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Abstract. Ergodic optimization is the study of problems relating to maximizing orbits and
invariant measures, and maximum ergodic averages. An orbit of a dynamical system is
called f -maximizing if the time average of the real-valued function f along the orbit
is larger than along all other orbits, and an invariant probability measure is called f -
maximizing if it gives f a larger space average than any other invariant probability
measure. In this paper, we consider the main strands of ergodic optimization, beginning
with an influential model problem, and the interpretation of ergodic optimization as the
zero temperature limit of thermodynamic formalism. We describe typical properties of
maximizing measures for various spaces of functions, the key tool of adding a coboundary
so as to reveal properties of these measures, as well as certain classes of functions where
the maximizing measure is known to be Sturmian.

1. Introduction
For a real-valued function defined on the state space of a dynamical system, the
topic of ergodic optimization revolves around understanding its largest possible ergodic
average. Taking the dynamical system to be a map T : X→ X , and denoting the
function by f : X→ R, attention is focused on the supremum of time averages
limn→∞ (1/n)

∑n−1
i=0 f (T i x) over those x ∈ X for which the limit exists, or alternatively

(and in nice cases equivalently) on the supremum of space averages
∫

f dµ over
probability measures µ which are invariant under T .

In the most classical setting of a topological dynamical system, with X a compact metric
space and T : X→ X continuous, and if f is continuous, then the above suprema coincide.
Indeed the common value is a maximum, as the weak∗ compactness of the set MT of
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T -invariant Borel probability measures guarantees some m ∈MT satisfying∫
f dm = max

µ∈MT

∫
f dµ=: β( f ), (1)

and there exists x ∈ X with limn→∞ (1/n)
∑n−1

i=0 f (T i x)= β( f ), since m may be taken
to be ergodic and x an m-generic point. Any such m ∈MT is called a maximizing measure
for f , and β( f ) is the maximum ergodic average.

Ergodic optimization originated in the 1990s, with much early work focused on fixing
a specific map T and studying the dependence of the maximizing measure on a function f
which varied in some finite dimensional space V . Indeed a certain model problem (see §3)
consisting of T the doubling map on the circle, and V the two-dimensional vector space
of degree-one trigonometric polynomials, turned out to be influential: various subsequent
results were suggested either by the behaviour of this model, or by the techniques used to
understand it. In this model, any non-zero function in V has a unique maximizing measure,
this measure is usually periodic (i.e. supported on a single periodic orbit), though not
always periodic. The natural occurrence of non-periodic maximizing measures was itself
somewhat surprising (and had ramifications in related areas [32, 33]), while the apparent
rarity of non-periodic maximizing measures anticipated the programme (described here in
§7) of establishing analogous results for V an infinite-dimensional function space (e.g. the
space of Lipschitz functions) and investigating further generic properties of maximizing
measures (see §8).

The specific maximizing measures arising in the model problem of §3, so-called
Sturmian measures, turned out to be unexpectedly ubiquitous in a variety of ergodic
optimization problems (which we describe in §9), encompassing similar low-dimensional
function spaces, certain infinite dimensional cones of functions, and problems concerning
the joint spectral radius of matrix pairs. Various ideas used to resolve the model problem
have been the subject of subsequent research; most notably, the prospect of adding a
coboundary to f so as to reveal properties of its maximizing measure has been the
cornerstone of much recent work (described in §§5 and 6), with many authors equally
inspired by parallels with Lagrangian dynamical systems.

Another significant strand of research in ergodic optimization, again already present
in early works, was its interpretation (see §4) as a limiting zero temperature version of
the more classical thermodynamic formalism, with maximizing measures (referred to as
ground states by physicists) arising as zero temperature accumulation points of equilibrium
measures; work in this area has primarily focused on understanding convergence and non-
convergence in the zero temperature limit.

2. Fundamentals
Let D denote the set of pairs (X, T ) where X = (X, d) is a compact metric space and
T : X→ X is continuous. For (X, T ) ∈D, the set MT of T -invariant Borel probability
measures is compact when equipped with the weak∗ topology.

Let C denote the set of triples (X, T, f ), where (X, T ) ∈D and f : X→ R is
continuous. For X a compact metric space, let C(X) denote the set of continuous real-
valued functions on X , equipped with the supremum norm ‖ f ‖∞ =maxx∈X | f (x)|. Let
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Lip denote the set of Lipschitz real-valued functions on X , with Lip( f ) := supx 6=y | f (x)−
f (y)|/d(x, y), and Banach norm ‖ f ‖Lip = ‖ f ‖∞ + Lip( f ).

Definition 2.1. For (X, T, f ) ∈ C, the quantity β( f )= β(T, f )= β(X, T, f ) defined by

β( f )= max
µ∈MT

∫
f dµ

is the maximum ergodic average. Any m ∈MT satisfying
∫

f dm = β( f ) is an
f -maximizing measure, and Mmax( f )=Mmax(T, f )=Mmax(X, T, f ) denotes the
collection of such measures.

While we adopt the convention that optimization means maximization, occasional
mention will be made of the minimum ergodic average

α( f )= min
µ∈MT

∫
f dµ=−β(− f ),

and the set Mmin( f )= {m ∈MT :
∫

f dm = α( f )} of minimizing measures for f . The
closed interval [α( f ), β( f )] = {

∫
f dµ : µ ∈MT } is the set of ergodic averages†.

The maximum ergodic average admits a number of alternative characterizations
involving time averages (see e.g. [87, Proposition 2.2]).

PROPOSITION 2.2. For (X, T, f ) ∈ C, the maximum ergodic average β( f ) satisfies

β( f )= sup
x∈XT, f

lim
n→∞

1
n

Sn f (x)= sup
x∈X

lim sup
n→∞

1
n

Sn f (x)= lim sup
n→∞

1
n

sup
x∈X

Sn f (x), (2)

where Sn f =
∑n−1

i=0 f ◦ T i , and XT, f = {x ∈ X : limn→∞ (1/n)Sn f (x) exists}.

The following is well known (see e.g. [87, Proposition 2.4]).

PROPOSITION 2.3. If (X, T, f ) ∈ C then:
(i) there exists at least one f -maximizing measure;
(ii) Mmax( f ) is compact;
(iii) Mmax( f ) is a simplex, and in particular convex;
(iv) the extreme points of Mmax( f ) are precisely those f -maximizing measures which

are ergodic; in particular, there is at least one ergodic f -maximizing measure.

In §§7 and 8 we shall consider typical properties of maximizing measures in various
spaces V of real-valued functions on X . The following result (see e.g. [87, Theorem 3.2],
and in other forms see [27, 51, 52]) guarantees that, for all of the function spaces V
considered, uniqueness of the maximizing measure is typical in V (though clearly there
exist f ∈ V such that Mmax( f ) is not a singleton, provided MT is not a singleton, most
obviously f ≡ 0).

THEOREM 2.4. (Typical uniqueness of maximizing measures) If (X, T ) ∈D, and V is
a topological vector space which is densely and continuously embedded in C(X), then
{ f ∈ V :Mmax( f ) is a singleton} is a residual subset of V .

† This set, and its generalization for f taking values in higher-dimensional spaces, is often referred to as the
rotation set (see e.g. [20, 65, 69, 84, 85, 104, 105, 160]), while in the context of multifractal analysis it is
sometimes referred to as the spectrum of (Birkhoff) ergodic averages.
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If T and f are continuous, but X is non-compact, a number of difficulties potentially
arise. Assuming MT is non-empty, we may define β( f )= supµ∈MT

∫
f dµ, though in

general there need not exist any maximizing measures, and any one of the equalities in (2)
may fail to hold (see e.g. [95]). The most commonly studied example of a non-compact
X is a countable alphabet subshift of finite type, where a number of sufficient conditions
have been given for the existence of maximizing measures (see e.g. [17, 18, 78, 94, 95]),
while [56] includes applications to (non-compact) Julia sets X ⊂ C for maps T in the
exponential family.

Note that versions of ergodic optimization have also been investigated in discrete time
settings slightly different from the one described here, notably the case where MT is
a singleton (see [41]), in the context of non-conventional ergodic averages (see [8]), or
when the optimization is over a restricted subset of MT (see [162]). Generalizations
of ergodic optimization include optimal tracking for dynamical systems (see [122]), and
ergodic dominance (see §9).

3. A model problem
The map T (x)= 2x (mod 1) on the circle X = R/Z is a standard example of a hyperbolic
dynamical system, and the functions f (x)= cos 2πx and g(x)= sin 2πx are arguably
the most natural non-constant functions on X . While the f -maximizing measure is easily
seen to be the Dirac measure at the fixed point 0, the g-maximizing measure is rather
less obvious (it turns out to be the periodic measure on the orbit coded by 0001). This
standard choice of T , and the naturalness of f and g, prompted several early authors to
investigate those T -invariant measures which are maximizing for functions in the two-
dimensional vector space V spanned by f and g. A rather complete understanding of
this model problem has been provided by Bousch [26], following earlier partial progress
[52, 75, 76, 81–83], and the results in this case already point to some more universal
features of ergodic optimization.

While the space of degree-one trigonometric polynomials V is two-dimensional, the
fact that a measure is maximizing for v ∈ V if and only if it is maximizing for cv, where
c > 0, renders the problem a one-dimensional one; specifically, to identify the maximizing
measures for functions in V it suffices to determine the maximizing measures for functions
on the unit sphere in V , i.e. those of the form vθ (x)= (cos 2πθ) f (x)+ (sin 2πθ)g(x)=
cos 2π(x − θ), for θ ∈ R/Z.

It turns out that every vθ has a unique maximizing measure, and that this measure is
typically periodic: for Lebesgue almost every θ ∈ R/Z, the vθ -maximizing measure is
supported on a single periodic orbit. Periodic maximizing measures are also typical in the
topological sense: the set {θ ∈ R/Z :Mmax(vθ ) is a periodic singleton} contains an open
dense subset of R/Z, and consequently {v ∈ V :Mmax(v) is a periodic singleton} contains
an open dense subset of V ≡ R2. In summary, this model problem exhibits typically
periodic optimization, a phenomenon which has subsequently been established for various
natural (infinite-dimensional) function spaces V (see §7 for further details).

More can be said about the maximizing measures arising in this specific model problem.
The only periodic measures which are maximizing for some degree-one trigonometric
polynomials are those on which the action of T is combinatorially equivalent to a
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rational rotation, while the non-periodic measures which are maximizing for some v ∈ V
correspond to irrational rotations (their support is a T -invariant Cantor set reminiscent
of those arising for so-called Denjoy counterexamples in the theory of degree-one circle
maps, cf. e.g. [155]). More precisely, the maximizing measures for (non-zero) functions
in V are Sturmian measures: the Sturmian measure of rotation number % ∈ R/Z is the
push forward of the Lebesgue measure on X under the map x 7→

∑
n≥0 χ[1−%,1)({x +

n%})/2n+1, where { · } denotes reduction modulo 1. For example, all T -invariant measures
supported on a periodic orbit of period < 4 are Sturmian, though the measure supported
on {1/5, 2/5, 3/5, 4/5} ≡ 0011 is not, and periodic orbits supporting Sturmian measures
become increasingly rare as the period grows (see e.g. [4, 26, 43, 82, 89, 90, 134] for
further details on Sturmian measures and orbits). Bousch [26] showed that every Sturmian
measure arises as the maximizing measure for some vθ , and that if % is irrational then
θ = θ(%) is unique.

The fact that Sturmian measures are precisely the maximizing measures for this model
problem does rely, to an extent, on the particular choice of f and g, though the presence
of Sturmian measures is not altogether surprising: it has subsequently been shown that
Sturmian measures arise naturally as maximizing measures in a variety of similar settings,
as will be described in §9.

4. Ergodic optimization as zero temperature thermodynamic formalism
Given (X, T, f ) ∈ C, the pressure P( f )= P(T, f ) is defined as

P( f )= sup
m∈MT

(∫
f dm + h(m)

)
, (3)

where h(m) denotes the entropy of m. Any m ∈MT attaining the supremum in (3) is
called an equilibrium measure (denoted by m f if it is unique) for the function f (which
in this context is referred to as a potential). If f is replaced by t f for t ∈ R, then the
entropy term in the supremum (3) loses relative importance as t→∞ (the thermodynamic
interpretation of the parameter t is as an inverse temperature, so that letting t→∞ is
referred to as a zero temperature limit). For large values of t , an equilibrium measure for
t f is almost maximizing for f , in that its integral is close to the maximum ergodic average
β( f ). More precisely, a number of early authors [48, 51, 52, 81, 83, 138] observed, in
various broadly similar settings (with T hyperbolic and f Hölder continuous, so that mt f

exists and is unique) that the family (mt f ) has at least one accumulation point m as t→∞,
that m is an f -maximizing measure, and that limt→∞ h(mt f )= h(m)=max{h(µ) : µ ∈
Mmax( f )} (i.e. any zero temperature accumulation point is of maximal entropy among
the set of f -maximizing measures). Indeed these conclusions are true in wider generality:
if X is compact, and the entropy map µ 7→ h(µ) is upper semi-continuous†, then every
continuous function has at least one equilibrium measure (see [157, Theorem 9.13(iv)]),
and it is not hard to establish the following result.

† Upper semi-continuity of entropy holds if T is expansive (see [157]), or more generally if T admits a finite
generating partition (see [101, Corollary 4.2.5]); in particular, this includes all symbolic systems. Upper semi-
continuity is also guaranteed (see [135]) whenever T is a C∞ map of a compact manifold.
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THEOREM 4.1. (Zero temperature limits as maximal entropy maximizing measures) Let
(X, T, f ) ∈ C be such that the entropy map on MT is upper semi-continuous. For t ∈ R,
if mt is an equilibrium measure for t f then (mt ) has at least one accumulation point
m ∈MT as t→∞, and:
(i) m is an f -maximizing measure,
(ii) h(m)=max{h(µ) : µ ∈Mmax( f )},
(iii) limt→∞ h(mt )= h(m).

In particular, under the hypotheses of Theorem 4.1, if Mmax( f )= {m} then mt → m
as t→∞, so Theorem 2.4 implies that for typical f the weak∗ limit limt→∞ mt exists,
and is characterized as being the unique f -maximizing measure. A wider investigation of
the nature of the set of accumulation points of (mt ), and of whether limt→∞ mt always
exists, was initially focused on the case of (X, T ) a subshift of finite type and f locally
constant (hypotheses guaranteeing that the unique equilibrium measure mt f is Markov); it
was found [48, 83, 140] that limits limt→∞ mt f are not necessarily ergodic, nor necessarily
the evenly weighted centroid of ergodic maximizing measures of maximal entropy. In this
setting, the convergence question was resolved by Brémont [37], who showed† that the
zero temperature limit does always exist, even when Mmax( f ) is not a singleton.

THEOREM 4.2. [37] (Zero temperature convergence for locally constant functions) For
(X, T ) a subshift of finite type, and f : X→ R locally constant, limt→∞ mt f exists;
indeed L p(X)= {limt→∞ mt f : f ∈ C(X) depends on p coordinates} is finite for each
p ∈ N.

For example, given (X, T ) the full shift on two symbols, the set L2(X) has cardinality
7, and its elements can be listed explicitly (see [37]). For larger p, and for other subshifts
of finite type (X, T ), the set of possible limits L p(X) becomes harder to describe. Progress
on this problem was made initially by Leplaideur [108], then by Chazottes, Gambaudo and
Ugalde [45] and Garibaldi and Thieullen [68], using a variety of techniques, and can be
summarized as the following.

THEOREM 4.3. (Description of zero temperature limit for locally constant functions)
If (X, T ) is a subshift of finite type, and f : X→ R is locally constant, then m =
limt→∞ mt f is concentrated on a certain subshift of finite type X f which is itself a finite
union of transitive subshifts of finite type. The finitely many ergodic components mi of
m =

∑q
i=1 αi mi are unique equilibrium measures of auxiliary potential functions; these

potentials, and the weights αi , can be constructed algorithmically.

In the more general setting of Lipschitz functions on subshifts of finite type, the question
of whether zero temperature limits always exist remained open for several years, being
finally‡ settled negatively by Chazottes and Hochman [46].

† The paper [37] uses ideas from analytic geometry (semi-algebraic and sub-analytic maps) which are outside
the standard toolkit of most ergodic theorists, and despite its elegant brevity, the approach of [37] has not
subsequently been pursued.
‡ It was noted in [46] that van Enter and Ruszel [58] had already given an example of non-convergence in the
zero temperature limit, albeit in a somewhat different context: a nearest neighbour potential model with the shift
map acting on a subset of (R/Z)Z, the significant difference being that the state space R/Z is non-discrete.
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THEOREM 4.4. [46] (Zero temperature non-convergence) For (X, T ) the full shift on
two symbols, there exist Lipschitz functions f : X→ R for which limt→∞ mt f does not
exist. Indeed such f may be defined as f (x)=−dist(x, Y ), where Y ⊂ X is a (carefully
constructed) subshift.

The flexibility of the approach in [46] allows the full shift in Theorem 4.4 to be replaced
by any (one-sided or two-sided) mixing subshift of finite type, and allows the construction
of subshifts Y such that the set of accumulation points of (mt f ) is e.g. non-convex, or
only containing positive entropy measures, or not containing ergodic measures. Bissacot,
Garibaldi and Thieullen [19] have shown that non-convergence in the zero temperature
limit can arise for certain functions on the full two-shift which take only countably many
values, and where the only ergodic maximizing measures are the Dirac measures at the
two fixed points. Yet another approach to non-convergence in the zero temperature limit
has been introduced by Coronel and Rivera-Letelier [53], partially based on the methods
of [58], establishing a certain persistence of the non-convergence phenomenon.

THEOREM 4.5. [53] (Persistence of zero temperature non-convergence) For (X, T ) a full
shift on a finite alphabet, there exists a Lipschitz function f0 : X→ R, and complementary
open subsets U+ and U− of X, such that for any sequence of positive reals ti →∞, there
is an arbitrarily small Lipschitz perturbation f of f0 such that the sequence mti f has an
accumulation point whose support lies in U+, and an accumulation point whose support
lies in U−.

Temporarily widening our notion of a dynamical system to include higher-dimensional
shifts† (i.e. G-actions on X = FG , where G = Zd or Nd for some integer d ≥ 2, and F is
finite), the following result‡ of [46] represents an interesting counterpoint to Theorems 4.2
and 4.4.

THEOREM 4.6. [46] (Zero temperature non-convergence for locally constant functions on
higher-dimensional shifts) For d ≥ 3, there exist locally constant functions f on {0, 1}Z

d

such that for every family (mt )t>0, where mt is an equilibrium measure for t f , the limit
limt→∞ mt does not exist.

For the case of (X, T ) a countable alphabet subshift of finite type, where X is
non-compact and the entropy map µ 7→ h(µ) is not upper semi-continuous, additional
summability and boundedness hypotheses on the locally Hölder function f : X→ R,
together with primitivity assumptions on X , ensure the existence and uniqueness of the
equilibrium measures mt f , that the family (mt f ) does in fact have an accumulation
point m, and that h(m)= limt→∞ h(mt f )=max{h(µ) : µ ∈Mmax( f )} (see [63, 93,
124]), representing an analogue of Theorem 4.1. If in addition f is locally constant,
Kempton [102] (see also [63]) has established the analogue of Theorem 4.2, guaranteeing
the weak∗ convergence of (mt f ) as t→∞. Iommi and Yayama [80] consider almost

† Zero temperature non-convergence results for higher-dimensional shifts are also proved in [53].
‡ The proof of Theorem 4.6 in [46] relied on work of Hochman [74] establishing that certain one-dimensional
subshifts can be simulated in finite type subshifts of dimension d = 3; this fact has now been generalized to
dimension d = 2 (see [7, 57]), suggesting that Theorem 4.6 is probably valid for all d ≥ 2 (though certainly not
for d = 1, in view of Theorem 4.2).
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additive sequences F of continuous functions defined on appropriate countable alphabet
subshifts of finite type, proving that the family of equilibrium measures (mtF ) is tight
(based on [93]), hence has a weak∗ accumulation point, and that any such accumulation
point is a maximizing measure for F (see also [47, 64, 151, 161] for general ergodic
optimization in the context of sequences of functions F).

Zero temperature limits have been analysed for certain specific families of functions:
in [83] for T the doubling map and f a degree-one trigonometric polynomial, in [13] a
specific class of functions defined on the full shift on two symbols and taking countably
many values, in [11] a one-parameter family of functions defined on the full shift on three
symbols, each sharing the same two ergodic maximizing measures, and in [10, 112] for
the XY model of statistical mechanics. Connections with large deviation theory have been
studied in [14, 111, 113], and the role of the flatness of the potential function has been
investigated in [109].

One source of interest in zero temperature limits of equilibrium measures is multifractal
analysis, i.e. the study of level sets of the form Kγ = {x ∈ X : limn→∞ (1/n)Sn f (x)= γ }.
Each Kγ is T -invariant, and the entropy spectrum of Birkhoff averages, i.e. the function
H : [α( f ), β( f )] → R≥0 defined by† H(γ )= htop(Kγ ), is in certain (hyperbolic) settings
described by the family of equilibrium measures (mt f )t∈R, in the sense that 0 : t 7→∫

f dmt f is a homeomorphism R→ (α( f ), β( f )), and (see [107], and e.g. [25, 70, 73,
136])

H(γ )= h(m0−1(γ ) f )=max
{

h(µ) : µ ∈MT ,

∫
f dµ= γ

}
for all γ ∈ (α( f ), β( f )).

The function H is concave, and extends continuously to the boundary of [α( f ), β( f )],
though the absence of equilibrium measures mt f with

∫
f dmt f on the boundary prompted

investigation of extremal measures (see [48, 81, 83, 140]), and of the (typical) values
H(α( f )) and H(β( f )) (see [146]).

Finally, we note that zero temperature limits of equilibrium measures have been
studied in a variety of other dynamical settings, including Frenkel–Kontorova models [6],
quadratic-like holomorphic maps [54], multimodal interval maps [79] and Hénon-like
maps [152].

5. Revelations
The fundamental problem of ergodic optimization is to say something about maximizing
measures. A most satisfactory resolution is to explicitly identify the f -maximizing
measure(s) for a given (X, T, f ) ∈ C, though in some cases we may be content with
an approximation to an f -maximizing measure, or a result asserting that Mmax( f ) lies
in some particular subset of MT . More generally, for a given (X, T ) ∈D and a subset
U ⊂ C(X), we may hope to identify a subset N ⊂MT such that Mmax( f )⊂N for all
f ∈U , or instead Mmax( f )⊂N for all f belonging to a large subset of U .

† The topological entropy htop(Kγ ) of the (in general non-compact) invariant set Kγ is as defined by Bowen [34],
or equivalently by Pesin and Pitskel’ [137].
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In a variety of such settings, it has been noted that a key technical tool is a function
we shall refer† to as a revelation, and an associated result we shall refer to as a revelation
theorem (see §6). First we require the following concept, describing a situation where the
ergodic optimization problem is easily solved.

Definition 5.1. Given (X, T ) ∈D, we say f ∈ C(X) is revealed if its set of maxima
f −1(max f ) contains a compact T -invariant set.

In the (rare) cases when the function f is revealed, it is clear that the maximum ergodic
average β( f ) equals max f , and that the set of f -maximizing measures is precisely the
(non-empty) set of T -invariant measures whose support is contained in f −1(max f ).

More generally, if we can find ψ ∈ C(X) satisfying∫
ψ dµ= 0 for all µ ∈MT , (4)

and such that f + ψ is revealed, then β( f )= β( f + ψ) equals max( f + ψ), and
Mmax( f )=Mmax( f + ψ) is precisely the set of T -invariant measures whose support
is contained in the set ( f + ψ)−1(max( f + ψ)).

A natural choice of function ψ satisfying (4) is a continuous coboundary, i.e. ψ =
ϕ − ϕ ◦ T for some ϕ ∈ C(X), and the ergodic optimization literature has focused mainly
(though not exclusively, see e.g. [125]) on such ψ , since for practical purposes it usually
suffices. This motivates the following definition.

Definition 5.2. For (X, T, f ) ∈ C, a continuous coboundary ψ is called a revelation if
f + ψ is a revealed function, i.e. if

( f + ψ)−1(max( f + ψ)) contains a compact T -invariant set. (5)

Formalizing the above discussion, we record the following.

PROPOSITION 5.3. If ψ is a revelation for (X, T, f ) ∈ C, then β( f )=max( f + ψ), and

Mmax( f )=Mmax( f + ψ)= {µ ∈M : supp(µ)⊂ ( f + ψ)−1(max( f + ψ))} 6= ∅.

A consequence of Proposition 5.3 is that if (X, T, f ) ∈ C has a revelation then it enjoys
the following property (referred to in [27, 125] as the subordination principle): if µ ∈MT

is f -maximizing, and if the support of ν ∈MT is contained in the support of µ, then ν is
also f -maximizing.

Example 5.4.
(a) If T (x)= 2x (mod 1), the function f (x)= (2 cos 2πx − 1)(sin 2πx + 1) is not

revealed, but can be written as f = g − ψ where g(x)= 2 cos 2πx − 1 is revealed,
andψ(x)= sin 2πx − sin 4πx is a continuous coboundary, hence a revelation for f .
The unique f -maximizing measure is therefore the g-maximizing measure, namely
the Dirac measure δ0.

† The terms revelation and revealed function are introduced here, since despite the ubiquity of these concepts
there is as yet no established consensus on terminology. The function ψ = ϕ − ϕ ◦ T we call a revelation has
previously been referred to as a sub-coboundary or the solution of a sub-cohomology equation, and the function ϕ
in this context has been called a sub-action, a Barabanov function, a transfer function, or a maximizing function.
The notion of a revealed function has sometimes gone by the name of a normal form, or in the context of joint
spectral radius problems corresponds to a (maximizing) Barabanov norm.
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(b) If (X, T ) is the full shift on the alphabet {0, 1}, and the functions ( fθ )θ∈R are
defined by fθ (x)= fθ ((xi )

∞

i=1)= θx1 + x2 − (θ + 2)x1x2, then fθ is revealed if and
only if θ = 1. For all c ∈ R, the function ψc(x)= c(x1 − x2) is a coboundary, and
( fθ + ψc)(x)= (θ + c)x1 + (1− c)x2 − (θ + 2)x1x2. If θ >−1 then ψ(1−θ)/2 is a
revelation, and reveals the invariant measure supported on the period-2 orbit to be the
unique fθ -maximizing measure. If θ <−1 then ψ1 is a revelation, with unique fθ -
maximizing measure the Dirac measure concentrated on the fixed point 0. If θ =−1
then ψ(1−θ)/2 = ψ1 is a revelation, and reveals that the f−1-maximizing measures
are those whose support is contained in the golden mean subshift of finite type.

In this article we have chosen to interpret optimization as maximization, while
noting that the minimizing measures for f are the maximizing measures for − f , and
that the minimum ergodic average α( f )=minµ∈MT

∫
f dµ is equal to −β(− f )=

−maxµ∈MT

∫
(− f ) dµ. Occasionally there is interest in simultaneously considering

the maximization and minimization problems; indeed the above discussion suggests the
possibility of simultaneously revealing both the minimizing and maximizing measures, by
a judicious choice of revelation. This possibility was considered by Bousch [28], who
showed (see Theorem 5.5 below) that if the f -maximizing measures can be revealed, and
if the f -minimizing measures can be revealed, then indeed it is possible to reveal both
maximizing and minimizing measures simultaneously.

To make this precise, let us introduce the following terminology. For a given dynamical
system T : X→ X , a revelation for f , in the sense of Definition 5.2, will also be
called a maximizing revelation, while a revelation for − f will be called a minimizing
revelation for f (i.e. a minimizing revelation ψ is a continuous coboundary such that
( f + ψ)−1(min( f + ψ)) contains a compact T -invariant set). We say that ψ is a bilateral
revelation for f if it is both a minimizing revelation and a maximizing revelation.

THEOREM 5.5. [28] (Bilateralizing the maximizing and minimizing revelations) For
(X, T, f ) ∈ C, if there exists both a minimizing and a maximizing revelation, then there
exists a bilateral revelation (i.e. a continuous coboundary ϕ − ϕ ◦ T with ( f + ϕ − ϕ ◦ T )
(X)= [α( f ), β( f )]).

For example, revisiting the family ( fθ )θ∈R from Example 5.4(b), if −3≤ θ ≤−2 then
ψc is seen to be a bilateral revelation for fθ , for all c ∈ [−θ − 1, 2].

6. Revelation theorems
By a revelation theorem† we mean a result of the following kind.

THEOREM 6.1. (Revelation theorem: model version) For a given (type of) dynamical
system (X, T ) ∈D, and a given (type of) function f ∈ C(X), there exists a revelation
ϕ − ϕ ◦ T (i.e. f + ϕ − ϕ ◦ T is a revealed function).

† Our terminology is consistent with that of §5, as again there is no established consensus on how to describe
such theorems: the revelation theorem has been variously called the normal form theorem, the positive Livsic
theorem, Mañé’s lemma, the Bousch–Mañé cohomology lemma and the Mañé–Conze–Guivarc’h lemma.
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In a typical revelation theorem, (X, T ) is assumed to enjoy some hyperbolicity, and
there is some restriction on the modulus of continuity of f . This is reminiscent of Livsic’s
Theorem (see [110], or e.g. [100, 139]), which asserts that if (X, T ) is suitably hyperbolic,
and f is suitably regular (e.g. Hölder continuous) such that

∫
f dµ= 0 for all µ ∈MT ,

then f is a continuous coboundary. Indeed a Livsic-type theorem can be viewed as a
special case of a revelation theorem, as it follows by applying an appropriate revelation
theorem to both f and − f , then invoking Theorem 5.5.

Revelation theorems date back to the 1990s: Conze and Guivarc’h proved a version
as part of [52], there are parallels with the work of Mañé on Lagrangian flows [118,
119], while the first published revelation theorem resembling Theorem 6.1 was due
to Savchenko† [145], for (X, T ) a subshift of finite type and f Hölder continuous.
Other pioneering papers containing revelation theorems were those of Bousch [26] and
Contreras, Lopes and Thieullen [51].

Common features of these early revelation theorems are that f is Hölder or Lipschitz,
and that T is expanding. The following revelation theorem for expanding maps is a
particular case of a result in [30] (which is valid for more general amphidynamical
systems), and recovers those in [26, 51, 52, 145].

THEOREM 6.2. (Revelation theorem: expanding T , Lipschitz f ) For expanding (X, T ) ∈
D, every Lipschitz function f : X→ R has a Lipschitz revelation.

Since an α-Hölder function for the metric d is a Lipschitz function for the metric dα
defined by dα(x, y)= d(x, y)α , we deduce the following.

COROLLARY 6.3. (Revelation theorem: expanding T , Hölder f ) For expanding (X, T ) ∈
D, every α-Hölder function f : X→ R has an α-Hölder revelation, for all α ∈ (0, 1].

To prove Theorem 6.2, we claim that the function ϕ defined by

ϕ(x)= sup
n≥1

sup
y∈T−n(x)

(Sn f (y)− nβ( f )) (6)

is such that ϕ − ϕ ◦ T is a Lipschitz revelation. Without loss of generality we may assume
that β( f )= 0, so that (6) becomes

ϕ(x)= sup
n≥1

sup
y∈T−n(x)

Sn f (y).

To show that ϕ − ϕ ◦ T is a revelation, we first claim‡ that

f + ϕ − ϕ ◦ T ≤ 0, (7)

and note this immediately implies that ( f + ϕ − ϕ ◦ T )−1(0) contains a compact T -
invariant set, since otherwise there could not be any m ∈MT satisfying

∫
f dm = 0=

β( f ). To prove (7), note that

ϕ(T x)= sup
n≥1

sup
y∈T−n T (x)

Sn f (y)≥ sup
n≥1

sup
y∈T−(n−1)(x)

Sn f (y), (8)

† Savchenko’s three-page paper contains no discussion of why the revelation theorem is interesting or
useful, though does include some comments on its genesis: the problem had been proposed in Anosov and
Stepin’s Moscow dynamical systems seminar in November 1995, and had also been conjectured by Bill Parry.
Savchenko’s proof relies on thermodynamic formalism, exhibiting ϕ as a sub-sequential limit of (1/t) log ht ,
where ht is the eigenfunction for the dominant eigenvalue of the Ruelle operator with potential function t f .
‡ Note that the proof of this claim does not require that f is Lipschitz or that T is expanding.
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because T−(n−1)(x)⊂ T−n(T (x)). Now if y ∈ T−(n−1)(x) then Sn f (y)= f (x)+
Sn−1 f (y) for all n ≥ 1 (with the usual convention that S0 f ≡ 0), so (8) gives

ϕ(T x)≥ f (x)+ sup
n≥1

sup
y∈T−(n−1)(x)

Sn−1 f (y). (9)

However,

sup
n≥1

sup
y∈T−(n−1)(x)

Sn−1 f (y)= sup
N≥0

sup
y∈T−N (x)

SN f (y)≥ sup
N≥1

sup
y∈T−N (x)

SN f (y)= ϕ(x),

(10)
so combining (9) and (10) gives ϕ(T x)≥ f (x)+ ϕ(x), which is the desired inequality
(7).

To complete the proof of Theorem 6.2 it remains to show that ϕ is Lipschitz, i.e. that
there exists K > 0 such that for all x, x ′ ∈ X ,

ϕ(x)− ϕ(x ′)≤ K d(x, x ′). (11)

Given x, x ′ ∈ X , for any ε > 0 there exists N ≥ 1 and y ∈ T−N (x) such that

ϕ(x)≤ SN f (y)+ ε. (12)

Since T is expanding we may write y = Ti1 ◦ · · · ◦ TiN (x) where the Ti j denote inverse
branches of T (i.e. each T ◦ Ti j is the identity map), and we now define y′ ∈ X by y′ :=
Ti1 ◦ · · · ◦ TiN (x

′). In particular, y ∈ T−N (x ′), so SN f (y′)≤ supz∈T−N (x ′) SN f (z), and
therefore

SN f (y′)≤ sup
n≥1

sup
z∈T−n(x ′)

Sn f (z)= ϕ(x ′). (13)

If λ > 1 is an expanding constant for T , i.e. d(T (z), T (z′))≥ λ d(z, z′) for all z, z′

sufficiently close to each other, then γ = λ−1 is a Lipschitz constant for each of the
inverse branches of T , so that if 0≤ j ≤ N − 1 then d(Ti j+1 ◦ · · · ◦ TiN (x), Ti j+1 ◦ · · · ◦

TiN (x
′))≤ γ N− j d(x, x ′), therefore

f (Ti j+1 ◦ · · · ◦ TiN (x))− f (Ti j+1 ◦ · · · ◦ TiN (x
′))≤ Lip( f )γ N− j d(x, x ′),

and hence

SN f (y)− SN f (y′)≤
N−1∑
j=0

Lip( f )γ N− j d(x, x ′) <
γ

1− γ
Lip( f ) d(x, x ′). (14)

Combining (12), (13) and (14) then gives ϕ(x)− ϕ(x ′) < (γ /(1− γ )) Lip( f ) d(x, x ′)+ε,
but ε > 0 was arbitrary, so

ϕ(x)− ϕ(x ′)≤
γ

1− γ
Lip( f ) d(x, x ′),

which is the desired Lipschitz condition (11) with K = (γ /(1− γ )) Lip( f ), so
Theorem 6.2 is proved.

In fact there are various different routes to proving Theorem 6.2, stemming from other
possible choices of ϕ (see e.g. [66, 67] for further details), notably the choice

ϕ(x)= lim sup
n→∞

sup
y∈T−n(x)

(Sn f (y)− nβ( f )),
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which moreover (see [26, 51]) satisfies the functional equation

ϕ(x)+ β( f )= sup
y∈T−1(x)

( f + ϕ)(y). (15)

Similar functional equations arise in a number of related settings, for example weak
KAM (Kolmogorov–Arnold–Moser) theory [59–62] and infinite horizon optimal control
theory [44, Theorem 5.2]. Indeed (15) can be interpreted as an eigenequation for the
operator defined by its right-hand side, with the maximum ergodic average β( f ) playing
the role of its eigenvalue; the nonlinear operator may be viewed as an analogue of the
classical Ruelle transfer operator (see e.g. [9, 139, 144]) with respect to the max-plus
algebra (in which the max operation plays the role of addition, and addition plays the role
of multiplication, see e.g. [12]).

There is a revelation theorem for maps T which satisfy a condition that is weaker
than being expanding: Bousch [27] defined T : X→ X to be weakly expanding if its
inverse T−1 is 1-Lipschitz when acting on the set of compact subsets of X , equipped
with the induced Hausdorff metric (i.e. for all x, y ∈ X , there exists x ′ ∈ T−1(y) such that
d(x, x ′)≤ d(T x, T x ′)). The focus of [27] was on functions which are Walters (the notion
was introduced in [156]) for the map T : for all ε > 0 there exists δ > 0 such that for all
n ∈ N, x, y ∈ X , if d(T i x, T i y) < δ for 0≤ i < n then |Sn f (x)− Sn f (y)|< ε.

THEOREM 6.4. [27] (Revelation theorem: weakly expanding T , Walters f ) If (X, T ) ∈D
is weakly expanding, then every Walters function f : X→ R has a revelation.

The first revelation theorem in the setting of invertible hyperbolic systems appeared
in [27], for maps T satisfying an abstract notion of hyperbolicity dubbed weak local
product structure: for all ε > 0 there exists η > 0 such that if orbits (xi )i≤0 and (yi )i≥0

satisfy d(x0, y0)≤ η then there exists an orbit (zi )i∈Z with d(xi , zi )≤ ε for i ≥ 0, and
d(yi , zi )≤ ε for i ≥ 0.

THEOREM 6.5. [27] (Revelation theorem: T with weak local product structure) If
(X, T ) ∈D is transitive and has weak local product structure, then every Walters function
has a revelation.

In particular, a transitive Anosov diffeomorphism has weak local product structure, and
in this case a Hölder continuous function is Walters, so Theorem 6.5 implies the existence
of a revelation. The following stronger result confirms, as suggested by Livsic’s theorem,
that in this case the revelation is also Hölder.

THEOREM 6.6. (Revelation theorem: T Anosov, f Hölder) If (X, T ) ∈D is a transitive
Anosov diffeomorphism, and f is α-Hölder, then there exists a revelation ϕ − ϕ ◦ T , where
ϕ is α-Hölder.

A version of Theorem 6.6 was proved by Lopes and Thieullen [115], who showed that
if f is α-Hölder then ϕ is β-Hölder for some β < α; the fact that ϕ can be chosen with the
same Hölder exponent as f was established by Bousch [30].

Morris [127] considered the existence and non-existence of revelations in the context
of circle maps with an indifferent fixed point (improving on earlier work [36, 149]).
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Specifically, he considered expanding circle maps of Manneville–Pomeau type α ∈

(0, 1), generalizing the Manneville–Pomeau map x 7→ x + x1+α (mod 1), and proved the
following.

THEOREM 6.7. [127] (Revelation theorem: T of Manneville–Pomeau type) If T is an
expanding circle map of Manneville–Pomeau type α ∈ (0, 1), then every Hölder function of
exponent γ > α has a (γ − α)-Hölder revelation; however there exist α-Hölder functions
which do not have a revelation.

The estimate on the Hölder exponent of the revelation in Theorem 6.7 is sharp: there
exist γ -Hölder functions without any revelation of Hölder exponent strictly larger than
γ − α (see [127]). Branco [35] has considered certain degree-two circle maps with a
super-attracting fixed point, proving that if f is α-Hölder, and the super-attracting fixed
point is not maximizing, then there exists an α-Hölder revelation.

If T : X→ X and f : X→ R are continuous, but X is not compact, there is no
guarantee that f -maximizing measures exist: the supremum supµ∈MT

∫
f dµ need not be

attained by any m ∈MT . One way of proving the existence of f -maximizing measures is
to establish a revelation theorem for f , an approach developed in [94, 95], with particular
focus on the case where (X, T ) is a subshift of finite type on the countable alphabet N.
In this setting, if a function with summable variations is such that its values on a given
cylinder set† are sufficiently larger than its values ‘at infinity’, then a revelation exists, and
in particular Mmax( f, T ) is non-empty. A prototypical result of this kind (see [18, 94]) is
the following.

THEOREM 6.8. (Revelation theorem: non-compact subshift of finite type) For (X, T ) the
one-sided full shift on the alphabet N, if f is bounded above, of summable variations, and
there exists I ∈ N with

∑
∞

j=1 var j ( f ) < inf f |[I ] − sup f |[i], for all sufficiently large i ,
then f has a revelation, and in particular has a maximizing measure.

The inequality in Theorem 6.8 clearly holds whenever sup f |[i]→−∞, which in
particular is the case if f satisfies the summability condition

∑
∞

i=1 esup f |[i] <∞ familiar
from thermodynamic formalism (see e.g. [121]). Note that [17] provides alternative criteria
guaranteeing the existence of a maximizing measure for certain functions f defined on
irreducible countable alphabet subshifts of finite type: the approach is more direct than
in [94], and while it does not prove the existence of a revelation, it does establish the
subordination principle.

Going beyond the setting of discrete dynamics, there has been some work on revelation
theorems for flows‡: for T t a smooth Anosov flow without fixed points, and f
Hölder continuous, there exists a Hölder function ϕ satisfying

∫ s
0 f (T t (x)) dt + ϕ(x)−

ϕ(T s(x))≤ sβ( f ) for all x ∈ X , s ∈ R+ (see [116, 141]), which moreover is smooth in the
flow direction (see [116]). An analogous result holds for certain expansive non-Anosov
geodesic flows, see [114].

† Here we use [i] to denote the cylinder set consisting of all sequences (xn)
∞
n=1 such that x1 = i .

‡ Note that although the majority of work on ergodic optimization has been placed in the setting of discrete time,
there have been various developments in the context of flows (see [28, 114, 116, 117, 141, 158]).
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7. Typically periodic optimization (TPO)
Given a dynamical system (X, T ) ∈D of a particular kind (e.g. enjoying some appropriate
hyperbolicity), we wish to establish properties of typical maximizing measures: for a
topological vector space V of real-valued functions on X , we aim to show there exists
V ′ ⊂ V which is topologically large (e.g. containing an open dense subset of V ) such that
all f ∈ V ′ have maximizing measure(s) with a certain specified property. The specified
property we have in mind is that the maximizing measure be periodic, though first we
note that a weaker property follows as a simple consequence of §6 (where for definiteness
(X, T ) is assumed to be expanding or Anosov, and V = Lip, so Theorems 6.2 and 6.6 can
be used).

THEOREM 7.1. (Typical maximizing measures are not fully supported) Suppose (X, T ) ∈
D is either expanding or Anosov, and is transitive but not reduced to a single periodic
orbit. The open dense set Lip′, defined as the complement in Lip of the closed subspace
{c + ϕ − ϕ ◦ T : c ∈ R, ϕ ∈ Lip}, is such that if f ∈ Lip′ then no f -maximizing measure
is fully supported.

The possibility of typical maximizing measures being periodic was suggested by the
early work on ergodic optimization for finite-dimensional spaces of functions, as described
in §3. We state this below as the (purposefully imprecise) Conjecture 7.3, but first require
some notation.

Definition 7.2. For (X, T ) ∈D, and V a Banach space consisting of certain continuous
real-valued functions on X , define VPer to be the set of those f ∈ V such that Mmax( f )
contains at least one measure supported on a single periodic orbit.

Conjecture 7.3. (TPO conjecture) If (X, T ) ∈D is a suitably hyperbolic dynamical
system, and V is a Banach space consisting of suitably regular continuous functions, then
VPer contains an open dense subset of V .

The earliest published paper containing specific articulations of the TPO conjecture was
that of Yuan and Hunt [159], where (X, T ) was assumed to be either an expanding map or
an Axiom A diffeomorphism; the analogue of the TPO conjecture was conjectured [159,
Conjecture 1.1] for V a space of smooth (e.g. C1) functions on X , though the case V = Lip
was discussed in more detail. In subsequent years, this case V = Lip became a focus
of attention among workers in ergodic optimization, culminating in its resolution (see
Theorem 7.10 below) by Contreras [50], building on the work of [126, 142, 159].

The first proved (infinite-dimensional) version of the TPO conjecture was due to
Contreras, Lopes and Thieullen [51], in a paper prepared at around the same time as [159].
In the context of (smooth) expanding maps (on the circle), they noted a significant
consequence of the revelation theorem (a version of which they proved [51, Theorem 9]),
which would also be exploited by subsequent authors: if it is known that (X, T, f ) has a
revelation ψ for every f ∈ V , then the revealed function f + ψ is usually more amenable
to analysis, and in particular it may be possible to exhibit small perturbations of f + ψ
which lie in the desired set VPer, and thus deduce that f itself can be approximated by
members of VPer. Their choice of V = V α was as a closed subspace of Hα , the space of
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α-Hölder functions on X ; the space V α is defined to consist of the closure (in Hα) of those
functions which are actually better than α-Hölder, i.e. they are β-Hölder for some β > α
(so V α is defined for α < 1, but undefined in the Lipschitz class α = 1). The superior
approximation properties enjoyed by V α yield the following.

THEOREM 7.4. [51] (TPO on a proper closed subspace of Hölder functions) For α ∈ (0, 1)
and (X, T ) a circle expanding map, V α

Per contains an open dense subset of V α .

Bousch [27, p. 305] was able to use his revelation theorem (Theorem 6.4) for the set W
of Walters functions in the particular context of the one-sided full shift, where W can be
given the structure of a Banach space, to prove the following.

THEOREM 7.5. [27] (TPO for Walters functions on a full shift) For (X, T ) a full shift,
WPer contains an open dense subset of W .

An important ingredient in the proof of Theorem 7.5 is that locally constant functions
are dense in W , and that for such functions f the set Mmax( f ) is stable under perturbation
(indeed Mmax( f ) is the set of all invariant measures supported by some subshift of finite
type, and such subshifts always contain at least one periodic orbit).

Quas and Siefken [142] also considered the setting of (X, T ) a one-sided full shift,
and spaces of functions which are Lipschitz with respect to non-standard metrics on X :
for a sequence A = (An)

∞

n=1 with An ↘ 0, define a metric dA on X by dA(x, y)= An

if x and y first differ in the nth position (i.e. xi = yi for 1≤ i < n, and xn 6= yn), and
let Lip(A) denote the space of functions on X which are Lipschitz with respect to dA,
equipped with the induced Lipschitz norm. Quas and Siefken required the additional
condition limn→0 An+1/An = 0 (in which case members of Lip(A) are referred to as
super-continuous functions) and proved the following.

THEOREM 7.6. [142] (TPO for super-continuous functions) For (X, T ) a full shift, if
limn→0 An+1/An = 0 then Lip(A)Per contains an open dense subset of Lip(A).

In the same context of super-continuous functions on a one-sided full shift (X, T ),
Bochi and Zhang [24] found a more restrictive condition on the sequence A which suffices
to guarantee that Lip(A)Per is a prevalent† subset of Lip(A).

THEOREM 7.7. [24] (Prevalent periodic optimization) For (X, T ) the one-sided full shift
on two symbols, if An+1/An = O(2−2n+2

) as n→∞ then Lip(A)Per is a prevalent subset
of Lip(A).

The proof in [24] uses Haar wavelets to reduce the problem to a finite-dimensional one
with a graph-theoretic reformulation as a maximum cycle mean problem. Since the hard
part of proving Theorem 7.6 is to show that Lip(A)Per contains a dense subset of Lip(A),
and any prevalent subset is dense, we note that Theorem 7.7 constitutes a strengthening of
Theorem 7.6 in the case that An+1/An = O(2−2n+2

) as n→∞.

† Prevalence is a probabilistic notion of typicalness, introduced by Hunt, Sauer and Yorke [77], and in finite-
dimensional spaces coincides with the property of being of full Lebesgue measure. Specifically, for V a complete
metrizable topological vector space, a Borel set S ⊂ V is called shy if there exists a compactly supported measure
which gives mass zero to every translate of S, and a prevalent set in V is defined to be one whose complement
is shy.
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Prior to Contreras’ proof of Theorem 7.10 below, a number of authors (notably [29, 38,
159]) had considered the case V = Lip in the TPO conjecture, and established partial and
complementary results. The first of these was due to Yuan and Hunt [159].

THEOREM 7.8. [159] (Non-periodic measures are not robustly optimizing) Let (X, T ) ∈
D be an expanding map. If f ∈ Lip has a non-periodic maximizing measure µ, then
there exists g ∈ Lip, arbitrarily close to f in the Lipschitz topology, such that µ is not
g-maximizing.

Bousch [29] gave an alternative proof of Theorem 7.8, in the more general setting
of amphidynamical systems, making explicit the role of revelations, and quantifying the
phenomenon of periodic orbits of low period being more stably maximizing than those of
high period: if f ∈ Lip has a periodic maximizing measure µ of (large) period N , then
there exist O(1/N )-perturbations of f in the Lipschitz norm for which µ is no longer
maximizing. More precisely, the following proposition is given.

PROPOSITION 7.9. [29] (A bound on orbit-locking for Lipschitz functions) If (X, T ) ∈D
is expanding, then there exists KT > 0 such that if f ∈ Lip has µ as an f -maximizing
measure, where µ is supported on a periodic orbit of period N > KT , then there exists
g ∈ Lip with Lip( f − g)≤ (N/KT − 1)−1 such that µ is not g-maximizing.

The constant KT in Proposition 7.9 can be chosen as KT = 6CT LT , where LT is a
Lipschitz constant for T , and CT is such that Lip(ϕ)≤ CT Lip( f ) whenever ϕ − ϕ ◦ T is
a revelation for a Lipschitz function f , so for example in the particular case of T (x)= 2x
(mod 1) on the circle, we may take LT = 2 and CT = 1 (see [26, Lemme B]), so for any
f ∈ Lip whose maximizing measure µ is supported on an orbit of period N > 12, there
exists g ∈ Lip with Lip( f − g)≤ 12/(N − 12) such that µ is not g-maximizing.

A proof of the TPO conjecture in the important case V = Lip was given by Contreras
as the following.

THEOREM 7.10. [50] (TPO for Lipschitz functions) For (X, T ) ∈D an expanding map,
LipPer contains an open dense subset of Lip.

To sketch† a proof of Theorem 7.10, we first note that if µ is any periodic orbit measure,
it is relatively easily shown that { f ∈ Lip : µ is f -maximizing} is a closed set with non-
empty interior, so it suffices to show that LipPer is dense in Lip. Let us say that µ ∈MT

is a Yuan–Hunt measure if for all x ∈ supp(µ), Q > 0, there exist integers m, p ≥ 0 such
that‡

min{d(T i x, T j x) : m ≤ i, j ≤ m + p, 0< |i − j |< p}> Qd(T m+px, T m x). (16)

If MYH denotes the set of Yuan–Hunt measures, and

LipYH = { f ∈ Lip :Mmax( f ) ∩MYH 6= ∅},

† This sketch follows the exposition of Bousch [31].
‡ Condition (16) was introduced by Yuan and Hunt [159, p. 1217], who called it the Class I condition. (A Class II
condition was also introduced in [159], in terms of approximability by periodic orbit measures, which stimulated
related work in [42, 49].)
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then clearly every invariant measure supported on a periodic orbit lies in MYH, and thus
LipPer ⊂ LipYH. Yuan and Hunt proved [159, Lemma 4.10] that LipPer is dense in LipYH,
so to prove Theorem 7.10 it suffices to show that LipYH is dense in Lip. Contreras [50]
showed, by estimating the lengths of pseudo-orbits, that if µ ∈MT \MYH then µ has
strictly positive entropy. However, a result of Morris [126] asserts that the set of Lipschitz
functions with a positive entropy maximizing measure is of the first category; it follows
that Lip \ LipYH is of the first category, and therefore LipYH is dense in Lip, as required.

8. Other typical properties of maximizing measures
For a suitably hyperbolic dynamical system (X, T ), the fact that typical properties of
maximizing measures in C(X) are rather different from those of more regular continuous
functions discussed in §7 is illustrated by the following result.

THEOREM 8.1. [128] (Typical maximizing measures for continuous functions) For
(X, T ) ∈D either expanding or Anosov, and transitive but not reduced to a single fixed
point, there is a residual subset C ′ ∈ C(X) such that if f ∈ C ′ then Mmax( f ) is a singleton
containing a measure which is fully supported, has zero entropy, and is not strongly mixing.

Parts of Theorem 8.1 had been proved elsewhere (see [32] for the fact that typical
maximizing measures are fully supported, and [40] for the fact that typical maximizing
measures have zero entropy), while Morris’s proof in [128] was a natural consequence
of his following more abstract result (together with results of Sigmund [148] on residual
subsets of the set of invariant measures).

THEOREM 8.2. [128] (Maximizing measures inherit typical properties from MT )
Suppose (X, T ) ∈D is such that the set of ergodic measures is weak∗ dense in MT .
Then for typical continuous functions f , the f -maximizing measure inherits any property
which is typical in MT . More precisely, if M′ is a residual subset of MT , then
{ f ∈ C(X) :Mmax( f )⊂M′

} is a residual subset of C(X).

The most surprising aspect of Theorem 8.1 is that in C(X) a typical maximizing
measure is fully supported. Not only does this contrast with Theorem 7.1 and the typical
periodic optimization results of §7, but it also contrasts with intuition; indeed an open
problem is to exhibit constructively a continuous function f : X→ R, and an expanding
or Anosov dynamical system (X, T ) ∈D, such that the unique f -maximizing measure is
fully supported. Clearly such a unique maximizing measure must be ergodic (since the set
Mmax( f ) is convex, and ergodic maximizing measures are precisely its extreme points),
though it turns out that this is the only restriction, as described by the following theorem.

THEOREM 8.3. [88] (Every ergodic measure is uniquely maximizing) If (X, T ) ∈D then
for any ergodic µ ∈M, there exists f ∈ C(X) such that µ is the unique f -maximizing
measure.

The above results, and those of §7, involve fixing the dynamical system (X, T ) ∈D, and
enquiring about typical properties of f -maximizing measures for f lying in some Banach
space V . More generally, one might view the triple (X, T, f ) ∈ C as varying in some
given topological space, and again enquire about typical properties of Mmax(X, T, f );
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alternatively we may fix the (compact metric) state space X , and view pairs (T, f ) as
elements of some topological space P , and again enquire about typical properties of
Mmax(T, f ).

The existing literature has focused on three versions of this general problem, the first
(and most studied) of which is the case P = {T } × V described previously. A second
case is when T varies within some topological space T of maps, and the function f =
fT varies non-trivially with T . In fact the limited work on this second case has focused
(see [51, 96, 123]) on Lyapunov maximizing measures for expanding maps T , i.e. where
fT = log |T ′|, so that maxµ∈MT

∫
log |T ′| dµ is the maximum Lyapunov exponent. If T

is the space of C1 expanding maps then a typical Lyapunov maximizing measure is shown
(see [96] for X the circle, and [123] for X a more general manifold) to be unique, fully
supported and of zero entropy (this can be considered an analogue of Theorem 8.1); by
contrast, in the context of C1+α expanding maps an analogue of Theorem 7.4 is established
(see [51]), and indeed it is likely that other results in §7 have natural analogues in the
context of Lyapunov maximizing measures.

The third version of the general problem involves fixing the continuous function f :
X→ R (with possibly additional hypotheses on f ) and varying the map T within some
topological space T . For example, if X is a compact connected manifold of dimension
greater than 2, T is varied in the space T of homeomorphisms of X and f ∈ C(X) is
considered fixed, it can be shown (see [153]) that there is a dense subset T ′ ⊂ T such that
Mmax(X, T, f ) contains a periodic orbit measure. However, provided f is non-constant
when restricted to any non-empty open subset, it turns out that periodic maximization is
not typical.

THEOREM 8.4. [1] (Typical optimization is not periodic) Let X be a compact connected
Riemannian manifold of dimension at least 2. If f ∈ C(X) is non-constant when restricted
to any non-empty open subset, then there is a residual subset T ′f ⊂ Homeo(X) such that
for every T ∈ T ′f , the set Mmax(X, T, f ) contains no periodic orbit measures.

Analogous results have been established for the space T of endomorphisms
(i.e. continuous surjections): for example in [15] (see also [154]) it is shown that for any
compact Riemannian manifold X , and any f ∈ C(X), there is a dense subset T ′ ⊂ T such
that Mmax(X, T, f ) contains a periodic orbit measure for all T ∈ T ′; however if X is the
circle it is known (see [1]) that such a T ′ is meagre unless the function f is monotone on
some sub-interval (in which case T ′ has non-empty interior).

9. Sturmian optimization and ergodic dominance
In ergodic optimization, Sturmian measures were first observed in the context of the
model problem described in §3, as maximizing measures for functions of the form
vθ (x)= cos 2π(x − θ), with underlying dynamical system T (x)= 2x (mod 1) on the
circle R/Z. As well as their definition in terms of rotations (see §3), Sturmian measures
can be characterized as precisely those T -invariant probability measures whose support is
contained in a sub-interval of the form [γ, γ + 1/2] (i.e. a closed semi-circle), see e.g. [33,
43]. In other words, the family of Sturmian measures can be defined as the maximizing
measures for the family of characteristic functions χ[γ,γ+1/2], γ ∈ R/Z. In view of this
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definition, it is perhaps not so surprising that Sturmian measures arise as maximizing
measures for certain naturally occurring functions, and indeed they have subsequently
been identified as maximizing measures for functions other than the family vθ . One
such example (see [4]) is the family of functions uθ (x)=−d(x, θ), θ ∈ R/Z, where
d is the usual distance function on the circle. As for the family of functions vθ , the
Sturmian measures are precisely the maximizing measures for the functions uθ , with each
non-periodic Sturmian measure being maximizing for a single function uθ , but periodic
Sturmian measures corresponding to a positive length closed interval of parameters θ .

Moving beyond finite-dimensional families of functions, there exist infinite-
dimensional function cones where Sturmian measures are guaranteed to be maximizing;
by a function cone we mean a set K of functions on X which is closed under addition
(i.e. K + K ⊂ K ) and multiplication by non-negative reals (i.e. R≥0 K ⊂ K ). If X = [0, 1]
then the set of concave real-valued functions on X is a cone, and if T is the doubling map†
on [0, 1], with T (1)= 1 and T (x)= 2x (mod 1) for x < 1, then the following theorem
holds.

THEOREM 9.1. [89, 90] (Sturmian maximizing measures for concave functions) For the
doubling map T : [0, 1] → [0, 1], if f : [0, 1] → R is concave then it has a Sturmian
maximizing measure. If f is strictly concave then its maximizing measure is unique and
Sturmian.

The set of increasing functions on [0, 1] is also a function cone. For the doubling
map on [0, 1], the Dirac measure δ1 is clearly f -maximizing for every increasing function
f : [0, 1] → R. This simple fact has a more surprising generalization: if‡ β ∈ (1, 2) and
Tβ : [0, 1] → [0, 1] is given by Tβ(x)= βx on [0, 1/β] and Tβ(x)= βx − 1 on (1/β, 1],
then for certain β (e.g. the golden mean β = (1+

√
5)/2) there exists a single Tβ -invariant

probability measure µβ which is simultaneously maximizing for all increasing functions
on [0, 1], and in this case µβ is once again Sturmian§.

THEOREM 9.2. [5] (Sturmian maximizing measure for all increasing functions) For
the map Tβ : [0, 1] → [0, 1], if β ∈ (1, 2) is the dominant root of xap+1

−
∑p

i=0 x ia

for some integers a, p ≥ 1, then the point 1 generates a Sturmian periodic orbit, and
the Tβ -invariant measure on this orbit is f -maximizing for every increasing function
f : [0, 1] → R.

For any cone K such that K − K is dense in C(X), a partial order ≺ on Borel
probability measures arises by declaring that µ≺ ν if and only if

∫
f dµ≤

∫
f dν for

all f ∈ K . Both the cone of increasing functions and the cone of concave functions enjoy
this property, and for these cases the associated partial order is known as a stochastic
dominance order (see e.g. [16, 103, 120, 147]). We therefore use the term ergodic
dominance to refer to the study of the partially ordered set (MT ,≺), and the identification

† Although the doubling map on [0, 1] is not continuous, its set of invariant probability measures is nevertheless
weak∗ compact, so Mmax( f ) 6= ∅ for all continuous f .
‡ For β > 2 there is a slightly different version of Theorem 9.2 for analogous maps Tβ (see [5] for details).
§ Sturmian measures can, as before, be defined in terms of circle rotations; alternatively, in this context they are
characterized by having support contained in a closed interval of length 1/β.
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of maximal and minimal elements in (MT , K ) may be viewed as a generalization of
ergodic optimization. For K the cone of increasing functions, ergodic dominance in the
context of the full shift on two symbols has been investigated in [2, 3].

For K the cone of concave functions, ergodic dominance has been studied in [98]
for orientation-reversing expanding maps T : [0, 1] → [0, 1], and in [150] for certain
unimodal maps. A necessary condition for the comparability of two measures µ, ν is
that their barycentres coincide, i.e.

∫
x dµ(x)=

∫
x dν(x), so if T is the doubling map

then (MT ,≺) cannot have a maximum element, though each of the sets MT,% = {µ ∈

MT :
∫

x dµ(x)= %} does turn out to have such an element.

THEOREM 9.3. [89, 90] (Sturmian measures as maximum elements in each MT,%) If
T : [0, 1] → [0, 1] is the doubling map, and ≺ is the partial order induced by the cone
of concave functions on [0, 1], then the Sturmian measure of rotation number % is the
maximum element in MT,%, for all % ∈ [0, 1].

In fact Theorem 9.1 can be viewed as one of several corollaries to Theorem 9.3; others
are that Sturmian measures have strictly smallest variance around their means, and that
Sturmian periodic orbits have larger geometric mean than any other periodic orbits with
the same arithmetic mean (see [89, 90, 92] for further details).

Underlying the results in this section is an idea of Bousch [26], which provides an
approach to proving the Sturmian nature of maximizing measures: the existence of a
revelation is guaranteed by Theorem 6.2, and it is potentially feasible to show that the
corresponding revealed function takes its maximum value on a closed interval of length
1/β, in which case the maximizing measure is Sturmian. This approach can also be used
for more general expanding maps T (see e.g. [86, 91, 97]) where the closed interval in
question has the property that T is injective when restricted to its interior, and for certain
generalizations of Sturmian measures (see e.g. [38, 39, 72]).

The article [97] treats a problem concerning the joint spectral radius of pairs of matrices
(see e.g. [55, 99, 106, 143] for background to this area), which is reformulated as an
ergodic optimization problem involving a one-parameter family of expanding maps, and a
one-parameter family of functions, whose maximizing measures turn out to be precisely
the family of Sturmian measures. The role of Sturmian measures (or orbits) in this context
had previously been noted in [21, 33, 71, 133]. More generally, joint spectral radius
problems have a number of parallels with ergodic optimization, and the two fields enjoy a
fruitful interaction, see e.g. [22, 23, 33, 129–132].
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[94] O. Jenkinson, R. D. Mauldin and M. Urbański. Ergodic optimization for countable alphabet subshifts of

finite type. Ergod. Th. & Dynam. Sys. 26 (2006), 1791–1803.
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