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Injective Convolution Operators on ℓ∞(Γ)
are Surjective

Yemon Choi

Abstract. Let Γ be a discrete group and let f ∈ ℓ1(Γ). We observe that if the natural convolution

operator ρ f : ℓ∞(Γ) → ℓ∞(Γ) is injective, then f is invertible in ℓ1(Γ). Our proof simplifies and

generalizes calculations in a preprint of Deninger and Schmidt by appealing to the direct finiteness of

the algebra ℓ1(Γ).

We give simple examples to show that in general one cannot replace ℓ∞ with ℓp , 1 ≤ p < ∞, nor

with L∞(G) for nondiscrete G. Finally, we consider the problem of extending the main result to the

case of weighted convolution operators on Γ, and give some partial results.

1 Introduction

We begin with some background to motivate the result announced in the abstract.

Given a discrete group Γ and an element f in its integral group ring ZΓ, one

can construct a dynamical system with interesting properties (a so-called algebraic

Γ-action on the Pontryagin dual of the additive group ZΓ/ZΓ f , see [1] for further

details). This construction is studied in [1, 3], where entropy formulas are given

under the further assumption that Γ is residually finite and amenable.

In analyzing this action, e.g., finding when it is expansive, one is led to consider

the ‘convolution operator’ ρ f : ℓ∞(Γ) → ℓ∞(Γ) defined by

(1.1) ρ f (g)(x) =

∑

y∈Γ

g(xy) f (y) for all g ∈ ℓ∞(Γ) and all x ∈ Γ.

Note that this definition makes sense for any f ∈ ℓ1(Γ). An early preprint version of

[3] contains the following technical result.

Theorem A ([2, Theorem 1.4]) Let Γ be a countable and residually finite group and

let f ∈ ℓ1(Γ). If ρ f is injective, then it is surjective.

The original proof used the hypotheses on Γ to make various approximation argu-

ments, exploiting the fact that injective operators on finite-dimensional vector spaces

are surjective. In an unpublished note, G. Elek extended these techniques to prove

Theorem A for all discrete groups Γ that are sofic. We shall not give the definition

here, but merely observe that

• there is no discrete group known to be non-sofic;
• there is as yet no proof that all groups are sofic.
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In Theorem 2.1 we show that Theorem A holds for any discrete group Γ, by com-

bining a simple duality argument with the old result that all left invertible elements

in the group algebra ℓ1(Γ) are automatically invertible.

One might naively hope to generalize Theorem 2.1 in two directions: first, we

could restrict ρ f to c0(Γ) or ℓp(Γ) for 1 ≤ p < ∞; and second we could study

the analogous convolution operators on L∞(G) for a (non-discrete) locally compact

group G. We give simple examples to show that in both cases injectivity of ρ f need

not imply surjectivity, even if we work with abelian groups.

In the last section we state some partial results for the more general case of

weighted convolution operators on ℓ∞(Γ); these cover the case of an arbitrary weight

on an amenable group, which may be of interest given the original motivating ex-

amples in [3], and also the case of symmetric weights on arbitrary groups. We are

unable to resolve the case of arbitrary weights on arbitrary groups, since it appears to

be unknown if there is a discrete group Γ and a weight ω on it such that the algebra

ℓ1(Γ, ω) contains left invertible, non-invertible elements.

2 An Application of Direct Finiteness

We fix some notation. Throughout the paper, Γ will denote a discrete group, with

identity element e. Given p ∈ [1,∞), we denote by ℓp(Γ) the Banach space of all

p-summable functions Γ → C. ℓ∞(Γ) denotes the Banach space of all bounded

functions Γ → C, equipped with the supremum norm. (The choice of complex

scalars is not important: one could work throughout over R.)

Our main result is the following.

Theorem 2.1 Let f ∈ ℓ1(Γ) and let ρ f : ℓ∞(Γ) → ℓ∞(Γ) denote the operator given

by h 7→ h ∗ f . Then the following are equivalent:

(i) ρ f is injective;

(ii) ρ f is bijective;

(iii) f is invertible in ℓ1(Γ), i.e., there exists g ∈ ℓ1(Γ) such that f ∗ g = δe = g ∗ f .

Theorem 2.1 follows quickly from an old result, essentially due to Kaplansky, that

the Banach algebra ℓ1(Γ) is directly finite. We recall that a unital ring R is said to be

directly finite (or Dedekind finite [6], or von Neumann finite) if every left invertible

element in R is invertible; that is, if every pair x, y ∈ R satisfying xy = 1 also satisfies

yx = 1.

It is known [5, p. 122] that the group von Neumann algebra V N(Γ) – and there-

fore any unital subring such as ℓ1(Γ) – is directly finite. (A proof that ℓ1(Γ) is directly

finite using purely C∗-algebraic methods may be found in [7].) The key points are

that: (i) in a C∗-algebra, every idempotent is similar to a hermitian idempotent; and

(ii) there is a faithful tracial state on V N(Γ). See, e.g., [4, §6.7] for background and

more details.

To apply Kaplansky’s result we need the following elementary lemma. We shall

denote the dual space of a Banach space E by E ′.

Lemma 2.2 Let A be a unital Banach algebra and let f ∈ A. Let R f : A → A be the

operator on A given by right multiplication by f , and let R f
′ : A ′ → A ′ be the adjoint
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operator. Then R f
′ is injective if and only if R f is surjective.

Proof Sufficiency is immediate. To prove necessity, assume R f
′ is injective. Then by

the Hahn–Banach theorem, R f has dense range. Since the group of units in A is an

open subset of A, the range of R f contains an invertible element u. Thus there exists

h ∈ A with h f = u, and so for any x ∈ A we have

R f (xu−1h) = xu−1h f = x,

so that R f is surjective as claimed.

Proof of Theorem 2.1 The implications (3) ⇒ (2) ⇒ (1) are obvious. We shall

prove that (1) ⇒ (3).

Thus, assume ρ f is injective. Let R f : ℓ1(Γ) → ℓ1(Γ) denote the operator of right

convolution with f , i.e.,

(2.1) R f (h)(z) = (h ∗ f )(z) =
∑
y∈Γ

h(zy−1) f (y) for h ∈ ℓ1(Γ) and z ∈ Γ.

The duality between ℓ1(Γ) and ℓ∞(Γ) allows us to identify ρ f with R f
′ (this is easily

verified by a direct comparison of (1.1) and (2.1)). Hence by Lemma 2.2, R f is sur-

jective. In particular there exists g ∈ ℓ1(Γ) such that δe = R f (g) = g ∗ f , and since

ℓ1(Γ) is directly finite, g ∗ f = δe = f ∗ g, as required.

3 Two Simple Counterexamples

Our first example shows that working on ℓ∞ is crucial.

Example 3.1 Let f = δ0 − δ1 ∈ ℓ1(Z). It is clear that the kernel of ρ f : ℓ∞(Z) →
ℓ∞(Z) is spanned by the constant function Z → {1} and so ρ f , regarded as an oper-

ator on c0, is injective. On the other hand, a direct computation shows that for any

a ∈ c0(Z) we have ρ f (a) 6= δ0.

Thus, if E = ℓp(Z) (1 ≤ p < ∞) or E = c0(Z), then the convolution operator

ρ f : E → E is injective but not surjective.

For our second example we need some background. If G is a locally com-

pact group with right-invariant Haar measure µ, and f ∈ L1(G), we may define1

R f : L1(G) → L1(G) by

R f (h)(z) = (h ∗ f )(z) =

∫

G

h(zy−1) f (y) dµ(y)

and take ρ f = R f
′ : L∞(G) → L∞(G), given by

ρ f (g)(x) =

∫

G

g(xy) f (y) dµ(y)

1This formula for convolution differs from the usual one because we are using a right-invariant Haar
measure rather than the usual left invariant one. Our choice is made for ease of comparison with equations
(1.1) and (2.1) and ensures that R• defines a right action of L1(G) on itself.
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Example 3.2 We work on G = T with its usual topology. Let f be any element of

L1(T) such that

f̂ (n) 6= 0 for all n ∈ Z.

Then ρ f : L∞(T) → L∞(T) is injective but has non-closed range (and in particular

is not surjective).

This observation may be folklore; in any case we supply a short proof using some

basic results from Fourier analysis on T. First note that by standard duality arguments

for Banach spaces (see, e.g., [8, Theorem 4.14]) it is enough to show that R f : L1(T) →
L1(T) has dense range but is not surjective. By taking Fourier transforms, this is

equivalent to showing that the multiplication operator

Mbf
: L̂1(T) → L̂1(T)

has dense range but is not surjective.

To see that Mbf
has dense range, note first that the range clearly contains all finitely

supported sequences on Z (because all the coefficients of Mbf
are nonzero); then note

that the space of all such sequences is dense in L̂1(T) (since the trigonometric poly-

nomials are dense in L1(T)). Now suppose that Mbf
is surjective: then in particular

there exists h ∈ L1(T) with Mbf
(ĥ) = f̂ , i.e., such that

(†) f̂ (n)ĥ(n) = f̂ (n) for all n ∈ Z.

By the Riemann–Lebesgue lemma, since h ∈ L1(T), the Fourier coefficients of h tend

to zero. In particular there is some m for which |ĥ(m)| < 1. Combined with (†)

this forces f̂ (m) = 0, which contradicts our initial assumption on f ; hence Mbf
is not

surjective.

4 Partial Results for the Weighted Case

Suppose we have a weight function ω on Γ, i.e., a function ω : Γ → (0,∞) such that

ω(xy) ≤ ω(x)ω(y) for all x, y ∈ Γ. Then given f satisfying

(4.1)
∑

x∈Γ

| f (x)|ω(x) < ∞,

one may define a weighted analogue of ρ f , namely the operator

(4.2) ρω
f : ℓ∞(Γ) → ℓ∞(Γ)

given by

ρω
f (g)(x) =

∑

y∈Γ

ω(xy)

ω(x)
g(xy) f (y) (g ∈ ℓ∞(Γ); x ∈ Γ).

Note that with this notation, if ω is the constant weight 1, then ρω
f ≡ ρ f .

It is natural to seek to extend Theorem 2.1 to operators of the form ρω
f . As before,

we may identify ρω
f with the adjoint of a multiplier R f on a certain unital Banach

algebra, namely ℓ1(Γ, ω).

More precisely, we have the following.
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Lemma 4.1 Let A denote the weighted convolution algebra ℓ1(Γ, ω) and identify the

dual of A with the Banach space ℓ∞(Γ, ω−1). Let Mω : ℓ∞(Γ) → A ′ be the isometric

isomorphism of Banach spaces defined by

Mω(h)(t) = h(t)ω(t) (h ∈ ℓ∞(Γ), t ∈ Γ).

Let f ∈ A and let R f : A → A denote the operator of right multiplication by f . Then

ρω
f = M−1

ω (R f ) ′Mω .

The proof of this lemma consists of routine checking and is therefore omitted.

To proceed as in the proof of Theorem 2.1, we would need to know that ℓ1(Γ, ω) is

directly finite, and I do not know of any proof (or any counterexample). However, for

certain weights, or certain kinds of group, the arguments used to prove Theorem 2.1

go through without problems.

To save needless repetition we introduce the following terminology, following [9].

If Γ is a discrete group and ω is a weight function on Γ, we refer to the pair (Γ, ω)

as a weighted group. We say that the weighted group (Γ, ω) is directly finite if the

convolution algebra ℓ1(Γ, ω) is directly finite.

Lemma 4.2 Let ω be a weight function on Γ such that

(4.3) inf
x∈Γ

ω(x) > 0.

This happens, for example, if the weight ω is symmetric. Then the weighted group (Γ, ω)

is directly finite.

Proof Condition (4.3) ensures that ℓ1(Γ, ω) is contained in ℓ1(Γ) as a unital subal-

gebra. As in the remarks following Theorem 2.1, we deduce that ℓ1(Γ, ω), being a

unital subring of a directly finite ring, is itself directly finite.

Using a result from [9], we can build on this lemma slightly, as follows.

Proposition 4.3 Let (Γ, ω) be a weighted group where Γ is amenable. Then (Γ, ω) is

directly finite.

Proof By [9, Lemma 1] there exists a multiplicative function ϕ : Γ → (0,∞)

such that ϕ(x) ≤ ω(x) for all x ∈ Γ. Define a new weight ν on Γ by setting

ν(x) = ϕ(x)−1ω(x) for all x; then clearly infx∈Γ ν(x) ≥ 1, and so by Lemma 4.2

the weighted group (Γ, ν) is directly finite. Now observe that there is a continuous

algebra isomorphism θ from ℓ1(Γ, ω) onto ℓ1(Γ, ν), given by

(θa)(x) = ϕ(x)a(x) (a ∈ ℓ1(Γ, ω); x ∈ Γ),

and therefore ℓ1(Γ, ω), being isomorphic to a directly finite algebra, is itself directly

finite.

https://doi.org/10.4153/CMB-2010-053-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-053-5


452 Y. Choi

Theorem 4.4 Suppose that the weighted group (Γ, ω) is directly finite. Let f and ρω
f

be as given in (4.1), (4.2). Then the following are equivalent:

(i) ρω
f is injective;

(ii) ρω
f is bijective;

(iii) f is invertible in ℓ1(Γ.ω), i.e., there exists g : Γ → C with

∑

x∈Γ

|g(x)|ω(x) < ∞

such that f ∗ g = δe = g ∗ f .

Outline of proof We only need to prove that (i)⇒ (iii). As before, we use Lemma 2.2

to show that if ρ f is injective, then there exists g ∈ ℓ1(Γ, ω) such that f ∗g = δe. Since

(Γ, ω) is directly finite, we deduce that g ∗ f = δe as required.

Remark We do not know if every weighted group is directly finite. In the proof

of Proposition 4.3 we relied crucially on the fact that any weight on an amenable

group dominates a non-zero character on that group. In [9, Example 2] an example

is given of a weighted group for which the only character dominated by the weight is

zero, and so any attempt to prove that all weighted groups are directly finite must use

deeper arguments than are employed here.
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