and the elimination of the runtime checks on locations, but also provides a
framework to compare and to combine the two kinds of strategies. Under the same theory,
it is easy to compare the two server strategies in terms of session management. In the state-
encoding server strategy, one session corresponds to a single request–response interaction,
whereas one session in the stateful server strategy can span multiple request–response
interactions. A formal description of the comparison will be presented. Because our theory
employs a typed approach, it is also possible to design a mixed strategy where the state-
encoding server strategy is basically used to reduce the server resource consumption, but
we switch to the stateful server strategy when necessary. This idea of a mixed strategy can
be realised by adopting the monadic encapsulation of state (Launchbury & Peyton Jones,
1994; Timany et al., 2017). Using the notion, stateful computations are encapsulated using
monads, and they can be separated from the purity of functional language. In the design, we
use the stateful calculi for the phase that uses stateful operations separated by the monadic
type system, and we use the state-encoding calculi for the other phase that uses purely
functional operations.

For the evaluation, we have implemented a prototype compiler of λrpc into two kinds
of calculi with a locative type inference algorithm, and have implemented two evaluators
running a client and a server communicating with the HTTP protocol.1

Figure 1 shows an overview of our theory. As far as we know, there are no typed locative
calculi with the feature of symmetric communication that are implemented with asymmet-
ric communication using a stateless server strategy, a stateful server strategy and a mixed
strategy together.

The contributions of this paper are as follows:

• We present a locative type system for the RPC calculus λrpc and prove its
type soundness, guaranteeing that the locative information is preserved under the
evaluation.

• We design the two RPC calculi λenc
rpc and λstate

rpc with two semantically correct
compilation methods of λrpc into λenc

rpc and λstate
rpc , respectively.

• We also design two CS calculi λenc
cs and λstate

cs with two semantically correct
compilation methods of λenc

rpc into λenc
cs and of λstate

rpc and λstate
cs .

• We implement our stateless and stateful calculi to show their effectiveness by a
location-type inference algorithm, two compilers and two HTTP-based evaluators.

• We formally compare the characteristics of session management of λenc
cs with those

of λstate
cs by extending the semantic rules with session annotations.

• We propose a method to design a mixed strategy of the two strategies by extending
the RPC calculus with monadic encapsulation of state.

1 https://github.com/kwanghoon/rpccalculi.
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Fig. 2. The RPC calculus λrpc.

Section 2 introduces the RPC calculus λrpc with a locative type system and proves the
type soundness of the calculus. Section 3 proposes two calculi λenc

rpc and λenc
cs as a new for-

mulation of the server state-encoding strategy to implement the λrpc calculus. Section 4
extends the new formulation to two stateful calculi λstate

rpc and λstate
cs to implement the λrpc

calculus with the stateful server strategy. Section 5 discusses related work. Section 6 con-
cludes the paper. In the appendix, all proofs of theorems introduced in the sections are
available.

2 The RPC calculus and its locative type system

Let us review the RPC calculus λrpc, proposed in Cooper & Wadler (2009). This is an
ordinary call-by-value λ-calculus with location annotations on λ-abstractions. The annota-
tions tell the locations where the λ-abstractions execute. This calculus was designed as the
foundation of a practical multi-tier web programming language. The client–server model
is assumed in the calculus, and so the location annotations are either c denoting client or s
denoting server. The syntax of λrpc is thus defined as in Figure 2.

In Figure 2, λrpc has a big-step operational semantics with evaluation judgements,

M ⇓a V

denoting the evaluation of a term M in the location a resulting in the value V . In the seman-
tics, β-reduction is performed in the location annotated on the λ-abstraction. N{W/x} is an
ordinary substitution of W for x in N .

In λrpc, the evaluation of a term starts from the client. An example is:
(
λsf · (λsx · x) ( f c)

) (
λcy · (λsz · z) y

)

Figure 3 depicts the flow between the client and server for the example. The client first
requests the server to invoke a function (λsf · · · · ) at the application in a box named S1.
During the evaluation of the body of the server function, the server calls a client function f
in C1, which is (λcy · · · · ), with some constant c as an argument. This client function again
requests the server to invoke an identity function (λsz · z) in S2. Finally, a server function
(λsx · x) in S3 is locally applied to the result of ( f c).

2.1 A locative type system for λrpc

We propose a new type system for the untyped RPC calculus λrpc where function types

τ
a−→ τ ′
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Fig. 3. Evaluation flow in λrpc starting from the client. (Labels C1, S1, S2 and S3 indicate the
locations of the applications in the labelled boxes.)

Fig. 4. A locative type system for λrpc.

carry location annotations such that λ-abstractions of the function type run in the location
a specified in the type annotation. We advocate the use of types because a typed RPC
calculus is useful for compilation, which will be shown later. Figure 4 shows type terms
and typing rules. Here, base denotes fundamental types such as int.

This type system uses typing judgements of the form � �a M : τ , which denotes that
a term M has type τ under a type environment � at location a. By (T-Lam), a loca-
tion specified in the λ-abstraction is defined to be carried by the function type, e.g. as
� �c λsz · z : τ

s−→ τ with location s. (T-Var) is defined as usual. There are three typing rules
for applications classified by where the applications execute and where the functions of the
applications execute. (T-App) pertains to local applications. The location where the func-
tions of the application execute is the same as the location where the application executes.
(T-Req) and (T-Call) are about remote applications. (T-Req) is a typing for applications of
a server function requested by the client, whereas (T-Call) is a typing for applications of a
client function called by server. Here is a typing derivation example:
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The example λrpc term in Figure 3 can be typed under our type system using (T-Req) for
the two function applications in the boxes S1 and S2, respectively, (T-App) for the function
application in S3 and (T-Call) for the function application in C1.

For convenience, the typing derivation can be represented in an extended syntax as
(
λsf · (λsx · x) s( f cc)

)
s
(
λcy · (λsz · z) sy

)

where f has type base
c−→ base and all of x, y, z and c have type base. In the extended

syntax, each application term gets a location annotation. L aM at location a is for (T-App),
L sM in the client is for (T-Req) and L cM in the server is for (T-Call). Then the extended
syntax of the λrpc terms will uniquely determine typing derivations under location contexts.
This representation will be used in our compilation later.

The proposed locative type system has type soundness in that location information is
preserved under the evaluation in λrpc, as is proved by the following theorem.

Theorem 2.1 (Type Soundness for λrpc). If � �a M : τ and M ⇓a V , then � �a V : τ .

Note that the typed RPC calculus is a strict subset of the untyped calculus. There are two
kinds of untypeable terms. One kind is due to simple type incompatibility in which the base
type is not compatible with any function types, which does not interest us much. We could
filter out such incompatible terms with the simply typed system. The other kind of untyped
terms is due to location incompatibility. Because we refine function types with location
information, two lambda terms that would have the same function type under the simply
typed system can now have different types. Consider an application term (λaf · · · · ) M
where f has type base

c−→ base and M has type base
s−→ base. Obviously, this term cannot

be typed under the type system for λrpc. However, it is not difficult to make it typed without
changing the computation by a transformation of M into λcx · M x, which now has the same
type as f and the same computation.2 This idea can be generalised as a transformation
[[M]]τ�τ ′

where a term M of type τ is transformed into τ ′, and τ becomes identical to τ ′

on the removal of all location annotations in the types.

[[M]]τ�τ = M

[[M]]τ1
a−→τ2 � τ3

b−→τ4 = λbx · [[M [[x]]τ3�τ1 ]]τ2�τ4

The above analysis establishes that every typed term in the simply typed system with
arbitrary location annotations can be made typed under our locative type system for
λrpc immediately or by the computation-preserving transformation. Our location-typed
approach can thus deal with all terms in the existing location-untyped approach.

We have implemented a unification-based type inference algorithm for our locative type
system. Although polymorphic types are beyond the scope of this research, we believe that
it is possible to extend our type system with them.

2 In a calculus with effects, the transformation may delay or eliminate effects because it transforms expressions
with effects into values without them. In this situation, the transformation must involve more, for example,
let y = M in λcx · y x to have the same effects.
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Fig. 5. Mapping of arbitrarily deep client–server interactions in λrpc onto flat request–responses
interactions in λenc

rpc .

3 Locative calculi encoding server states

We present state-encoding calculi for the client–server model, following the stateless
server strategy in Cooper & Wadler (2009). Under this strategy, when the server trans-
fers control to the client, all the server states are encoded into a term so that the client can
get the server to begin evaluating the term later. Unlike the original formulation, our cal-
culi are new in that they are based on location information at the type level . This feature
improves the original calculus, as we will see.

Figure 5 depicts the basic idea of the stateless server strategy on how to map every deep
nesting of client–server interactions (on the left) into a series of request–response inter-
actions between the client and the server (on the right). Each solid line indicates an active
thread of control, and each dashed line indicates a stack frame which is waiting for a func-
tion to return. To support this mapping on the stateless server, we introduce the notion of
continuation (Flanagan et al., 1993) to encode the server control to continue. For example,
on invoking the client function in (C1), a continuation for (S3) is encoded into a term, and
the encoded term is sent to the client. After the evaluation of (C1), the client requests the
server to evaluate with the term to continue. Accordingly, there are two kinds of responses,
as shown in Figure 5: one kind of response marked by (Call) involves the return of some
encoded continuation, and the other kind marked by (Reply) simply returns values.

Under the stateless server strategy, it is assumed that every continuation carried by
(Call)-type responses can be serialised so as to return to the client through the network.
When this assumption does not hold, the continuation-based translation will not work. This
observation leads to an alternative stateful server strategy in Section 4, which requires
no such assumption. In this section, we develop our theory under the assumption of a
serialisable continuation.

Now we introduce a new (state-encoding) RPC calculus λenc
rpc where local function appli-

cations are distinguished from remote function applications explicitly by the new term
constructs req and call.
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3.1 A state-encoding RPC calculus λenc
rpc

We first explore the state-encoding RPC calculus informally with an example, and then
we will present its formal semantics in the next section. In λenc

rpc , there are three kinds of
function applications: a local one Vf (W ) and two remote ones, req(Vf , W ) and call(Vf , W ).
In the local function application, Vf is a local function. W denotes a sequence of values
that are its arguments. The terms req(Vf , W ) are used only in the client to transfer control
to the server and then to invoke a server function Vf . The terms call(Vf , W ) are used only
in the server to do the converse with a client function Vf .

Consider again the λrpc example term:
(
λsf · (λsx · x) ( f c)

) (
λcy · (λsz · z) y

)

whose evaluation begins in the client. This λrpc term can be implemented under the
stateless server strategy by a λenc

rpc term as

let r = req(M1, (M2, ID)) in r

where M1 and M2 implement the outermost function (λsf · (λsx · x) ( f c)) and its argument
(λcy · (λsz · z) y), respectively. We used req to invoke the server function in the client. As
previously explained, the notion of continuation was used to encode server states. In the
stateless server strategy, server functions are implemented in continuation-passing style
(CPS), whereas client functions are implemented in direct style (Flanagan et al., 1993).
M1 is a CPS function converted from the server function. M2 as a normal argument is con-
verted from the original argument, and ID as a continuation argument denotes the identity
continuation λsw · w.

Now let us examine M1:

M1 � λs( f , k) · call(λcx · let y = f (x) in req(cont, y), [[c]]
)

where cont is λsw · [[λsx · x]](w, k), and [[M]] represents an implementation of the λrpc term
M for the server. Here, f is the client function to be invoked, and k is a continuation,
which is ID in the example. The body of M1 is in the context of the server. We use call
to invoke the client function ‘λcx · · · · ’ in M1: it transfers control to the client to evaluate
f [[c]] by ‘let y = f (x) in · · · ’ above, and then it returns control to the server by req with
the continuation cont representing (λsx · x) [−] by ‘· · · in req(cont, y)’ above. The client
function in call thus supports the behaviour of commuting from the server to the client,
where cont is regarded as an encoding of the server state. We call such a client function a
commuting function, and our compiler will thus compose commuting functions.

M2 has the following simple structure:

M2 � λcy · let d = λs(z, k) · k(z) in
let r = req(d, (y, ID)) in r

where d is a CPS function converted from λsz · z, and the client invokes this (server)
function with its arguments y and ID.

3.2 The formal semantics of λenc
rpc

This section first introduces the syntax and semantics for the state-encoding RPC
calculus, as shown in Figure 6. The syntax of M terms resembles A-normal form
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Fig. 6. A state-encoding client–server calculus λenc
rpc .

(Flanagan et al., 1993). Values are a variable or a location-annotated function and are
denoted by V or W . Note that x̄ denotes a sequence of variables, and V denotes a sequence
of values. There are two kinds of remote function calls: call(Vf , W ) for invocation of
a client function Vf in the server with arguments W , and req(Vf , W ) for invocation
of a server function in the client. The let constructs let x = M1 in M2 bind x to some
intermediate value from the evaluation of M1 and continue to evaluate M2.

The client context �, which is ctx x M , waits for a value to bind for x and to evaluate
M . The server context � for the state-encoding RPC calculus is always empty.

In the semantics, client | server is the notation for snapshots in a client–server-based
distributed system. We call such a snapshot a configuration. There are two kinds of
configurations in this calculus:

• M | ε for the client to evaluate a term M with the empty server context (ε)
• � | M for the server to evaluate a term M with a pending client context �

The semantics is described as a relation on configurations as

Conf ⇒enc Conf ′

Local evaluation is in the form of M |ε ⇒enc M ′|ε for the client and �|M ⇒enc �|M ′ for
the server. When control moves from the client to the server, the relevant semantic rule
will have the form M |ε ⇒enc �|M ′. For the opposite direction, it is �|M ⇒enc M ′|ε. The
notations R+ and R∗ for a relation R are defined as usual.

In the semantics, the evaluation of a term M begins in the client with the empty server
state and normally finishes when it reaches the value V , as M |ε ⇒enc∗ V |ε, meaning that
M evaluates to V .

For evaluation in the client, (AppC) performs a client function application. M{W/x̄}
denotes an ordinary parallel substitution of W for x̄ in M . (ValC) binds an intermediate
value with a let-variable and continues to evaluate a term in the let body. (LetC) takes
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a nested let binding out for evaluation. With (Req), the client can request the server to
execute a server function application, leaving the client context.

The server-side evaluation, which is initiated by (Req) in the client, continues with
(AppS). It is reminiscent of (AppC) for the client. The evaluation in the server will reach
either a value V or a call call( f ′, W ′). For the case of a value, (Reply) returns the value
to the client context ctx x M as let x = V in M . For the case of a call, (Call) moves the
client function call into the client context as let x = f ′(W ′) in M . In any case, the server
state will be empty. This is the stateless server strategy. The typical steps in the server are
as follows:

[Client] [Server]
Initiation let x = req( f , W ) in M | ε by (Req)

⇒enc ctx x M | f (W )

either ⇒enc + ctx x M | V by (Reply)
⇒enc let x = V in M | ε

or ⇒enc + ctx x M | call( f ′, W ′) by (Call)
⇒enc let x = f ′(W ′) in M | ε

The proposed semantic rules are defined in a minimal way enough for λenc
rpc to be an inter-

mediate calculus for compilation of λrpc, as will be seen. The semantic rules could be easily
extended to cover all syntactic terms including, for example, local applications without let
in (AppC) or remote applications without let in (Req), but this extension is not essential
for our purpose. In the server side, the intermediate calculus for CPS conversion has only
to support local applications, call, and values, all without let.

Note that the evaluation of call in the semantics is allowed only in tail positions because
the server state right after the call must be empty. To map λrpc terms without such a
restriction into λenc

rpc terms with it, compiler support is required as will be explained soon.

3.3 A typed compilation of λrpc into λenc
rpc

Now we are ready to present a typed compilation of the RPC calculus into the state-
encoding RPC calculus. Figure 7 shows our compilation rules.

The compilation rules for client terms are described as C[[Mrpc]] = Menc
rpc . Here, Mrpc

actually denotes a typing derivation for a source term in the RPC calculus, rather than
the source term itself. Such a typing derivation provides each application subterm loca-
tion information where the subterm should be evaluated, as explained in Section 2. Menc

rpc

denotes a compiled target term.
(VarC) compiles a variable term simply into a variable. (LamCC) compiles each client

function using direct style. (LamCS) compiles each server function using CPS conversion.
The reason for using the conversion will be explained later. (AppCC) is a compilation
rule for a local client function application typed under the typing rule (T-App), denoted
by L cM . It is a conventional compilation rule that compiles L into a term generating
a client function, compiles M into another term generating an argument and ends with
a local application term. (AppCS) compiles a remote server function application typed
under the typing rule (T-Req), denoted by L sM . It is almost the same as (AppCC). The
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Fig. 7. A typed compilation for λenc
rpc .

only difference is the replacement of a local application term ( f x) with a remote appli-
cation term req( f , (x, λsy · y)). Our compilation rules ensure that f is a CPS-converted
function. Therefore, it will take not only a function argument x but also a continuation.
The identity continuation (λsx · x) is given to the remote application term because it begins
the evaluation of a CPS term.

(AppCC) and (AppCS) introduce the extra layer of ‘let r = · · · in r’ surrounding local
and remote applications to adapt our compilation to the minimal semantic rules (AppC)
and (Req), respectively.

The basic idea of compilation for the server is CPS conversion. The compilation rules for
server terms are described as S[[Mrpc]] K = Menc

rpc , where K is (a value for) a continuation.
In the compiled term, we first evaluate Mrpc and then continue with K and the evaluation
result.

(VarS) compiles a variable into a term applying a continuation K to a value bound to the
variable. (LamSC) and (LamSS) have a similar structure as (VarS). They only replace the
compiled variable x in (VarS) with C[[λax · M]]. (AppSS) compiles a local server function
application typed under (T-App), and it is the same as the CPS conversion of an applica-
tion. (AppSC) is the most important compilation rule. A typing derivation denoted by L cM
typed under (T-Call) is compiled as this. Both L and M are first compiled into terms whose
evaluation will be bound to a function f and an argument x in the same way as in (AppSS).
Then the compilation rule generates call(λcx · let y = f (x) in req(K, y), x). By this remote
client function application, control is first transferred to the client to evaluate f (x). Control
is then returned to the server by req(K, y) to continue K in the server with the application
result y. Our compiler thus supports the behaviour of commuting from the server to the
client by composing this client function, which we call a commute function.

In regard to a client function call from the server, the RPC calculus can allow it in
non-tail positions but the state-encoding RPC calculus allows it only in the tail position.
This mismatch is resolved as follows. The commute function above is composed to have
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a request with a continuation after the client function call. The continuation will hold the
context of the client function call in a non-tail position. In this way, (AppSC) ensures that
call(−, −) can be always in a tail position in the state-encoding RPC calculus no matter
where client function calls from the server appear in the RPC calculus.

Now, we prove the correctness of our compilation for λenc
rpc as follows:

Theorem 3.1 (Correctness of Compilation for λenc
rpc). Assume a well-typed λrpc term M

under the locative type system:

• If M ⇓ Vc, then C[[M]] | ε ⇒enc∗ C[[V ]] | ε.
• If M ⇓ Vs, then � | S[[M]] K ⇒enc∗ � | S[[V ]] K for all � and K.

The basic idea of our proof is this. A sequence of evaluation steps is built in λenc
rpc matched

to each subtree of evaluation in λrpc by induction on the height of the evaluation trees, and
then the sequences are put together to build what is matched to the whole evaluation tree in
the conditions. As a natural consequence, the proof also guarantees that client–server com-
munication in λrpc is preserved in λenc

rpc , though the theorem itself does not state this explic-
itly. Figure 5 shows an example of the correspondence of client–server communication
between λrpc and λenc

rpc with identical box names S1, C1 and S2 labelled on the related flows.

3.4 Separating client and server terms in λenc
cs

Although the state-encoding RPC calculus has the potential to make the λrpc terms run on
the client and the server separately, in the λenc

rpc terms, the client part and the server part are
still together. In this section, we propose a state-encoding CS calculus λenc

cs where the two
parts are clearly separated, and names are used in one part to refer to functions in the other
part.

Figure 8 shows the syntax and semantics of the state-encoding CS calculus. Terms in
the calculus are now denoted by m, and values are variables or closures clo(F, v̄) denoted
by v or w. F is a name for a closed function. A closed function, z̄λax̄ · m, is a function with
a list of free variables z̄. In a closure, v̄ consists of values to substitute for the free variables
z̄ in the closed function. A substitution of v̄ for x̄ in m is written as m{v̄/x̄}. The function
store φa is a mapping of names into closed functions for each location a. π and δ are client
and server contexts, respectively.

Configurations in the semantics of the state-encoding CS calculus are as follows:

• m | ε for the client to evaluate a term m with the empty server context ε

• π | m for the server to evaluate a term m with a pending client context π

The semantic rules for the state-encoding CS calculus are isomorphic to those for the state-
encoding RPC calculus under the aforementioned changes.

Figure 8 also shows the compilation rules of the state-encoding RPC calculus into the
state-encoding CS calculus. The compilation rules are actually closure conversion gather-
ing closed functions for each location. For a given λenc

rpc term M , the following compilation
generates a λenc

cs term m:

CC[[M]] = m
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Fig. 8. Syntax and semantics of λenc
cs with a compilation of λenc

rpc .

The compilation rules traverse a source term. Whenever a location-annotated function is
encountered, a fresh name F is created, a list of free variables z̄ is collected over the
function, and a mapping of this name into a constructed closed function is added to the
function store at the location. f v is the standard function for free variable collection triv-
ially extended with the located lambda calculus. Note that the compilation rules utilise
implicit global function stores, with which the mapping of names and closed functions
encountered during the compilation is checked. Actually, rather than checking the pres-
ence of closed functions in the function stores, we intend to collect the closed functions to
construct the function stores.

Our main compilation method using CC[[−]] compiles a closed state-encoding RPC term
into a closed state-encoding CS term. As a side effect, it generates a function store φc

for the client and a function store φs for the server. Now we can prove that a combined
compilation of C[[−]] with CC[[−]] of RPC terms will generate state-encoding CS terms
that correctly implement the RPC terms as follows.

Theorem 3.2 (Correctness of Compilation for λenc
cs ). Assume a well-typed term M under

the locative type system. Given φc and φs:

• If M ⇓c V, then CC[[C[[M]]]] | ε ⇒enc∗ CC[[C[[V ]]]] | ε.

By this compilation correctness theorem, it is demonstrated that the feature of the RPC
calculus allowing arbitrarily deep nesting of control contexts between the client and the
server can be correctly implemented by a series of flat request–responses under the stateless
server strategy.
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Fig. 9. Compilation of the RPC term in Figure 3.

We have implemented a parser of λrpc, a location-type inference procedure for our type
system, a compiler and an evaluator of λenc

rpc and λenc
cs on HTTP between the client and

the server. Figure 9 shows a compilation of the RPC term in Figure 3, generated by the
compiler. The evaluator starts with main in the client. For readability, each list of free
variables is enclosed by { }, and so is each list of values for such free variables in closures.

Our state-encoding calculi are higher-order, whereas the original CS calculus remains
first-order. This is because the original CS calculus employed an implementation method
called defunctionalisation (Reynolds, 1972), which converts higher-order functions into
first-order ones. However, the state-encoding calculi offer more freedom in the implemen-
tation of higher-order functions. They do not actually depend on any specific implemen-
tation methods such as closure conversion; they could even utilise defunctionalisation as
well.

3.5 Discussion

3.5.1 Trampolined style

Our state-encoding calculi use a new trampolined style embedded in the semantics. This
contrasts with the original CS calculus (Cooper & Wadler, 2009), which has the tram-
polined style (Ganz et al., 1999) formulated using terms that introduces a special loop
function called trampoline in the client as follows:

Line 1: trampoline(x) = case x of
Line 2: | Call( f , x, k) → trampoline(req(k, f (x)))
Line 3: | Return(x) → x
Line 4: trampoline(req(g, v))

In Line 4, an invocation of a server function g from the client is surrounded by the tram-
poline function. It is like the semantic behaviour defined by (Req) in the state-encoding
calculi. On receiving a datum like Call( f , x, k) from the server in Line 2, the client applies
f to x, and then invokes a continuation k with the application result. This is surrounded by
the trampoline function again for repetition as many times as is necessary. For commuting
between the server and the client like this, our compilation method composes commute
functions, as explained in Section 3.3:

commute � λc( f , x, k) · let y = f (x) in req(k, y)
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so that Call( f , x, k) can be regarded as commute( f , x, k). In the trampoline function, two
branches in Lines 2 and 3, one for Call and the other for Return, correspond to what are
supported by (Call) and (Reply), respectively.

3.5.2 A location-typed approach

A difference between our state-encoding calculi and the original calculi (Cooper & Wadler,
2009) is the use of locative type information for compiling function applications. In
the original location-untyped approach, location information is not available for function
applications, whereas functions have location annotations. Both the client function and the
server function can therefore be invoked in the same function application. For example, in
the λrpc term:

let g = λaf · f M in · · · g (λcx · x) · · · g (λsy · y) · · ·
both (λcx · x) and (λsy · y) are invoked in the same application term f M . As a result,
every function application must check at runtime the location of the function to decide
whether to use the trampoline function in case of the server function. In our location-typed
approach, local function applications are clearly separated from remote function applica-
tions, and so no such dynamic check at runtime is required. We also showed that all terms
in the location-untyped approach can be supported in the location-typed approach by the
transformation explained in Section 2.

In addition to the absence of runtime checks on location, our location-typed approach
results in a simple form of compilation where there are only two kinds of compilation
rules, one for the client and the other for the server. The original compilation method in
the location-untyped approach consists of eight kinds of compilation rules: three for the
client and five for the server. The simple form helps explain the essential structure of our
compilation rules: the compilation of λrpc into λenc

rpc is a combination of direct-style compi-
lation for the client and CPS-style compilation for the server, and the compilation of λenc

rpc

into λenc
cs is a variant of closure conversion classifying closed functions on locations. The

simple compilation rules using locative types facilitate the development of new stateful
calculi in the next section, which was not achieved by the previous work.

4 Locative calculi with explicit server states

The stateless server strategy in the state-encoding calculi is not always satisfactory. When
the server states involve disks or databases that do not permit serialisation, it is difficult to
encode them. Let us see an example:

λsquery · let cursor = executeOnDatabase(query) in
let name = getNameFromRecord(cursor) in
let r = fclient(name) in
let cursor = nextRecord(cursor) in · · ·

This is a server function that has a query as an argument. It is assumed to invoke a
client function repeatedly for each of a list of records obtained from a database query.
A remote client function invocation fclient(name) resides between two subsequent database
operations. We should serialise a list of records referenced by the database cursor before
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the invocation. However, in general, it is difficult to pack the records into a continua-
tion leaving nothing in the server. Even when it is possible to serialise such server states,
moving the serialised records between the client and the server repeatedly will increase
communication overheads. This will cause some efficiency concerns. This observation
motivates us to design new stateful calculi that eliminate the need to encode server states.

In this section, we develop new calculi that save and restore server states using the
stack in the underlying semantics, and therefore there is no need to encode them as in
the state-encoding calculi. In fact, using the runtime stack is similar to how conventional
programming languages have approached the problem of saving and restoring control
contexts.

We first introduce the syntax and semantics for a stateful RPC calculus λstate
rpc using

stack-based control states in the server. Then we propose a typed compilation method
of compiling λrpc terms into λstate

rpc terms and subsequently another compilation method for
separating client and server terms in λstate

cs .

4.1 A stateful RPC calculus λstate
rpc

Let us explore the features of a stateful RPC calculus λstate
rpc before we explain the details of

its syntax and semantics. An important feature is a stack � in the server:

� ::= ε | ctx x M · �
where the empty stack is denoted by ε, and any non-empty stack consists of contexts
concatenated with the dot operator. A context ctx x M can be viewed as a let term with a
hole such as let x = [−] in M denoting a control state.

We illustrate two new constructs call and ret in the stateful RPC calculus with the
following steps under the evaluation relation ⇒state:

[Client] [Server]
ctx z Mz | �; let x = call( fclient, Varg) in M (1)

⇒state let z = fclient(Varg) in Mz | ctx x M · � (2)
⇒state + let z = ret(W ) in Mz | ctx x M · � (3)
⇒state ctx z Mz | �; let x = W in M (4)

In Configuration (1), a server is about to switch to a client in order to invoke a client
function. The new call construct does this after pushing the server context (ctx x M) onto
a stack �. In Configuration (2), the waiting client context (ctx z Mz) is open to become the
let with a hole filled with the client function application fclient(Varg), and the server context
stack grows from � to ctx x M · �. This application is assumed to evaluate eventually to
ret(W ) using the other new construct. In Configuration (3), the new ret construct is about
to switch to the server to return the value W after popping the top server context from
the server stack and restoring the server context saved by call previously. In addition, the
ret construct leaves the client context surrounding itself in the client. This will lead to
Configuration (4).

Note that call( f , W ) in λstate
rpc is different from call( f , W ) in λenc

rpc in regard to whether
or not the server stack is involved. Accordingly, the organisation of client functions for
calling by the constructs is different, as we will see soon.

https://doi.org/10.1017/S0956796819000029 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000029


18 K. Choi and B.-M. Chang

The configuration ‘let x = ret(V ) in M | �’ in the stateful RPC calculus is reminiscent
of the configuration ‘let x = req(K, V ) in M | ε’ in the state-encoding RPC calculus. The
server stack � in the former can be regarded as the continuation K encoded for a server
control state in the latter. As we apply K to V in the server and bind the application result
to x in the latter, we return V to the server with � and bind the evaluation result to x in the
former.

Consider again the λrpc example term:
(
λsf · (λsx · x) ( f c)

) (
λcy · (λsz · z) y

)

For comparison with the state-encoding RPC calculus, this term can be implemented in the
stateful RPC calculus as

let r = req(M1, M2) in r

where M1 and M2 are supposed to implement the outermost function (λs f · (λsx · x) ( f c))
and its argument (λcy · (λsz · z) y), respectively. The use of req is the same as for λenc

rpc . The
notable difference is that it does not require any continuation argument. In λstate

rpc , it is not
necessary to use CPS conversion for server functions, because the underlying semantics of
the stateful calculus explicitly manages a server stack that continuations would substitute
for in the state-encoding calculus.

Now let us examine M1:

M1 � λsf · let w = call( λcx · let y = f (x) in ret(y) , [[c]]) in
let r = [[λsx · x]](w) in r

where [[M]] represents an implementation of a λrpc term M for the server. Given f as
a client function, call switches to the client to invoke a commute function (λcx · let y =
f (x) in ret(y)), pushing a server context (ctx w (let r = [[λsx · x]](w) in r)) on a server stack.
The commute function applies f to x (i.e. [[c]]) in the client. It then returns the result value
y to the server by ret(y), popping the server context. We continue to evaluate the term from
the restored context with the result value bound to w in the server.

One implementation of M2 is as follows:

M2 � λcy · let r = req([[λsz·z]], y) in r

When compared with the implementation for λenc
rpc , this is a simple structure with no

continuation argument in the use of req to invoke a server function.

4.2 The formal semantics of λstate
rpc

Figure 10 shows the syntax and semantics of the stateful RPC calculus λstate
rpc in the

same style of the state-encoding RPC calculus. Basically, the syntax of the calculus has
A-normal form with three constructs: req, call and ret. We intend this new construct ret(V )
to return a value to the server from the client, and a symmetric construct of call( f , W )
invokes a client function from the server.

Values are either a variable or a locative function. Client contexts � are the same for
λenc

rpc . Server contexts now have the form of a stack denoted by �.
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Fig. 10. A stateful client–server calculus λstate
rpc .

There are two kinds of configurations in the stateful RPC calculus:

• M | � for the client to evaluate a term M with a stack � in the server separated by |
• � | �; M for the server to evaluate a term M on a stack � with a pending client

context � in the client separated by |
The semantics of the calculus is described by the evaluation relation ⇒state on the con-
figurations. The semantic rules are defined in a minimal way for λstate

rpc enough to be
an intermediate calculus for compilation of λrpc as those for λenc

rpc . In the semantics,
(AppC), (ValC) and (LetC) are semantic rules for locally running the client in the form
M | � ⇒state M ′ | �. Note that the three client-side rules are different from those rules in
λenc

rpc only in that the server context stack � replaces the empty server context of the rules
in λenc

rpc . (AppS), (ValS) and (LetS) are semantic rules for locally running the server in the
form � | �; M ⇒state � | �; M ′. The three server-side rules introduce the server context
stack � when compared with those rules in λenc

rpc .
The remaining four semantic rules, (Req), (Ret), (Call) and (Reply), change active run-

ning from the client to the server or vice versa. We intend a request initiated by (Req) to
finish by (Reply), and we also intend a call that (Call) begins to finish with (Ret). Note that
both (Req) and (Reply) are exactly the same as those in λenc

rpc except for the introduction of
a server context stack � instead of the empty server context.

(Call) in λstate
rpc exhibits an important difference from that in λenc

rpc . The call construct
can now be used in a non-tail position, e.g. let y = [−] in M0. (Call) pushes it onto the
current server context stack � as ctx y M0 · �, switching to the client. (Ret) reverses this
procedure: it returns a value computed in the client back to the server, popping the top
server context from the server stack ctx y M0 · �.
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Fig. 11. A typed compilation for λstate
rpc .

Interestingly, we find that the client–server interactions in λstate
rpc are analogous to the

behaviour of coroutines (Conway, 1963). When the client is assumed to be an initiator and
the server is assumed to be a coroutine, (Req) is an initiation of a coroutine, (Call) is a
suspension of the execution of the coroutine to return to its initiator, (Ret) is a resumption
of the coroutine and (Reply) is a terminator of the coroutine.

The stateful RPC calculus is also based on the semantic-based trampoline style, which
was explained for the state-encoding calculi in Section 3.5, by (Req), (Call) and (Reply)
together with the support for composing commute functions by its compiler, which will be
explained in the next section.

4.3 A typed compilation of λrpc for λstate
rpc

Now we present a typed compilation of the RPC calculus into the stateful RPC calculus.
Our compilation takes a typing derivation of a source term under our locative type system
in the same way as before.

Figure 11 shows our compilation rules. The compilation rules for the client and the
server have the same form:

C[[Mrpc]] = Mstate
rpc and S[[Mrpc]] = Mstate

rpc

The compilation rules are in direct style. This contrasts with the use of CPS conversion in
the compilation rules for the state-encoding RPC calculus, which does not support saving
and restoring server contexts in its semantics. Therefore, it is a compiler that supports
this by CPS conversion. The stateful calculus, however, does support saving and restoring
server contexts in the underlying semantics, and so the compiler for this calculus does not
need to track any server contexts to manage. As a result, it is not necessary to adopt CPS
conversion for compilation of server terms anymore.
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In the compilation rules, (VarC), (LamCC) and (LamCS) are the same as (VarS),
(LamSC) and (LamSS) for variable, client function and server function. The compilation
rules only follow the structure of the terms.

(AppCC) and (AppSS) are for local applications in the client and server, respectively.
They generate local application terms f (x) with f and x as the compiled terms of the
function and the argument of the applications.

(AppCS) and (AppSC) are the most interesting compilation rules. (AppCS) compiles
a term of invocation of a server function in the client. It simply generates a target term
with req( f , x) with f as a compiled server function and x as a compiled argument. Note
that there is no identity continuation once introduced in compilation for the state-encoding
RPC calculus. (AppSC) compiles a term of invocation of a client function in the server,
into a target term with call(λcx · let y = f (x) in ret( y), x) composing a commute function
with call and ret.

We now prove a slightly stronger version of the correctness of the compilation for λstate
rpc .

For the proof, we introduce a definition of call-return balanced evaluation steps. call and
ret are the only constructs to push onto and to pop from a server stack. Intuitively, this
implies that in the evaluation steps, every invocation of a client function from the server
will return to the server without changing a client context and a server stack.

Definition 4.1. A sequence of evaluation steps, Conf1 ⇒state∗ Confn, is said to be call-
return balanced if the evaluation sequence is derived from the following grammar:

• bal ::= Confcall bal Confret | Confelse | bal1 bal2 where

– Confcall and Confret : configurations paired in the form of

(1) ctx y My | �; let x = call (VW ) in Mx and
(2) let y = ret (Vr) in My | ctx x Mx · �, respectively.

– Confelse : configurations in the form of neither Confcall nor Confret

Note that it is easy to construct Confcall ⇒state∗ ctx y My | �; let x = Vr in Mx in the
call-return balanced evaluation steps, because Confret ⇒state ctx y My | �; let x = Vr in Mx

by the definition of (Ret). The client context ctx y My and the server stack � are preserved
during the client function call.

Theorem 4.1 (Correctness of Compilation for λstate
rpc ). Assume a well-typed term λrpc M

under the locative type system:

• If M ⇓c V , then C[[M]] | � ⇒state∗ C[[V ]] | � for all �, which is call-return balanced.
• If M ⇓s V , then � | �; S[[M]] ⇒state∗ � | �; S[[V ]] for all � and �, which is call-

return balanced.

The basic idea of our proof has the same structure as the proof for λenc
rpc explained in

Section 3.3. The proof builds a sequence of evaluation steps in λstate
rpc matched to each

subtree of evaluation in λrpc by induction on the height of evaluation trees, and then it
puts the sequences together to build what is matched to the whole evaluation tree in the
conditions. The proof therefore guarantees that client–server communication in λrpc is
preserved in λenc

rpc , though the theorem itself does not tell this explicitly. Later, we will
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Fig. 12. Syntax and semantics of λstate
cs with a compilation of λstate

rpc .

present an example of a correspondence of client–server communication between λrpc and
λstate

rpc indirectly by comparing related flows between λenc
rpc and λstate

rpc in Section 4.5.1.

4.4 Separating client and server terms in λstate
cs

As was done for the state-encoding calculi, we propose a stateful CS calculus. Again, the
basic idea is to use closure conversion to decompose a term into closed functions and to
classify them according to location annotations.

In Figure 12, the syntax and semantics of λstate
cs are shown. The syntax of λstate

cs is identical
to that of λenc

cs except for ret(v). The terms in the calculus are denoted by m. The calculus
explicitly deals with closures v as values, rather than lambda terms. F is a name for a
closed function. φa is a mapping of names into closed functions in the location a. π and δ

are client and server contexts, respectively.
Configurations in the semantics of λstate

cs are changed accordingly:

• m | δ for the client to evaluate a term m with a stack δ in the server separated by |
• π | δ; m for the server to evaluate a term m on a stack δ with a pending client context

π in the client separated by |
The semantic rules for the stateful CS calculus are isomorphic to those for the stateful RPC
calculus under the aforementioned changes.
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Fig. 13. A compilation of the RPC term in Figure 3.

The compilation rules for λstate
cs are the same as those for λenc

cs except for ret(v) in
Figure 12. For a given closed λstate

rpc term M , CC[[M]] = m means that it generates a λstate
cs

term m for the client, producing a function store φc for the client and another function store
φs for the server.

We now prove the correctness of the compilation for λstate
cs by assuming a similar

definition of call-return balance for evaluation steps as Definition 4.1.

Theorem 4.2 (Correctness of Compilation for λstate
cs ). Assume a well-typed term M under

the locative type system. Given φc and φs:

• If M ⇓c V, then
CC[[C[[M]]]] | ε ⇒state∗ CC[[C[[V ]]]] | ε, which is call-return balanced.

While we reused the parser of λrpc and the location-type inference procedure for our type
system mentioned in Section 3.4, we have implemented a compiler and an evaluator of
λstate

rpc and λstate
cs on HTTP between the client and the server. Figure 13 shows a compilation

of the RPC term in Figure 3, generated by the compiler. The evaluator starts with main in
the client.

4.5 Discussion

4.5.1 Session management

Because the RPC calculus is designed for the web-based client–server model, it is nec-
essary to discuss whether or not the new stateful CS calculus fits the model. In the
state-encoding CS calculus, it is rather straightforward to associate the semantics with the
request–response interaction of the web-based model, thanks to the nature of the stateless
server which is aligned well with the RESTful web. However, in the stateful CS calculus, it
is not so obvious how the semantics is connected with the web-based interaction, because
the web-based model does not directly support the server states that the semantics deals
with.

To explain how the stateful CS calculus manages server states through a series of mul-
tiple request–response interactions, we introduce the notion of session to capture one or
more request–response interactions. In the notation, we place a session annotation over the
bar separating a client and a server as

• ‘client
session| server’ to denote the client and the server connected under a session

identified by a unique number session, or

• ‘client
nothing| server’ to denote that no session is established between the two.
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Note that this notion also turns out to be useful for explicitly explaining how the semantics
in the state-encoding CS calculus is related to request–response interactions.

Let us begin with the semantics of λenc
cs extended with session annotations where one

session exactly corresponds to one request–response interaction on the web.

(Req) let x = req(vF , w) in m
nothing| ε ⇒enc ctx x m

session| let r = vF(w) in r
where vF = clo(F, v̄), φs(F) = z̄λsx̄ · m0, and fresh session

(Call) ctx x m
session| call(vF , w) ⇒enc let x = vF(w) in m

nothing| ε

where vF = clo(F, v̄), φc(F) = z̄λcx̄ · m0

(Reply) ctx x m
session| v ⇒enc let x = v in m

nothing| ε

(Req) corresponds to the creation of a new session. Both (Call) and (Reply) correspond
to the closing of the session. For the other local rules, the status of the session remains
unchanged:

Client (AppC), (ValC), (LetC) : m
nothing| ε ⇒enc m′ nothing| ε

Server (AppS), (ValS), (LetS) : π
session| m ⇒enc π

session| m′

where m, m′ and π are those from the semantic rules in λenc
cs .

Now let us discuss the semantics of λstate
cs extended with session annotations where one

session can not only correspond to one request–response interaction on the web but can
also be expanded to correspond to more than one interaction:

(Req1) let x = req(vF , w) in m
nothing| ε ⇒state ctx x m

session| ε; let r = vF(w) in r
where vF = clo(F, v̄), φs(F) = z̄λsx̄ · m0, and fresh session

(Req2) let x = req(vF , w) in m
session| δ ⇒state ctx x m

session| δ; let r = vF(w) in r
where vF = clo(F, v̄), φs(F) = z̄λsx̄ · m0, and δ �= ε

(Reply1) ctx x m
session| ε; v ⇒state let x = v in m

nothing| ε

(Reply2) ctx x m
session| δ; v ⇒state let x = v in m

session| δ if δ �= ε

(Call) ctx y m2

session| δ; let x = call(vF , w) in m1 ⇒state let y = vF(w) in m2

session| ctx x m1 · δ
where vF = clo(F, v̄) and φc(F) = z̄λcx̄ · m0

(Ret) let y = ret(v) in m2

session| ctx x m1 · δ ⇒state ctx y m2

session| δ; let x = v in m1

The original semantic rule (Req) in λstate
cs is divided into two rules. (Req1) with the empty

server stack corresponds to the creation of a new session, and (Req2) with the non-empty
stack δ corresponds to a continuation of the previously created session. The original seman-
tic rule (Reply) in λstate

cs is also divided into two rules. (Reply1) with the empty server stack
is matched with (Req1) to close the created session, and (Reply2) with the non-empty stack
δ is matched with (Req2) to maintain the previously created session. Both (Call) and (Ret)
are extended to continue to maintain the status of the session. For the other local rules, the
status of session remains unchanged as

https://doi.org/10.1017/S0956796819000029 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000029


A theory of RPC calculi for client–server model 25

Fig. 14. Comparison of session management between λenc
cs and λstate

cs .

Client (AppC), (ValC), (LetC) : m
optSession| δ ⇒enc m′ optSession| δ

Server (AppS), (ValS), (LetS) : π
session| δ; m ⇒enc π

session| δ; m′

where m, m′, π and δ are those from the semantic rules in λstate
cs . For the client-side local

rules, it is confirmed that either optSession = nothing and δ = ε or optSession = session
and δ �= ε holds.

The session-annotated semantics of λstate
cs clearly explains how the stateful CS calculus

using request–response interactions is implemented on the web-based model. Also, the
idea of applying session annotation to the semantics enables us compare λenc

cs with λstate
cs in

terms of the web-based implementation using request–response interaction.
Figure 14 shows a comparison of session management between λenc

rpc and λstate
rpc when the

λrpc term in the example is evaluated. First, the figure shows that client–server communi-
cation in λstate

rpc is the same as that in λenc
rpc by using the same box names S1, C1 and S2 on

the related flows. Second, with the stateful server, the active thread of control described
by the solid line with (S2) is above the pending thread of control described by the dashed
line with (S3), meaning that S2 is being evaluated with the server stack holding the server
context of S3.

4.5.2 A mixed strategy

In the previous comparison between λenc
cs and λstate

cs , we clearly understood how they man-
age sessions differently. In λenc

cs , the server does not need to retain anything once it sends
the client a response. This is advantageous because the server resource consumption is
reduced. In λstate

cs , the server can naturally support storing a stateful context that the server
must have before and after a client function call. This is necessary when it is not easy or
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not possible to encode the stateful context, for example, in database operations as seen
in Section 4, and to send the encoded context to the client. The question then arises if
we can use both strategies: a mixed strategy basically employs the state-encoding strat-
egy to reduce the server resource consumption but switches to the stateful strategy when
necessary. We here argue that our theory can be extended to support this mixed strategy.

For the mixed strategy, the problem is how to distinguish one phase of λrpc terms in
which the compilation rules and semantic rules of λenc

rpc and λenc
cs are applied, from the other

phase of the terms in which those of λstate
rpc and λstate

cs are applied. A simple idea is to use
the notion of monadic encapsulation of state (Launchbury & Peyton Jones, 1994; Timany
et al., 2017), where stateful computations are encapsulated using monads and the purity of
the functional language embracing them is preserved.

To explain how monadic encapsulation of state can help in the design of our mixed
strategy, we first introduce the standard monadic operations and stateful operations to the
term syntax of λrpc, and a new (state) type is introduced to the type syntax:

M ::= · · · | runST M | thenST M (λx · M) | returnST M
| newVar M | readVar M | writeVar M M

τ ::= · · · | ST state τ | ∀state · τ
A key construct runST M encapsulates a stateful computation M where states may be
cascaded through newVar, readVar and writeVar by the monadic binder thenST , which
allows a value to escape from the monad by the monadic stopper returnST at the end.
Note that state is a (state) type variable, which is essential to the monadic encapsulation of
state in a pure functional language. A new state type ST state τ can be read intuitively as
follows: a stateful computation of this type can allocate, read and write in a memory region
indexed by state and then produce a value of type τ . The type of runST in the literature
(Launchbury & Peyton Jones, 1994; Timany et al., 2017) is

(∀state · ST state τ ) → τ .

Having a universally quantified state type variable in the type guarantees that every mem-
ory region allocated inside the stateful computation is not accessible outside the runST
anymore by limiting the scope of the state type variable, which never occurs in τ . This is
a key property of the monadic encapsulation of state.

For example, in an evaluation of the following extended λrpc term:

clientFun2 (
runST (

(thenST (newVar 0) (λl.
(thenST (writeVar l(clientFun1())) (λ().
(thenST (readVar l) (λx.
(returnSTx))))))) ) )

a new piece of memory is allocated at an address l and is initialised with 0 by newVar 0,
the server calls a client function to obtain a value by clientFun1(), the memory is updated
with the value by writeVar l (· · · ), the written value is read again by readVar l, and it
escapes the runST monad by returnST x. Finally, the other client function clientFun2 is
called from the server with the escaped value as an argument.
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It is important to note that clientFun1 is called in the middle of the stateful computa-
tions, whereas clientFun2 is called after all the stateful computations. Therefore, the former
should be implemented in the stateful server strategy, but the latter can be implemented in
the state-encoding server strategy. To capture these different phases, we introduce two
forms of typing judgements as follows:

� �a M : τ � �a M : τ

where the typing judgements with the black triangle denote that a term under evaluation is
in the middle of stateful computations, and the typing judgements with the white triangle
denote the absence of stateful computations. We also change the function type to include

the colour as τ
a, colour−−−−→ τ ′, where it is white or black. Functions of the black function type

are invoked in the middle of the stateful computations, whereas functions of the white
function type are never invoked there.

The typing rules for λrpc are then duplicated, and therefore we make one set have the
typing rules with only the white triangle and make the other set have them with only the
black triangle. In (T-App-B) of the black set, the colour of the function type in the premise
is made the same as the colour of the triangle. In (T-Lam-B), the colour of the function
type in the conclusion is the same as the colour of the triangle. These coloured typing rules
will get a function infected whenever the function is invoked within a stateful expression.

The two sets of the typing rules are combined through two new typing rules:

(Gen&Run) is a typing rule combining (Gen) and (Run) in the literature, which generalises
a state type variable and is a typing rule for runST , respectively. Those typing rules for the
monadic constructs and state manipulation constructs are from the literature, and they are
included in the black set. (Purify) is a typing rule that encapsulates a stateful world from
pure functional expressions whenever no free state type variables escape, i.e. FTV (�) ∪
FTV (τ ) = ∅.

With these typing rules, clientFun1 in the example must be typed by (T-App-B); it gets
infected because it is invoked within a runST expression, which is typed by (Gen&Run).
However, clientFun2 can be typed by (T-App-W), which is a white-coloured version
of (T-App-B). The scope of states of the runST expression is thus limited inside it by
(Gen&Run). Then it can be treated as a pure expression by (Purify) because there are no
other runST expressions enclosing it.

After typing an extended λrpc term with the coloured typing rules, the phases using the
white typing rules are compiled and evaluated under the state-encoding server strategy,
and the phases using the black typing rules are compiled and evaluated under the stateful
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server strategy. Monadic encapsulation of state has been proved to separate the state-
ful world from the pure expression in the literature (Launchbury & Peyton Jones, 1994;
Timany et al., 2017). Therefore, we can utilise the idea to separate where we can use the
state-encoding server strategy from where we should use the stateful server strategy. What
remains to be seen is how to compile (Purify). This typing rule is compiled as a direct style
invocation of a CPS-style expression compiled from the typing in the premise by applying
the initial continuation to the expression. This can be viewed as a border between the two
strategies.

This completes the explanation of how we designed a hybrid strategy, which is another
benefit of our theory of RPC calculi.

5 Related Work

Links (Cooper et al., 2007) is a practical multi-tier web programming language that
employs the RPC calculus as the foundation for client–server communication. It is a typed
functional programming language incorporating Kleisli-based database query optimisa-
tion, continuations for web interactions, concurrency with message passing and XML
programming. It would be interesting to extend the implementation of Links using the
proposed theory of RPC calculi.

Lambda5 (Murphy VII et al., 2004; Murphy, 2008) is a modally typed lambda calculus
in which modal type systems can control local resources safely in distributed systems. It is
extended to a full-fledged web programming language. From the programmer’s perspec-
tive, there are two things to compare. First, while Lambda5 is similar to the RPC calculus
in that it allows programmers to write symmetric communication, it distinguishes the syn-
tax of remote function applications, say, ‘get〈s〉(here M N)’, from that of local ones, say,
‘M N’. In this respect, Lambda5 is like λenc

rpc and λstate
rpc because λrpc offers a uniform syntax

for both kinds of applications.
Second, the modal type system for Lambda5 introduces at modality, ‘τ at a’ in order

to be able to refer to a specific location. The use of at-types for some term M and typing
environment � can be viewed as typing judgements � �a M : τ . One interesting difference
is that our type system introduces locative types τ

a−→ τ ′ with specific location a. The type
system for Lambda5 uses box types �τ and diamond types ♦τ , but locations in the modal
types are too implicit to be usable; box types are associated with all arbitrary locations,
and diamond types are associated with some unknown location. On the basis of this obser-
vation, we believe that our type system is a modal type system using locative types that
internalise at modality. A formal comparison on how our type system is related to the
modal type system is left as a future work. Another interesting question is to investigate if
the state-encoding and stateful calculi could have any modal type systems beyond the type
system for the RPC calculus.

From the implementation perspective, Lambda5 designed for peer-to-peer distributed
systems is based on symmetric communication, whereas the RPC calculus designed for
client–server systems is based on asymmetric communication. The semantic rules for client
and server in Lambda5 are therefore the same. Although Lambda5 could be exploited for
a stateless server strategy, the same semantic rules have to be revised in a nontrivial way
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to achieve a stateful client and stateless server, where each is defined by different semantic
rules. For a stateful server strategy, the Lambda5 semantic rules should also be revised
to make them usable with the client–server model. The idea used in Lambda5 of contin-
uations spanning multiple worlds such as client and server is similar. However, in λstate

rpc ,
the semantic rules (Req) and (Call) for client-to-server RPCs and vice versa are asymmet-
ric; the former is defined to initiate a new server control context, and the latter is defined
to return to a client context waiting for this server response. This fits the implementa-
tion based on trampolined-style well. Thus, the semantics of Lambda5 has this subtle gap
between its description and its web-based implementation. Lambda5 is implemented on a
web-based client–server model in an ad hoc way, for example to support channels on top
of HTTP.

A multi-tier calculus by Neubauer and Thiemann (Neubauer & Thiemann, 2005) auto-
matically constructs communications for concurrently running processes. The calculus
employs session types (Gay & Hole, 1999) to enforce the integrity of communications
automatically. They proposed a series of transformations as compilation to convert a source
program into separate programs at different locations determined by the use of primitives
that run only at specific locations. The calculus can be called a stateful peer strategy
because each process manages its own state, but there is no concept of a central server
as in Lambda5.

There are several programming languages that have adopted the feature of multi-tier
web programming: Hop (Serrano et al., 2006; Serrano & Berry, 2012) extending Scheme;
Hop.js extending JavaScript (Serrano & Prunet, 2016); Eliom, a multi-tier ML program-
ming language, featuring module systems extended with location annotations (Radanne,
2017) in the project Ocsigen (Balat, 2006); and Ur/Web (Chlipala, 2015) with a depen-
dently typed system; and a multi-tier functional reactive programming framework for
Scala (Reynders et al., 2014). They are all practical web programming languages featuring
concurrency, reactive UI, database and XML.

Hop, Eliom and Ur/Web provide programmers only asymmetric communication where
basically only the client can invoke server functions; the server resorts to a network library
to call client functions back. All of them use a special syntax for RPC distinct from that for
local function calls. As far as we know, they are all based on a stateful server approach as
described for HOP in Serrano & Queinnec (2010) and Boudol et al. (2012) and for Eliom
in Radanne (2017), though Ur/Web never presented any formal semantics on their RPC
implementation. These languages do not need to implement the mapping of symmetric
communication onto asymmetric communication as is done in our theory. It is therefore
less meaningful to compare our theory with them in terms of stateful server approaches. In
Serrano & Queinnec (2010), a denotational continuation-based semantics for a core subset
of HOP is present for the purpose of elaboration of how to generate client-side code by the
server-side code. In Boudol et al. (2012), more versatile semantics is proposed in order to
reason about the safety of the same-origin policy in the web application security model,
whereas we use our semantics for proving the correctness of compilation for the two RPC
implementation strategies.

The PLT Scheme community has studied the construction of interactive server-side web
applications. In Graunke et al. (2001) and Matthews et al. (2004), the authors have pointed
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out the mismatch problem between the structure of sequential programs and the struc-
ture of the corresponding web interactions. They suggest an automatic structuring method
of sequential programs so that a restructured web program and a consumer can construct
a pair of coroutines where each interaction point can be resumed arbitrarily often. The
method stores a continuation object at the server, referring to it by ID, which can be
viewed as a stateful server strategy. In the implementation of our stateful calculi, a client
and a server play exactly the same role as coroutines, as explained in Section 4.3, though
we use session numbers sent from the client on requests to resume the suspension. In
Krishnamurthi et al. (2007) and McCarthy (2009, 2010), the authors have addressed the
practical problem of how scalable, continuation-based web programs can achieve modu-
lar compilation and higher-order interaction with third-party libraries by stack inspection
and manipulation techniques known as continuation marks and delimited continuations.
Although the techniques used are different, their solution can be viewed as a mixed strategy
from the standpoint of our theory.

Using continuations as a language-level technique to structure the client–server interac-
tions of web programs is well known, as has been discussed by Queinnec (2004). Although
it is not about multi-tier web programming, it is worth noting that this work discusses the
advantages and disadvantages of storing continuations on the client side and server side.

Wysteria (Rastogi et al., 2014) is another related work. This system is in the different
domain of secure multi-party computation but shares some similar technical machinery
and development. It indexes the types of data and computations by participating principals,
which can be regarded as locations. Further, Wysteria also proposes abstractions for private
states among participating principals and among subsets of these principals, acting as a
secure computation. Similar to our research, it also proposes a translation whose targets
consist of ‘sliced’ code for each participant.

6 Conclusion

We have proposed a theory of RPC calculi that deals with the implementation of arbitrar-
ily deep nested client–server interactions using the feature of symmetric communication
on the web-based flat request–response interactions in trampolined style under the state-
encoding server strategy and the stateful server strategy. In this theory, a new typed RPC
calculus λrpc is proposed where typing with locative types identifies remote function appli-
cations at the type level. Our new theory of RPC calculi has advantages over the existing
research work. With the help of type-level identification of remote functions, the structure
of compilation of λrpc into λenc

rpc and λstate
rpc is simplified compared to the structure of the

original compilation without using type information. This simplicity allows our theory to
explore three design choices: a state-encoding server strategy, a stateful server strategy
and, furthermore, a mixed strategy of these two strategies.

In future, we hope to design a full-fledged multi-tier web programming language based
on our theory of RPC calculi. The design must consider many more features such as
HTML constructs, reactive UI, databases and concurrency because our theory addresses
only client–server communication.
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Appendix: A Proof of Theorem for the RPC Calculus

Theorem A.1 (Type Soundness for λrpc). If � �a M : τ and M ⇓a V then � �a V : τ .

Proof. We prove this theorem by induction on the height of the typing derivation on M .
For (T-Var) as a base case, it is provable trivially. For inductive cases, we do case analysis
on the last typing rule used. For (T-Lam), it is straightforward. For (T-App), (T-Req) and
(T-Call), we use inductive arguments and the substitution Lemma A.1. In order to prove
the cases with (T-Req) and (T-Call), we need an additional Fact A.1 saying that the types
of values are the same wherever the values are. �

Fact A.1. If � �a V : τ , then � �b V : τ .

Proof. This is provable due to the definition of (T-Var) and (T-Lam) which are typing
rules for V , either a variable and a function. �

Lemma A.1 (Substitution). If �, x : τ1 �a M : τ2 and � �b W : τ1, then � �a M{W/x} : τ2.

Proof. The proof is straightforward by induction on the height of the typing derivation
on M . �
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Appendix B: Proofs of Theorems for the State-Encoding Calculi

The main theorem states the correctness of compilation for λenc
rpc as follows.

Theorem B.1 (Correctness of Compilation for λenc
rpc). Assume a well-typed λrpc term M

under the locative type system.

• If M ⇓c V then C[[M]] | ε ⇒enc∗ C[[V ]] | ε.
• If M ⇓s V then � | S[[M]] K ⇒enc∗ � | S[[V ]] K for all � and K.

Proof. The proof consists of two parts. The proof firstly builds a sequence of evaluation
of the compiled term in λenc

rpc matched to each subtree of evaluation of a given term in λrpc

by induction on the height of the evaluation of M . Then the proof puts the sequences
together to construct a longer one matched to the whole evaluation. The composition
lemma, Lemma B.1, supports this by showing that, given an λenc

rpc evaluation sequence,
it is possible to construct the same sequence but under arbitrary let bindings. The proof
uses this lemma as glue in the client. But for the same purpose in the server, the lemma is
not used because the proof uses continuations as glue.

In addition, the proof must derive the use of substitutions in λenc
rpc from the use of those in

λrpc to complete the construction of the λenc
rpc evaluation sequence. The substitution lemma,

Lemma B.2, supports this by showing that a compilation of a substituted term in λrpc is the
same as a substitution in λenc

rpc of compiled terms.
In the RPC calculus, every base case involves only (Value) where the height is 1, and

every inductive case must use (Beta) to make the height at least higher than 1. For the base
cases with (Value), both of M and V are λbx · M0. The theorem can be easily verified since
C[[M]] = C[[V ]] is true.

In the inductive cases, M is L Marg. The inductive cases are also analysed into four by
the similar reason since (Beta) involves two locations a and b: the application is being
evaluated at the location a, and L evaluates to a function of the location b.

i. When a is s: Firstly, by the induction hypotheses with three subtrees in the evalua-
tion of the λrpc term M , three subsequences in λenc

rpc can be constructed with universally
quantified variables K1, K2, K3. Secondly, to combine these subsequences in order to make
what the theorem demands, the proof instantiates the three variables with a continuation
to S[[L]] (see Figure 7), a continuation to S[[Marg]] (see Figure 7) and K in the compilation
rules (AppSS) or (AppSC) at Figure 7, respectively. Note that the proof for these inductive
cases (a is s) is thus proved without using Lemma B.1, which is necessary for the follow-
ing inductive cases (a is c). Finally, the proof uses Lemma B.2 to complete building the
evaluation sequence in λenc

rpc as the theorem demands.
ii. When a is c: This proof firstly uses the induction hypotheses with the three subtrees

in the evaluation of the λrpc term M to build λenc
rpc evaluation subsequences. Secondly, the

proof has to combine these subsequences in order to form a longer one that the theorem
demands. Each of C[[L]], C[[Marg]] and a local or remote application is surrounded by a
let term of the form let var = · · · in term in the compilation rules (AppCC) and (AppCS)
at Figure 7. So, the proof has to resort to Lemma B.1 to lift an evaluation subsequence
for C[[L]] to one for let var = C[[L]] in term, and to lift another evaluation subsequence for
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C[[Marg]] to one for let var′ = C[[Marg]] in term′. Finally, the proof takes the third evaluation
subsequence for the local or remote application to finish by using Lemma B.2. �

To prove Theorem B.1, we use Lemmas B.1 and B.2. The former lemma states that the
evaluation of terms in λenc

rpc is preserved under the let binding.

Lemma B.1 (Composition). In the state-encoding RPC calculus λenc
rpc ,

• If M | ε ⇒enc∗ V | ε

then let x = M in M0 | ε ⇒enc∗ let x = V in M0 | ε

Proof. This is proved by induction on the length of the evaluation in the condition. In the
base case, the length is zero, and so M is identical to V . Therefore, let x = M in M0 is
identical to let x = V in M0, which proves the base case.

In inductive cases where the length is one or longer, the proof does a case analysis on
kinds of the first rule used in the evaluation of M | ε ⇒enc∗ V | ε and � | M ⇒enc∗ � | V ,
to make the evaluation progress by applying a rule for the kind. Then the proof will have
an evaluation subsequence shorter than one in the condition, with which we can apply
induction to finish the proof.

Hence, there are four cases for consideration.
i. (AppC) and (ValC): The lemma is provable simply by induction as explained above.
ii. (Req): Let M be let y = req(Vf , W̄ ) in My. Then there exist steps such that

let y = req(Vf , W̄ ) in My | ε

⇒enc ctx y My | Vf (W̄ )
⇒enc Conf1 ⇒enc ... ⇒enc Confk ⇒enc∗ V | ε

where either (Reply) or (Call) must be used in some step, Confk−1 ⇒enc Confk , and neither
(Reply) nor (Call) is used before the step. This is because, in order to move from the server
configuration (ctx y My | Vf (W̄ )) to a client configuration (V | ε), there is no other way
than using (Reply) or (Call) by the definition of the semantic rules for λenc

rpc .
After the use of either (Reply) or (Call), it is easy to construct,

Confk ⇒enc+ Confk+n ⇒enc∗ V | ε

where all except Confk+n are for the server and Confk+n ⇒enc∗ V | ε is a condition that we
can apply induction with. This finishes the proof for this case.

iii. (LetC): In this case, M is let x1 = (let x2 = M1 in M2) in M3. This is proved by induc-
tion after using the intermediate value lemma, Lemma B.3, and the context-independent
intermediate value lemma, Lemma B.4. By applying (LetC) two times, we have:

let x = M in M0 | ε ⇒2 let x2 = M1 in
(
let x1 = M2 in (let x = M3 in M0)

) | ε

where induction cannot be applied immediately. After the evaluation of both M1 and M2,
we will reach a configuration as: let x = M3{V1/x1} in M0 | ε where V1 is a value of (let x2 =
M1 in M2). Then we can apply induction with M3{V1/x1} | ε ⇒∗ V | ε. We thus need to
make the evaluation progress over M1 and M2. To do this, we apply the two additional
lemmas to lead the evaluation to the configuration above. This finishes the proof in the
case. �
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Lemma B.2 shows the compilation of a substituted term yields the same term as the
compilation of a term substituted with compiled values.

Lemma B.2 (Substitution). The compilation C[[−]] and S[[−]] of λrpc into λenc
rpc preserve

substitution operations in λrpc and λenc
rpc . Let V [[λax · M]] = C[[λax · M]].

• C[[N{W/x}]] = C[[N]]{V [[W ]]/x}.
• S[[N{W/x}]] K = (S[[N]] K){V [[W ]]/x}.

Proof. This lemma is true because of the definition of the compilation rules. �

To prove Lemma B.1, we introduce Lemmas B.3 and B.4, as follows.

Lemma B.3 (Intermediate Value).

• If let x = M in M0 | ε ⇒enc∗ V | ε

then let x = M in M0 | ε ⇒enc∗ let x = Vx in M0 | ε ⇒enc∗ V | ε.

Proof. This is proved by induction on the length of the evaluation in the conditions. �

Lemma B.4 (Context-Independent Intermediate Value).

• If let x = M in M1 | ε ⇒enc∗ let x = V in M1 | ε

then let x = M in M2 | ε ⇒enc∗ let x = V in M2 | ε.

Proof. This is proved by induction on the length of the evaluation in the conditions. In
(ValC), (AppC) and (Req), the proof is straightforward. In (LetC), when M is (let y =
My in Mx), we have (let x = M in M1) | ε ⇒enc let y = My in (let x = Mx in M1) | ε. The
proof uses an inner induction on the number of the let constructs enclosing let x = Mx in M1

such as ‘let y = My in −’. The use of the inner induction will eventually lead to a form of
let x = Mx{Vy/y} in M1 | ε where Vy is a value of My. Then we can apply the outer induction
to it to finish the proof. �

The theorem of the correctness of compilation for λenc
cs immediately follows the theorem

for λenc
rpc .

Theorem B.2 (Correctness of Compilation for λenc
cs ). Assume a well-typed term M under

the locative type system. Given φc and φs,

• If M ⇓c V then CC[[C[[M]]]] | ε ⇒enc∗ CC[[C[[V ]]]] | ε.

Proof. By Theorem B.1, it holds that if M ⇓c V , then C[[M]] | ε ⇒enc∗ C[[V ]] | ε. From
such a series of evaluation steps in λenc

rpc , it is easy to construct evaluation steps in λenc
cs as

CC[[C[[M]]]] | ε ⇒enc∗ CC[[C[[V ]]]] | ε. This is because of two reasons, as follows.
First, the compilation rules CC[[−]] preserve the structure of terms, for example, map-

ping a variable in λenc
rpc into a variable in λenc

cs , an application in λenc
rpc into an application in

λenc
cs , and so on. The only exception is to map a function in λenc

rpc into a closure in λenc
cs , but a
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closure has a role as a function in λenc
cs . Second, the semantic rules in λenc

rpc are isomorphic
to the semantic rules in λenc

cs .
To construct evaluation steps starting from CC[[C[[M]]]] | ε in λenc

cs , we have only to
choose the isomorphic semantic rule corresponding to the semantic rule used in each of
the evaluation steps in λenc

rpc . �

Appendix C: Proofs of Theorems for the Stateful Calculi

The structure of proofs of theorems for the stateful calculi is very similar to that of those
for the state-encoding calculi.

The main theorem states the correctness of compilation for λstate
rpc as follows.

Theorem C.1 (Correctness of Compilation for λstate
rpc ). Assume a well-typed term λrpc M

under the locative type system.

• If M ⇓c V , then C[[M]] | � ⇒state∗ C[[V ]] | � for all �, which is call-return balanced.
• If M ⇓s V then � | �; S[[M]] ⇒state∗ � | �; S[[V ]] for all � and �, which is call-

return balanced.

Proof. This proof has the same structure as for Theorem B.1. It firstly builds a subsequence
of evaluation of the compiled term in λstate

rpc to each subtree of evaluation of a given term in
λrpc, and then it puts the subsequences together into a longer one for the whole evaluation.
The composition lemma, Lemma C.1, supports the second part. The substitution lemma,
Lemma Lemma C.2, is required in the second part to show that the λstate

rpc substitution after
a λrpc-to-λstate

rpc compilation produces the same term as one by a λrpc-to-λstate
rpc compilation

after a λrpc substitution.
Now let us prove by induction on the height of the evaluation of M . The base cases with

height 1 use (Value) in the RPC calculus. For base cases with (Value), both M and V are
the same as λbx · M0, and so the theorem is trivially true by zero step evaluation.

The inductive cases with higher than height 1 must use (Beta) in the condition of this the-
orem. Every case is provable by induction and the use of Lemmas C.1 and C.2 in the same
way as for Theorem B.1. For the case with L cMarg ⇓c V , each evaluation subsequence in
λstate

rpc obtained from each subtree of evaluation in λrpc is balanced by induction. The three
subsequences are combined by having a single configuration using (ValC) between the first
and the second, and by having another configuration using (AppC) between the second and
the third. (ValC) is used in the end. By the definition of call-return balance, the resulting
evaluation sequence in λstate

rpc is call-return balanced. The case with L sMarg ⇓s V is verified
exactly in the same way but with (ValS), (AppS) and (ValS).

For the case with L sMarg ⇓c V , the three call-return balanced evaluation subsequences
are combined with intermediate configurations using (ValC) between the first and the sec-
ond, using (Req) and (Apps) between the second and the third, and using (ValS), (Reply)
and (ValC) in the end.

The case with L cMarg ⇓s V is most interesting because a new pair of call and ret will
be added to the resulting evaluation sequence explicitly, not just by induction. The first
subsequence is followed by configurations using (ValS), which is followed by the second

https://doi.org/10.1017/S0956796819000029 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796819000029


A theory of RPC calculi for client–server model 37

subsequence, which is followed by other configurations using (Call), (AppC), (LetC) and
(AppC), which is followed by the third subsequence, which is lastly followed by a configu-
ration using (Ret). The whole evaluation sequence is call-return balanced by the definition
of bal ::= Confcall bal Confret. �

To prove Theorem C.1, we use a lemma stating that the evaluation of terms in λenc
rpc is

preserved under the let binding, as follows.

Lemma C.1 (Composition). In the stateful RPC calculus λstate
rpc ,

• If M | � ⇒state∗ V | � and it is call-return balanced,
then let x = M in M0 | � ⇒state∗ let x = V in M0 | �, which is call-return balanced.

• If � | �; M ⇒state∗ � | �; V and it is call-return balanced,
then � | �; let x = M in M0 ⇒state∗ � | �; let x = V in M0, which is call-return
balanced.

Proof. This is proved by induction on the length of the evaluation in the conditions. In the
base case, the length is zero, and so M is identical to V, which proves the lemma.

In inductive cases where the evaluation takes one or more steps, the proof is done by
case analysis on kinds of the first rule used in the evaluation of M | � ⇒state∗ V | � and
� | �; M ⇒state∗ � | �; V . Hence, there are 10 cases for consideration.

i. (AppC), (AppS), (ValC), (ValS): The lemma is proved simply by induction. The
resulting evaluation sequence preserves the call-return balance because it is just the induc-
tively obtained balanced evaluation subsequences appended in the front or in the end with
Confelses using some of (AppC), (LetC), (ValC), (AppS), (LetS) and (ValS).

ii. (LetC), (LetS): In these cases, M is let x1 = (let x2 = M1 in M2) in M3. These cases are
proved by induction together with Lemma C.3 and Lemma C.4. The two additional lemmas
are used to uncover values which M1 and M2 evaluate to and then to make the evaluation of
let x = M in M0 progress until it reaches a configuration let x = M3{V1,2} in M0, to which
induction can be applied. The condition call-return balance is verified by bal ::= balbal
because all the evaluation subsequences obtained from applying induction and the two
lemmas are all call-return balanced and only some extra configurations, which are not
Confcall nor Confret, are introduced.

iii. (Ret): The call-return balance is not satisfied in the condition of this case. So, it is
vacuously true.

iv. (Reply): By the definition of (Reply), M is a value. When M = V , it is trivially true
with the zero evaluation step. When M �= V , the evaluation sequence in the condition of
this case is impossible. So, it is vacuously true.

v. (Call): Let M be let y = call(Vf , W ) in My and let � be ctx z Mz.

� | �; let y = call(Vf , W ) in My by (Call)
⇒enc let z = Vf (W ) in Mz | ctx y My · � by the balance
⇒enc∗ let z = ret(Vcall) in Mz | ctx y My · � by (Ret)
⇒enc � | �; let y = Vcall in My by (Val)
⇒enc � | �; My{vcall/y} by the condition
⇒enc∗ � | �; V
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It is possible to mock the evaluation steps except the last steps above with � | �; let x =
M in M0 because all the steps between Confcall and Confret above use only the evaluation
rules that do not depend on the server stack. For the last steps of evaluation above, we
prove it by induction. The call-return balance is verified by bal ::= bal bal.

vi. (Req): Let M be let y = req(Vf , W ) in My. We do an analysis to look for a
configuration as follows.

let y = req(Vf , W ) in My | �

⇒enc ctx y My | �; let r = Vf (W ) in r
⇒enc Conf1 ⇒enc ... ⇒enc Confk ⇒enc∗ V | �

where either (Reply) or (Call) is used in a step, Confk−1 ⇒enc Confk , and neither (Reply)
nor (Call) is used before the step. There should exist such a configuration. This is because,
in order to move from a server configuration (ctx y My | �; let r = Vf (W̄ ) in r) to a client
configuration (V | �), there is no other way than using (Reply) or (Call) by the definition
of the semantic rules for λenc

rpc .
For use of (Reply), it is easy to construct, after the step,

Confk ⇒enc+ Confk+n ⇒enc∗ V | �

where Confk+n ⇒enc∗ V | � is a condition to apply induction with. Since the subsequence
from Conf1 to Confk−1 does not contain any configurations of the form Confcall or Confret,
the condition of the lemma implies that the subsequence from Confk to V | � is balanced.

For use of (Call), an inner induction is needed to make it progress to reach a
configuration that induction of the lemma is applicable. Let Confk be

ctx y My | �; let z = call(Vg, Wgarg) in Mz

Confk by (Call)
⇒enc let y = Vg(Wgarg) in My | ctx z Mz · � by the balance
⇒enc∗ let y = ret(Vcall) in My | ctx z Mz · � by (Ret)
⇒enc ctx y My | �; let z = Vcall in Mz by (Val)
⇒enc ctx y My | �; Mz{vcall/z}

The subsequence after the configuration (ctx y My | �; let z = Vcall in Mz) all the way to
(V | �) is balanced by the following argument. The subsequence before the configuration
is constructed to be balanced. Since the whole of the evaluation sequence in the condition
of the lemma is balanced, the definition of call-return balance implies that the subsequence
after the configuration is balanced.

We repeat the analysis again from the last configuration above until we find any use of
(Reply), which allows to apply induction of the lemma. Since the steps are finite by the
condition, the analysis will be terminated in finite time. This finishes the proof. �

Lemma C.2 (Substitution). Let V [[λax · M]] = C[[λax · M]].

• C[[N{W/x}]] = C[[N]]{V [[W ]]/x}.
• S[[N{W/x}]] K = (S[[N]] K){V [[W ]]/x}.
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Proof. This lemma is true because of the definition of the compilation rules. �

To prove Lemma C.1, we introduce two lemmas as follows.

Lemma C.3.

• If let x = M in M0 | � ⇒state∗ V | � and it is call-return balanced,
then let x = M in M0 | � ⇒state∗ let x = Vx in M0 | � ⇒state∗ V | � .

• If � | let x = M in M0 ⇒state∗ � | V and it is call-return balanced,
then � | let x = M in M0 ⇒state∗ � | let x = Vx in M0 ⇒state∗ � | V.

In each conclusion of the two conditional statements above, the former evaluation
sequence until M evaluates to Vx and the latter one after that are both call-return balanced.

Proof. This is proved by induction on the length of the evaluation in the conditions. �

Lemma C.4.

• If let x = M in M1 | � ⇒state∗ V1 | � and it is call-return balanced,
then let x = M in M2 | � ⇒state∗ let x = V in M2 | � and it is also call-return
balanced.

• If � | �; let x = M in M1 ⇒state∗ � | �; V1 and it is call-return balanced,
then � | �; let x = M in M2 ⇒state∗ � | �; let x = V in M2 and it is also call-return
balanced.

Proof. The lemma is proved by induction on the length of the evaluation in the condi-
tions. �

The theorem of the correctness of compilation for λstate
cs immediately follows the theorem

for λstate
rpc .

Theorem C.2 (Correctness of Compilation for λstate
cs ). Assume a well-typed term M under

the locative type system. Given φc and φs,

• If M ⇓c V, then CC[[C[[M]]]] | ε ⇒state∗ CC[[C[[V ]]]] | ε.

Proof. This theorem is proved by the same argument used in the proof of Theorem B.2.
The key idea is that the compilation rules CC[[−]] preserve the structure of λstate

rpc terms. �
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