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Representations modulo p of the

p-adic group GL(2, F )

Marie-France Vignéras

Abstract

Let p be a prime number and let F be a local field with finite residual field of char-
acteristic p. The Langlands local correspondence modulo � �= p for GL(n,F ) is known
for all integers n � 1 but the case � = p is still mysterious even when n = 2 (the
case n = 1 is given by the local class field theory). Any irreducible Fp-representation
of GL(n,F ) has a non-zero vector invariant by the pro-p-Iwahori subgroup I(1) and the
pro-p-Iwahori–Hecke Fp-algebra HFp

(GL(n,F ), I(1)) plays a fundamental role in the the-
ory of Fp-representations of G. We get when n = 2: (i) A bijection between the irreducible
Fp-representations of dimension 2 of the Weil group W (F/F ) and the simple supersingu-
lar modules of the pro-p-Iwahori–Hecke Fp-algebra HFp

(GL(2, F ), I(1)). (ii) A new proof
of the Barthel–Livne classification of the irreducible non-supersingular Fp-representations
of GL(2, F ) using the I(1)-invariant functor. (iii) A bijection between the irreducible
Fp-representations of GL(2,Qp) and the simple right HFp

(GL(2,Qp), I(1))-modules given
by the I(1)-invariant functor, using the recent results of Breuil.

Introduction

We consider only smooth representations: the stabilizers are open. An algebraic closure of a field k
is denoted by k. The residual field of F is the finite field Fq with q elements. In 1994, Barthel and
Livne classified the irreducible subquotients of the Fp-representation of G := GL(2, F ) parabol-
ically induced from a Fp-character of a maximal split torus and showed the existence of other
irreducible representations that they called supersingular. Recently in 2001, in the particular case
F = Qp, Breuil showed that the supersingular Fp-representations of G are in bijection with the
irreducible Fp-representations of dimension 2 of the Weil group of Qp/Qp, but the method of Breuil
does not work when F �= Qp. In this article, there is no restriction on F and we replace the
Fp-representations of G by the modules of the Hecke Fp-algebra HFp

(G, I(1)) of G with respect to
the pro-p-Iwahori subgroup I(1); we classify the simple HFp

(G, I(1))-modules. The easy construc-
tion of the irreducible Fp-representations of the Weil group W (F/F ) is done in [Vig97]. There is a
striking similarity between the two classifications which suggests the existence of a Langlands cor-
respondence. The basic question of a bijection between the irreducible Fp-representations of G and
the simple right HFp

(G, I(1))-modules given by I(1)-invariant functor remains open when F �= Qp.
We proceed now to a more detailed description of the results and of the techniques in this article.

The finite-dimensional simple HFp
(G, I(1))-modules have dimension � 2 and those of dimen-

sion 2 are in bijection with the characters of the center of HFp
(G, I(1)) via their central characters.

The proof proceeds in three steps. First, we classify the simple modules of the Hecke algebra
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HFp
(G, I) with respect to an Iwahori subgroup I. Next we classify the simple modules of another

algebra that we call the ‘second’ Iwahori–Hecke algebra HFp
(G, I)2. The two Iwahori–Hecke algebras

do not depend on F . In the last step, we deduce the classification of the simple HFp
(G, I(1))-modules.

For this, we remark that the cyclic group S2 = {1, s} of order 2 acts naturally on the Fp-characters
χ of I because I/I(1) � (F∗

q)
2 and we prove that the compactly induced representations indG

I χ

have the following property: indG
I χ, indG

I χ′ are isomorphic when χ′ is S2-conjugate to χ (the result
is not true in the finite case), and have no intertwining operators when χ′ �= χ are not S2-conjugate.
This implies that the Hecke algebra HFp

(G, I(1)) is a direct sum ⊕Hω, parametrized by the S2-orbits
ω of Fp-characters χ of I, where Hω = End indG

I χ (isomorphic to the usual Iwahori–Hecke algebra)
when χ = χs is not regular, and Hω = End indG

I χ ⊕ χs (isomorphic to the second Iwahori–Hecke
algebra) when χ �= χs is regular.

A small miracle allows us to prove the existence of a natural (but not unique) correspondence
between the finite-dimensional simple HFp

(G, I(1))-modules and the semi-simple Fp-representations
of the Weil group W (F/F ) of dimension � 2, which restricts to a bijection between the supersingular
HFp

(G, I(1))-modules and the irreducible Fp-representations of the Weil group of dimension 2.
The ‘miracle’ is the coincidence between the number of S2-orbits of Fp-characters of the split torus
F∗

q × F∗
q and the number of orbits of regular Fp-characters of F∗

q2 for the Frobenius x → xq.

We classify the non-supersingular irreducible Fp-representations of G by describing their
I(1)-invariant vectors as a HFp

(G, I(1))-module. The classification of the non-supersingular irreduc-
ible Fp-representations of G was already done by Barthel and Livne, by studying compact induction
from GL(2, OF ) where OF is the ring of integers of F . We work with the pro-p-Iwahori subgroup
instead of the maximal compact subgroup.

Any non-zero Fp-representation of G has a non-zero I(1)-invariant vector; also the functor
of I(1)-invariants from the Fp-representations of G to the right HFp

(G, I(1))-modules is very
important. The main question is to know if this functor restricts to a bijection between the
irreducible Fp-representations of G and the simple HFp

(G, I(1))-modules. If the answer is yes, then
we have classified the irreducible Fp-representations of G. We prove that the answer is yes for the
non-supersingular ones. We can prove that the answer is yes for the supersingular ones only when
F = Qp, using the results of Breuil which are valid only in this case. For any F , we can attach to any
finite dimensional supersingular HFp

(G, I(1))-module M , the set of irreducible Fp-representations
of G which contain M . We prove that this ‘packet’ contains only supersingular modules.

Let us mention that in the finite case or when the characteristic of the field of coefficients is
different from p, there are no supersingular representations and the answer is yes. There is a striking
difference between the local and finite cases for the principal representations. In the local case the
principal representations of G defined by a regular Fp-character of the diagonal torus are irreducible
whereas in the finite case the principal representations of GL(2,Fq) always have length � 2, with
length exactly 2 only when q = p (§ A.6).

We can replace the field of coefficients Fp by any algebraically closed field R of characteristic
p; when R is uncountable, the simple HR(G, I(1))-modules are always finite dimensional and the
irreducible R-representations of G always have a central character.

For the integral properties of the Qp-representations of G and their reductions modulo p,
it is important to consider the Hecke algebra HR(G, I(1)) over a general commutative ring R.
Many results will be given over such a ring. We refrain from changing G by a more general group
except in one case: the description following Schneider and Stuhler [SS91] of the kernel of indG

I χ →
indG

B χB for any Fp-character χB of a Borel subgroup B compatible with the Fp-character χ of the
Iwahori subgroup I where we suppose that G is GL(n,F ). The description of the simple modules
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for the Hecke Fp-algebra of a general reductive p-adic group G with respect to a pro-p-Iwahori sub-
group is probably accessible;1 we preferred to concentrate on GL(2, F ) which will serve as a model
for other groups. The main obstacle at present seems to be to prove (or disprove) the basic relation
between irreducible Fp-representations of GL(2, F ) and of the pro-p-Iwahori–Hecke algebra.

For the sake of completeness, the Appendix contains the known formula necessary for the com-
putations with the Hecke algebras, some explicit computations, and some facts for groups with an
Iwahori decomposition.

1. Simple modules of the Iwahori–Hecke algebra

In all the chapters R is a commutative ring, R∗ is the group of units of R, F is a local field, pF is
a generator of the maximal ideal of the ring of integers OF of F , q is the order of the residual field
of F ,

I =
{(

a b
pF c d

)
, a, d ∈ O∗

F , b, c ∈ OF

}
is the standard Iwahori subgroup of G = GL(2, F ) (unless otherwise specified), t :=

(
0 1

pF 0

)
, s :=(

0 1
1 0

)
. Clearly, ts =

(
1 0
0 pF

)
, st =

(
pF 0
0 1

)
, t2 = pF I2 where I2 =

(
1 0
0 1

)
. The normalizer of I in G is

generated by I and by t, and the normalizer of the diagonal torus T of G is generated by T and by
s (or t).

1.1 Iwahori–Hecke algebra
The (affine) Iwahori–Hecke R-algebra of G is the endomorphism algebra:

HR(G, I) := EndRG indG
I 1

isomorphic to the convolution R-algebra of functions on double cosets of G modulo I with values
in R and finite support. More details can be found in the § A.1. The algebra can be described by
generators and relations [Vig96, I.3.14, p. 25]:2

HR(G, I) � HR(q) := R[T±1, S], (S − q)(S + 1) = 0, T 2S = ST 2. (1.1)

The isomorphism from HR(G, I) to HR(q) sends the characteristic functions Et, Es of ItI, IsI to
T, S. The relation T 2S = ST 2 says that T 2 belongs to the center as it should. One can replace q in
(1.1) by any v ∈ R and define an algebra HR(v). The algebras HR(v) are isomorphic for v �= −1
at least if R is a field, because the quadratic relation is U2 = −U after the change of variables
U = (S − v)(v + 1)−1. When v = −1, the quadratic relation becomes U2 = 0 after the change of
variables U = S + 1.

We will classify the simple finite dimensional right HR(0)-modules when R is a field. When the
characteristic of R is p, the (affine) Iwahori–Hecke R-algebra of G is isomorphic to HR(0). We could
use the isomorphism HR(0) � HR(v) for v �= −1 and the classification in the case v = q �= 0 in R
given in [Vig97] when R is an algebraically closed field. For a possible application to the reduction
modulo p or for a possible extension to the case n > 2, we give a direct proof of the classification
valid for any v �= −1. The interesting case is obtained by passage to the limit v = 0.

The center ZR(v) of HR(v) acts by a scalar on a simple finite dimensional HR(v)-module, and
we start by the description of the center.

1Note added in the revised form. Rachel Ollivier classified the simple modules of the Iwahori–Hecke Fp-algebra of
GL(3, F ) in her DEA (Université de Paris 7 – Denis Diderot, June 2002).
2The referee mentioned the following description of the Hecke–Iwahori algebra which is more natural in number
theory: HR(G, I) � R[Z±1, U, w] with the relations ZU = UZ, w2 = Z, UwU = Z(qw + (q − 1)U); with our notations
w = T, U = TS and Z = T 2.
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1.2 Center
Suppose R = Z[v±1/2]. Then S is invertible in HZ[v±1/2](v) with

vS−1 = S − v + 1. (1.2)

By the theory of Bernstein, the subalgebra Z[v±1/2][X±1
1 ,X±1

2 ] of HZ[v±1/2](v) is commutative, where

v1/2X1 := ST, v1/2X2 := T (S − v + 1); (1.3)
as a left or right Z[v±1/2][X±1

1 ,X±1
2 ]-module, HZ[v±1/2](v) is free of basis {1, S}; the symmetric

Laurent polynomials in Z[v±1/2][X±1
1 ,X±1

2 ] are the center ZZ[v±1/2](v) of HZ[v±1/2](v) [Vig96, I.3.15,
p. 26].

Suppose that R is any commutative ring. The subalgebra R[T±2, ST, T (S − v + 1)] of HR(v) is
commutative and one checks by a direct computation that the center ZR(v) of HR(v) is R[T±2, Z(v)]
where

Z(v) = (S + 1)T + T (S − v), (1.4)
using the formulas vX1X2 = T 2, v1/2(X1 + X2) = Z(v).

1.3 Characters
The characters of HR(v) are

M1(τ, ε) : T �→ τ, S → ε

for (τ, ε) ∈ R∗ × {v,−1}. The character is called ‘trivial’ when ε = v and ‘sign’ when ε = −1.
The central elements Z(v), T 2 act on M1(τ, ε) by multiplication by τ(2ε + 1 − v), τ2. The element
Z(v) acts by τ(1+ v) on a trivial character and by −τ(1+ v) on a sign character. The action of the
center on the trivial character M1(τ, v) and on the sign character M1(−τ,−1) is the same.

1.4 Standard modules
Let R be any commutative ring and let v ∈ R. For any a ∈ R, z ∈ R∗, one defines a standard right
HR(v)-module of dimension 2

M2(a, z) := Rm ⊕ RmT, m(S + 1) = 0, mT (S − v) = am, mT 2 = zm.

The matrices of T, S, ST on the basis {m,mT} are (the columns are the images of the basis)(
0 z
1 0

)
,

(−1 a
0 v

)
,

(
0 vz
−1 a

)
,

and one checks T 2S = ST 2, (S + 1)(S − v) = 0. The central elements Z(v), T 2 acts by a, z, and the
modules M2(a, z) have different central characters. The trace of ST is a.

Proposition 1.1. Assume that R is a field. The standard HR(v)-module M2(a, z) is reducible if
and only if a2 = z(v + 1)2 and z is a square in R.

When a = v + 1 = 0 and τ2 = z with τ ∈ R, the standard module is the direct sum M(τ,−1)⊕
M(−τ,−1) if the characteristic of R is different from 2, and indecomposable of length 2 if the
characteristic of R is 2.

When a = τ(v+1) �= 0 and τ2 = z with τ ∈ R, the standard module M2(a, z) is indecomposable,
with submodule a trivial character M1(τ, v) and with quotient a sign character M1(−τ,−1).
Proof. A reducible standard M2(a, z) module contains a character M1(τ, ε) with the same action
of the center,

a = ±τ(1 + v), z = τ2.

Conversely, suppose that z = τ2 and τ(v + 1) = a for some τ ∈ R such that z = τ2.
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If a = 0 then v + 1 = 0, (S + 1)2 = 0 in M2(0, z). When the characteristic of R is different from
2, the standard module is the direct sum M(τ,−1)⊕M(−τ,−1). When the characteristic of R is 2,
the standard module is indecomposable of length 2, because T does not act by multiplication by τ .

If a �= 0, the standard module M2(a, z) contains a unique proper submodule M1(τ, v). Indeed
T 2 = τ2 and T does not act by multiplication by a scalar, hence the image of T + τ is Rm(T + τ)
for m as in § 1.4. We see that (T + τ)(S − v) = 0, hence m(T + τ) is an HR(v)-eigenvector with
eigenvalue M1(τ, v) and the multiplicity of M1(τ, v) is 1. There is another character M1(τ,−1) with
the same action of the center. We see that (T − τ)(S + 1) �= 0, hence M1(−τ,−1) is not contained
in M2(a, z). Modulo the unique stable line Rm(T + τ), we have mT ≡ −τm and mS ≡ −m, hence
the quotient character is M1(−τ,−1).

Theorem 1.2. When R is an algebraically closed field, any finite dimensional simple right
HR(v)-module is a character or a standard module.

Proof. Let M be a finite dimensional simple right HR(v)-module which is not a character. The center
acts on M by a character, because R is algebraically closed. Suppose that the action of (Z(v), T 2) is
given by (a, z) ∈ R×R∗. The elements T or S cannot act by a scalar because M is not a character.
The kernel of S + 1 in M is non-zero, different from M , and stable by T (S − v). We choose an
eigenvector m of T (S − v) in Ker(S + 1). By (1.4), we have mT (S − v) = am. The R-vector space
Rm + RmT is stable by S, T . As M is not a character, we deduce that its dimension is 2 and
M = M(a, z).

1.5 Reduction modulo p

We call (E,R, k) a p-modular setting when R is the ring of integers of a finite extension E of Qp

and k ⊂ Fp is the residual field of R. We denote rp : R → k the reduction modulo p. We consider q
in R and we have rp(q) = 0.

Given an R-module X, we call XE = E ⊗R X its E-extension and rp(X) := k ⊗R,rp X its
reduction modulo p.

The E-extension of the R-algebra HR(q) is HE(q) and its reduction modulo p is Hk(0).
The E-extension ME of an HR(q)-module M is an HE(q)-module and its reduction modulo

p is an Hk(0)-module rp(M). A finite dimensional HE(q)-module ME is called R-integral when
it is isomorphic to the E-extension of an HR(q)-module M , free as an R-module. One calls M
an R-integral structure of ME . Modulo isomorphism, the semi-simplification of the Hk(0)-module
rp(M) depends only on the semi-simplification of the HE(q)-module M and not on the choice of
the R-integral structure M , by the usual proof [Vig96, I.9.6].

A character M1(τ, ε) of HE(q) is R-integral when τ ∈ R∗, and conversely. A standard module
M2(a, z) of HE(q) is R-integral when a ∈ R, z ∈ R∗, i.e. when its central character is integral, and
conversely; the standard module M2(a, z) of HR(q) is an R-integral structure of the corresponding
standard module of HE(q). The reduction modulo p of a character or of a standard module of HR(q)
is a character or a standard module of Hk(q), and any character or standard module of Hk(q) is
the reduction modulo p of a character or standard module of HR(q), because the map rp : R → k
is surjective.

1.6 Action of R∗

The multiplicative group R∗ acts on the left HR(v)-modules M by ‘twist’: in the twist Mνzo of M
by zo ∈ R∗, the action of T is multiplied by zo, the action of S remains unchanged. There exists
zo �= 1 such that the standard module M2(a, z) is isomorphic to its twist M2(a, z)νzo = M2(azo, zz2

o )
iff a = 0, zo = −1 and the characteristic of R is different from 2.
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2. Simple modules of the second Iwahori–Hecke algebra

The standard pro-p-Iwahori subgroup I(1)

I(1) =
{(

1 + pF a b
pF c 1 + pF d

)
, a, b, c, d ∈ OF

}

is the pro-p-Sylow subgroup of the Iwahori subgroup I defined § 1. The quotient I/I(1) is isomorphic
to the diagonal torus T (q) := T (Fq) of the finite group G(q) := GL(2,Fq). We will identify the
R-characters χ of I trivial on I(1), the characters of I/I(1), and the R-characters of T (q). When the
characteristic of R is p, any R-character of I is trivial on I(1). The Weyl group S2 = {1, s} acts on
T (q) hence on the R-characters χ of T (q). The element t (defined at the beginning of § 1) acts as s
on I/I1 � T (q) and normalizes I (but s does not normalize I).

The compactly induced R-representations indG
I χ of G = GL(2, F ) are important: when R is a

field of characteristic p which contains a root of 1 of order q − 1, any irreducible R-representation
of G is a quotient of some indG

I χ.
Let fIg,χ ∈ indG

I χ of support Ig and value 1 at g ∈ G. The functions fIg,χ for all g ∈ I\G form
an R-basis of indG

I χ and any fIg,χ generates indG
I χ as an RG-module. Let χ, χ′ be two R-characters

of I trivial on I(1).

Proposition 2.1.

a) HomRG(indG
I χ′, indG

I χ) = 0 if χ′, χ are not S2-conjugate.

b) There is an RG-isomorphism

τ : indG
I χ � indG

I χs.

defined by τfI,χ = fIt,χs.

Note that, in the finite case, part b is false (Proposition A.2).

Proof. The restriction to I of indG
I χ is isomorphic to a direct sum

⊕w∈S2.(T/To) indIwI
I χ � ⊕w∈S2.(T/To) indI

Iw
χw

where:

– T = T (F ) is the diagonal subgroup of G and To = T (OF );
– s ∈ S2 is identified with

(
0 1
1 0

)
;

– χw := χ if w ∈ T/To and χw := χs if w ∈ s.(T/To);
– indIwI

I χ is the subspace of functions in indG
I χ with support contained in IwI;

– Iw = I ∩ w−1Iw.

It is fundamental that the sequence

1 → I(1) ∩ Iw → Iw → T (Fq) → 1

is exact. This property implies I = I(1)Iw and the restrictions of χ′, χw to Iw are equal if and only
if χ′ = χw. By the Frobenius reciprocity, the compact induction from an open compact subgroup
is left adjoint to the restriction and the induction from a closed subgroup is right adjoint to the
restriction [Vig96, I.5.7]. Thus we have

HomRG(indG
I χ′, indG

I χ) � HomRI(χ′, indG
I χ) � ⊕w∈S2.(T/To) HomRI(χ′, indI

Iw
χw),

HomRI(χ′, indI
Iw

χw) � HomRIw(χ′, χw) � HomRI(χ′, χw).

We deduce from this the first part of the proposition. The properties of t imply that fIt,χs ∈ indG
I χs

is an eigenvector with eigenvalue χ for the action of I. Hence there is a (unique) RG homomorphism
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τ sending fI,χ to fIt,χs. As Ig → Itg is a bijection between the cosets of I\G, τ is an isomorphism
and the second part of the proposition is proved.

2.1 The Hecke algebra of χ

We consider now the Hecke algebra of χ (see § A.1):

HR(G,χ) := EndRG indG
I χ.

The R-module of (I, χ)-invariants of indG
I χ identifies canonically with the R-module HR(G,χ), and

is a free R-module with basis the elements Eg = Eg,χ of support IgI and value 1 at g, for all the
double classes modulo I of the set of g ∈ G such that χ(gxg−1) = χ(x) for any x ∈ I ∩ g−1Ig.
There are two cases:

– χ = χs is fixed S2, called the Iwahori or non-regular case;
– χ �= χs is not fixed S2, called the regular case.

2.1.1 The Iwahori case. In the Iwahori case, the character χ extends to a character χ1 det of
G where det : G → F ∗ is the determinant, and χ1 is an R-character of G; this implies

indG
I χ � χ1 det⊗ indG

I 1,

and the elements χ1(−1)Et,χ, χ1(−1)Es,χ of HR(G,χ) satisfy the relations in § A.3). The algebras

HR(G, I) � HR(G,χ)

are isomorphic by the linear map such that T → χ1(−1)Et,χ, S → χ1(−1)Es,χ.

2.1.2 The regular case. Until the end of § 2, we suppose that we are in the regular case. As an
R-module, HR(G,χ) has a basis formed by the functions Eg,χ of support IgI and value 1 at g, for
all g ∈ T modulo To = T ∩ I, by § 2.1. The images of pF I2, ts in T/To � Z2 form a Z-basis and
st = pF (ts)−1 (see the introduction of § 1).

Proposition 2.2. In the regular case, the Hecke R-algebra HR(G,χ) is commutative, generated
by E±1

pF I2,χ, Ets,χ, Est,χ with the relation Ets,χEst,χ = qEpF I2,χ.

This is obtained by reduction modulo p from the integral versions of classical results on Hecke
algebras in the theory of types (a direct proof is given in § A.2, see also [BL94, Proposition 13]).

The isomorphism τ : indG
I χ → indG

I χs sending fI,χ to fIt,χs (see Proposition 2.1) permutes
Est,χ, Ets,χs. One sees using tI = It, t(st)t−1 = ts that

τEpF I2,χ = EpF I2,χsτ, τEst,χ = Ets,χsτ, τEts,χ = Est,χsτ.

Consider the commutative algebra R[Z±1,X, Y ] and its quotient

ZR(q)2 := R[Z±1,X, Y ]/(XY − qZ),

canonically isomorphic to

– HR(G,χ) by EpF I2,χ �→ Z, Ets,χ �→ X, Est,χ �→ Y ;
– HR(G,χs) by EpF I2,χs �→ Z, Ets,χs �→ Y, Est,χs �→ X.

Via the natural injective maps χ → χ ⊕ χs, χs → χ ⊕ χs the algebra HR(G,χ) ⊕ HR(G,χs)
identifies with the ‘diagonal’ subalgebra of HR(G,χ⊕χs). Set Eg,χ⊕χs = Eg,χ +Eg,χs for any g ∈ T .
From Proposition 2.1 we deduce the following corollary.

Corollary 2.3. In the regular case, there is an R-algebra isomorphism

HR(G,χ ⊕ χs) � M(2,ZR(q)2)
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such that

EpF I2,χ⊕χs →
(

Z 0
0 Z

)
, Ets,χ⊕χs �→

(
X 0
0 Y

)
, Est,χ⊕χs �→

(
Y 0
0 X

)
.

The isomomorphism depends on the ordered couple (χ, χs). We denote by T, S ∈ HR(G,χ⊕χs)
the elements with support ItI, IsI and value

(
0 1
1 0

)
at t, s defined as in the § 1. They satisfy (see

(A.3) and (A.5)):

S2 = q, ST = Est,χ⊕χs, T 2 = EpF I2,χ⊕χs.

The center of HR(G,χ ⊕ χs) is generated by

Ets,χ + Est,χs, Est,χ + Ets,χs, T 2

corresponding respectively to the scalar matrices X,Y,Z in M(2,ZR(q)2) via the isomorphism.

2.2 The second Iwahori–Hecke algebra

We will call

HR(q)2 := M(2,ZR(q)2)

the second Iwahori–Hecke R-algebra of G. We can define algebras HR(v)2 := M(2,ZR(v)2) for any
v ∈ R. The characters of the center ZR(v)2 are

ω(x, y, z) : X �→ x, Y �→ y, Z �→ z,

for any (x, y, z) ∈ R2 × R∗, xy = vz.

2.3 Standard module

The natural right HR(v)2-module M2(x, y, z) of dimension 2 with central character ω(x, y, z) is
called a standard HR(v)2-module.

The module which corresponds to M2(x, y, z) via the isomorphism of Corollary 2.3 is denoted

M2(x, y, z, χ) = M2(y, x, z, χs), (2.1)

and called a standard right HR(G,χ ⊕ χs)-module.
The unique non-zero eigenvalue of HR(G,χ) in M2(x, y, z, χ) is

EpF I2,χ �→ z, Ets,χ �→ x, Est,χ �→ y.

The trace of ST in M2(x, y, z, χ) is a := x + y.
The image of (2.1) by the automorphism τ is

M2(y, x, z, χ) = M2(x, y, z, χs).

When R is a field, the standard HR(G,χ⊕χs)-modules are simple, and any simple HR(G,χ⊕χs)-
module is of the form (2.1).

2.4 Reduction modulo p

We assume that (E,R, k) is a p-modular setting and rp : R → k the reduction modulo p as in § 1.5.
We consider q in R.

Assertion 2.4. A simple HE(q)2-module is R-integral iff its central character is R-integral; the
reduction modulo p of a simple R-integral HE(q)2-module is simple. A simple Hk(q)2-module

M2(x, y, z), (x, y, z) ∈ k2 × k∗, xy = 0,
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is the reduction modulo p of an R-integral HE(q)2-module

M2(x′, y′, z′), (x′, y′, z′) ∈ R2 × R∗, x′y′ = qz′, rp(x′, y′, z′) = (x, y, z)

with one exception: M2(0, 0, z), z ∈ k∗ when q is a uniformizing parameter of R, is not the reduction
of an R-integral HE(q)2-module.

These assertions are immediate, except maybe the last one. A simple Hk(q)2-module, i.e. M(x,
y, z) with (x, y, z) ∈ k2 × k∗, xy = 0, is the reduction modulo p of an R-integral HE(q)2-module if
the parameters (x, y, z) are the reduction modulo p of parameters (x′, y′, z′) ∈ R∗ ×R2, x′y′ = qz′.
If x (or y) is not 0, there is no problem: one lifts x, z to units x′, z′ ∈ R∗ and one sets y′ = qz′x′−1.
If x = y = 0, any lift x′ of x and any lift y′ of y in R is divisible by a uniformizing parameter pR

of R. As any lift of z is a unit z′ ∈ R∗, the equation x′y′ = qz′ implies that q is divisible by p2
R.

2.5 Action of R∗

As in § 1.6, the multiplicative group R∗ acts on the right HR(q)2-modules M by ‘twist’. For zo ∈ R∗,
the action of X,Y,Z on the twist Mνzo of M by zo are multiplied respectively by zo, zo, z

2
o .

There exists zo �= 1 such that the standard module M2(x, y, z) is isomorphic to its twist
M2(x, y, z)νzo = M2(xzo, yzo, zz2

o) iff x = y = 0, zo = −1 and the characteristic of R is differ-
ent from 2.

3. Simple modules of the Hecke algebra of the pro-p-Iwahori

The Hecke R-algebra of G = GL(2, F ) with respect to the pro-p-Iwahori I(1) is

HR(G, I(1)) := EndRG indG
I(1) 1.

This algebra is the central object of this article. We will restrict ourselves now and in the next
sections to a commutative ring R such that the regular representation R[F∗

q] of F∗
q is a sum of

characters. The main example in characteristic 0 is R = Z[1/(q−1), ζq−1] where ζ is a complex root
of 1 of order q − 1, and the main example in characteristic p is R = Fq.

We describe the structure of the algebra HR(G, I(1)).

Proposition 3.1. We have a canonical algebra isomorphism

HR(G, I(1)) � ⊕χ=χsHR(G,χ) ⊕χ �=χs HR(G,χ ⊕ χs),

for all S2-orbits of the R-characters χ of I/I(1).

Proof. The R-representation indI
I(1) 1 decomposes as a direct sum

indI
I(1) 1 � ⊕ωσω,

where ω are the S2-orbits of the R-characters χ of I/I(1), and ω = σω = χ = χs in the Iwahori case
and σω = χ⊕ χs in the regular case ω = {χ �= χs}. From the transitivity of the compact induction

indG
I(1) 1 = indG

I (indI
I(1) 1)

and the commutativity
indG

I (⊕ωσω) = ⊕ω indG
I σω,

one obtains a linear R-isomorphism

HR(G, I(1)) � ⊕ωHR(G,σω).

The isomorphism respects the product because there are no non-zero intertwining operators
between indG

I σω and indG
I σω′ for two distinct S2-orbits ω �= ω′ by Proposition 2.1. The projections
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eω : indG
I(1) 1 → indG

I σω for all S2-orbits ω form a set of central orthogonal idempotents of
EndRG indG

I(1) 1, with sum 1.
The basic components HR(G,σω) of HR(G, I(1)) have been studied in §§ 1 and 2. The alge-

bra HR(G,σω) is canonically isomorphic to the Iwahori–Hecke algebra HR(q) in the Iwahori or
non-regular case, and is (non-canonically) isomorphic to the second Iwahori–Hecke algebra HR(q)2
in the regular case.

3.1 Modules
Let ω be an S2-orbit of an R-character χ of I/I(1) and let M be a right HR(G,σω)-module.
We denote by (M,ω) the corresponding HR(G, I(1))-module; if M is standard, we say that (M,ω)
is standard. In fact only χ will appear when M is irreducible: if χ is not regular then ω = χ,
and if ω is not regular either χ or χs appears already in the notation for M and we suppress ω.
We deduce with the notations of §§ 1 and 2 the classification of all finite-dimensional simple right
HR(G, I(1))-modules.

Proposition 3.2. Let R be any algebraically closed field of any characteristic. The finite dimen-
sional simple right HR(G, I(1))-modules are

i) the characters (§ 1.3)

M1(t, ε, χ)
for all non-regular R-characters χ = χs of T (q), t ∈ R∗, ε ∈ {−1, q};

ii) the standard modules of dimension 2 (§ 1.4)

M(a, z, χ)

for all non-regular R-characters χ = χs of T (q), a ∈ R, z ∈ R∗, a2 �= z(q + 1)2;
iii) the standard modules of dimension 2 (§ 2.3),

M(x, y, z, χ)

for all regular R-characters χ �= χs of T (q), x, y ∈ R, z ∈ R∗, xy = qz.

The only isomorphisms are M(x, y, z, χ) � M(y, x, z, χs) when χ �= χs.

3.2 Supersingular modules
For reasons which will be clear later, when the characteristic of R is p, for each S2-orbit ω of
R-characters of I/I1, the unique simple standard right H(G,σω)-module M2(0, z, ω) where pF acts
by multiplication by z and the trace of ST is 0, is called supersingular. The number of supersingular
simple right HR(G, I(1))-modules with a given action of pF is (q2−q)/2, i.e. the number of S2-orbits
ω of R-characters of the group I/I(1) � F∗

q × F∗
q.

4. Irreducible representations of GL(2, F )

Over any commutative ring R, the category ModR G of R-representations of G := GL(2, F ) and
the category ModHR(G, I(1)) of right HR(G, I(1))-modules are related by the functor of invariant
vectors by the pro-p-Iwahori subgroup I(1)

V �→ V I(1) : ModR G → ModHR(G, I(1)).

Conjecture 4.1 (Main conjecture). When R is an algebraically closed field of characteristic p,
the functor of I(1)-invariant vectors induces a bijection between the irreducible representations of
G with a non-zero I(1)-invariant vector and a central character, and the simple finite-dimensional
right HR(G, I(1))-modules (modulo isomorphism).
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When the characteristic of R is �= p, the result is known and the proof is not even difficult
[Vig96, I.6.3].

When the characteristic of R is p, any non-zero R-representation V of G has a non-zero
I(1)-invariant vector, because any v ∈ V generates a finite dimensional R[I(1)]-module. When the
main conjecture is true, we get from the preceding sections the classification of the irreducible
R-representations of G with a central character. The main conjecture will be proved when F =
Qp, R = Fp in Theorem 5.4.

Note. In [BL95], [BL94] and [Bre01], the functor of I(1)-invariant vectors plays an important but
hidden role. Instead of the Hecke algebra of the trivial Fp-representation of the pro-p-Iwahori,
they use the Hecke algebra of an irreducible Fp-representation of GL(2, OF )F ∗ which is always a
commutative algebra isomorphic to Fp[T ].

4.1 Principal representations
Let R be a commutative ring. We change the notation for χ. Now χ is an R-character of the diagonal
subgroup T = T (F ) of G, and χ(q) is the restriction of χ to T (OF ). We suppose that χ(q) is trivial
on the pro-p-Sylow of T (OF ), hence χ(q) identifies to an R-character of I/I(1). The principal
representation

indG
B χ

is the representation of G induced from the character of the upper triangular subgroup B inflated
from χ.

The representation indG
B χ is generated by fBI,χ (see § 4.3) and has a central character.

We describe now the right HR(G, I(1))-module (indG
B χ)I(1). The well known disjoint union

G = BI ∪ BsI = BI(1) ∪ BsI(1) = BI(1) ∪ BtI(1),

since st ∈ B, implies that
(indG

B χ)I(1) = RfBI,χ ⊕ RfBtI,χ

where fBI,χ, fBtI,χ are the unique functions in (indG
B χ)I(1) of support BI,BtI and value 1 at

1, t. The functions fBI,χ, fBtI,χ are eigenvectors for the action of I of eigenvalues χ(q) and χ(q)s.
The right HR(G, I(1))-module (indG

B χ)I(1) identifies with an HR(G,ω)-module where ω = χ(q) if
χ(q) = χ(q)s and ω = χ(q)⊕ χ(q)s if χ(q) �= χ(q)s. With the notation of the preceding sections for
the standard modules and for s, t, we have the following theorem.

Theorem 4.2. The right HR(G, I(1))-module (indG
B χ)I(1) is equal to the standard module

M2(qχ(ts)−1, χ(st)−1, χ(pF I2)−1, χ(q)) when χ(q) �= χ(q)s,

M2(qχ(ts)−1 + χ(st)−1, χ(pF I2)−1, χ(q)) when χ(q) = χ(q)s.

Proof. Appendix (§ A.5).

Corollary 4.3. Suppose that R is a field of characteristic p.

1) The HR(G, I(1))-module (indG
B χ)I(1) is

– cyclic, indecomposable,
– simple if and only if χ �= χs.

2) Two HR(G, I(1))-modules (indG
B χ)I(1) and (indG

B χ′)I(1) are isomorphic if and only if χ = χ′.

Proof.

1) The standard modules are cyclic. When χ(q) �= χ(q)s, the standard HR(G,ω)-modules are sim-
ple and χ �= χs is regular. We consider now the Iwahori case χ(q) = χ(q)s. Then the character
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χ is regular if and only if χ(st) �= χ(ts) and by Proposition 1.1, a standard H(G, I)-module
M2(a, z) is always indecomposable, and it is reducible if and only if a2 = z when the charac-
teristic of R is p. Using that χ(st)χ(ts) = χ(pF I2), we see that χ(st) = χ(ts) if and only if
M2(χ(st)−1, χ(pF I2)−1) is reducible.

2) Two standard HR(G, I(1))-modules are isomorphic if and only if they have the same central
character.
i) Regular case: the S2-orbit of χ(q) has two elements. From § 2.3, the modules M2(0, χ(st)−1,

χ(pF I2)−1, χ(q)),M2(0, χ′(st)−1, χ′(pF I2)−1, χ′(q))
– are isomorphic if and only if their values on st and on pF I2 are the same, i.e. χ = χ′,

when χ(q) = χ′(q);
– are never isomorphic when χ′(q) = χ(q)s, because M2(0, χ′(st)−1, χ′(pF I2)−1, χ′(q)) =

M2(χ′(st)−1, 0, χ′(pF I2)−1, χ(q)) and χ(st) �= 0.
ii) Iwahori case: χ(q)=χ(q)s=χ′(q). By Proposition 1.1, the modules M2(χ(st)−1, χ(pF I2)−1)

and M2(χ′(st)−1, χ′(pF I2)−1) are isomorphic if and only if their values on st and on pF I2

are the same, i.e. χ = χ′.

4.2 Integral structure
Let (E,R, k) be a p-modular setting as in § 1.5. The principal representation induced from an
R-integral E-character has an evident R-integral structure with reduction the principal represen-
tation parabolically induced from the reduction of χ. We will soon prove that the converse is not
true. There are R-integral representations which are not induced from an R-integral E-character.
The I(1)-invariants of an R-integral principal representation are clearly an R-integral HE(G, I(1))-
module. The converse is probably true, but has not been proved without restrictions on χ,F .

Proposition 4.4.

i) The HE(G, I(1))-module (indG
B χ)I(1) is R-integral iff

χ(pF I2) ∈ R∗, χ(st)−1 + qχ(ts)−1 ∈ R.

ii) When F = Qp and χ unramified, the principal representation indG
B χ of G is R-integral iff the

HE(G, I(1))-module (indG
B χ)I(1) is R-integral.

One deduces part i from Theorem 4.2 and from §§ 1.6 and 2.4; then property ii results from
Breuil [Bre01, 3.2.1].

The condition of R-integrality is equivalent to condition a or to condition b below:

a) χ(st)χ(ts) ∈ R∗, χ(st)−1, qχ(ts)−1 ∈ R;
b) 0 � valχ(ts) = − valχ(st) � val(q) where val is the valuation in E.

4.3 Irreducibility and indecomposability criteria
The simple following criteria of irreducibility or of indecomposability are very useful to study a
principal representation when R is a field of characteristic p.

Criterium 4.5 (Irreducibility). Let R be any field of characteristic p and let V ∈ ModR G non-zero
generated by V I(1). If V I(1) is simple as a right HR(G, I(1))-module, then V is irreducible.

Proof. Let W be a non-zero subrepresentation of V . Then W I(1) is a non-zero HR(G, I(1))-submod-
ule of V I(1), hence W I(1) = V I(1) because V I(1) is simple. As V I(1) generates V as a representation
of G we deduce W = V . Hence V is irreducible.

Criterium 4.6 (Indecomposability). Let R be any field of characteristic p and let V ∈ ModR G
non-zero. If V I(1) is indecomposable as a right HR(G, I(1))-module, then V is indecomposable.
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Proof. Let W1,W2 be two non-zero subrepresentations of V such that V = W1 ⊕ W2. Then
W

I(1)
1 ,W

I(1)
2 are non-zero and V I(1) = W

I(1)
1 ⊕ W

I(1)
2 .

We give now a simple proof of the decomposition of a principal representation indG
B χ, using

Corollary 4.3, when R is a field of characteristic p (see [BL94, BL95]).

4.4 Decomposition of a principal representation
Theorem 4.7. When R is a field of characteristic p, the principal representation indG

B χ is irre-
ducible when χ �= χs is regular, and for two different regular characters χ, χ′, the representations
indG

B χ, indG
B χ′ are not isomorphic. The representation indG

B 1 is indecomposable of length 2, with
submodule the trivial representation and quotient the Steinberg representation.

This is false for the finite case or in characteristic �= p. In the finite case, indG
B χ is always

reducible; in characteristic �= p the Jordan–Holder sequences of indG
B χ, indG

B χs are always the
same.

Proof.

a) Irreducible principal representations. By Criterium 4.5 of irreducibility, the cyclic representa-
tion indG

B χ (see Theorem 4.10(a)) is irreducible when the HR(G, I(1))-module (indG
B χ)I(1) is

simple. Then we apply Corollary 4.3.

b) Reducible principal representations. When χ is not regular, indG
B χ is of the form χ1 det⊗ indG

B 1
for a character χ1 of F ∗.

The principal representation indG
B 1 is indecomposable because (indG

B 1)I(1) is indecomposable
by Corollary 4.3. It is reducible because it contains the trivial representation. The quotient of
indG

B 1 by the trivial representation is called the Steinberg R-representation St of G. The Steinberg
representation is cyclic because indG

B 1 is cyclic. The image of the natural map

(indG
B 1)I(1) → (St)I(1)

is irreducible (the sign character). By Criterium 4.5 of irreducibility, St is irreducible if this map is
surjective. The functor of I(1)-invariant is not right exact and this is not evident. We may replace
I(1) by I because (indG

B 1)I(1) = (indG
B 1)I and this implies that the characters of I subquotients of

indG
B 1 restricted to I are trivial, hence StI(1) = StI . We recall the proof of the surjectivity of the

natural map

(indG
B 1)I → (St)I

due to Barthel and Livne [BL95, 3.4]. Let f ∈ indG
B 1 fixed by I modulo the constants. There exists

a function a : I → Fp such that f(gi) = f(g) + a(i) for any g ∈ G, i ∈ I. We want to prove that
a(i) = 0 for any i ∈ I. This is certainly the case for any i ∈ I such that there exists g ∈ G with
gig−1 ∈ B. Hence a(i) = 0 when i ∈ I is upper or lower triangular. These matrices generate the
group I as (

a b
pF c d

)
=
(

a 0
pF c d − pF cb/a

)(
1 b/a
0 1

)
,

and it is clear that f(gi) = f(g) and f(gi′) = f(g) for any g ∈ G implies that f(gii′) = f(g) for any
g ∈ G.

Let U be the strictly upper triangular group of G. General arguments [Vig96, II.2.1] imply the
following.

Corollary 4.8. In characteristic p, the trivial representation and the irreducible principal repre-
sentations of G are the only irreducible representations with non-zero U -coinvariants.
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This is false in the finite case, or in characteristic �= p and q + 1 �= 0 where the U -coinvariant of
the Steinberg representation is never 0.

Corollary 4.9. In characteristic p, the functor of I(1)-invariants gives a bijection between the
isomorphism classes of the irreducible subquotients of the principal representations of G and the iso-
morphism classes of the simple right HR(G, I(1))-modules which are not supersingular (§ 3.2).

4.5 Parabolic induction and compact induction
The next theorem describes the principal R-representation indG

B χ of G as a canonical quotient of the
compactly induced indG

I χ(q), where χ is an R-character of B, with restriction χ(q) to T (OF ) trivial
on the pro-p-Sylow of T (OF ) and identified to an R-character of I/I(1). This is a non-trivial result,
essentially due to Schneider and Stuhler who considered the case G = GL(n,F ), R = Z, χ = id.
This theorem was extended by Dat [Dat99] to a much more general setting but only over a field
of characteristic �= p. As the hypothesis n = 2 and R = Fp brings no simplification we suppose in
this section G = GL(n,F ) and that R is a commutative ring. The notations already introduced for
GL(2, F ) extend naturally.

Theorem 4.10. The function fIg,χ(q) ∈ indG
I χ(q) has support I and value 1 at g ∈ G, and the

function fBI,χ ∈ (indG
B χ)I(1) has support BI = BI(1) and value 1 at 1 ∈ G. The function fBI,χ is

an eigenvector for the action of I of eigenvalue χ(q). Also we have a unique RG-homomorphism

Φ : indG
I χ(q) → indG

B χ

sending fI,χ(q) to fBI,χ. The map Φ is surjective because indG
B χ is a cyclic RG-module generated

by fBI,χ.

This results from [SS91, Proposition 8, p. 78] as follows.

a) Any open compact subset of B\G can be written as a finite disjoint union of subsets of the
form B\BIg with g ∈ G.

We give a proof of a stronger version of part a in part 3 of § A.7 valid in a more general setting.
In part a one can suppose g ∈ HK where K := GL(n,OF ) and H is the semi-group generated by
the diagonal matrices z±1, y1, . . . , yn−1 defined by

z := pF In = diag(pF , . . . pF ), y−1
1 := diag(1, pF . . . pF ), . . . , y−1

n−1 := diag(1, . . . 1, pF ).

The Iwahori subgroup I has an Iwahori decomposition

I = (I ∩ U)T (OF )(I ∩ U)

where B = T (F )U and B = T (F )U is the lower triangular subgroup. The elements in the semi-group
H contract I ∩ U , normalize T (OF ), dilate I ∩ U .

We will determine the kernel of Φ. For any g ∈ T (F ), there exists a function Eg (denoted Eg,χ(q)

in § 2) in HR(G,χ(q)) with support IgI and with value 1 at g. The basic property of H is that the
linear map

τχ(q) : R[H] → HR(G,χ(q)), h �→ Eh

is injective and respects the following product.

b) For any h, h′ ∈ H we have Eh ∗ Eh′ = Ehh′ .

The well known proof is recalled in § A.7. The image of R[H] in HR(G,χ(q)) is a commutative
subalgebra denoted by A. We prove in a more general setting (§ A.7) the important geometric
property [SS91, Proposition 7, p. 77]:

c) BIhk ∩ BIhk′ �= ∅ implies Ihk = Ihk′ for any (h, k, k′) ∈ H × K2.
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This is the main ingredient of the following relation:

d) Φ(Eh) = χ(h)−1fBI,χ for any h ∈ H.

Note that as an R-module, HR(G,χ(q)) identifies with the (I, χ(q))-invariants of indG
I χ(q) and

we can define Φ(Eh). The property d follows from the fact that Φ(Eh) is I(1)-invariant and of
support contained in BIhI = BI as h−1 contracts I ∩ B. Hence Φ(Eh) = Φ(Eh)(1)fBI,χ. To show
that Φ(Eh)(1) = χ(h)−1, one uses that

IhI = Ih(I ∩ U) = ∪kIhk

finite disjoint union) where k ∈ I ∩ U , χ(q) is trivial on I ∩ U ,

Eh =
∑

k

fIhk,χ(q), Φ(Eh) =
∑

k

(hk)−1fBI,χ,

and the union BIhI = ∪kBIhk is disjoint by property c. The identity 1 ∈ G belongs to BIh and
we deduce Φ(Eh)(1) = h−1fBI,χ(1) = χ(h−1).

The character χ−1 of T (F ) defines a semi-group homomorphism H → R, and an R-algebra
homomorphism A → R sending h and Eh on χ−1(h) for all h ∈ H, still denoted by χ−1. We obtain
in this way all the characters of H and A sending yi, Eyi to an invertible element in R for all
1 � i � n− 1. The subrepresentation of indG

I χ(q) generated by (α− χ−1(α))fI,χ(q) for all α ∈ A is
contained in the kernel of Φ by relation d. This means that the kernel of the projection

p : indG
I χ(q) → R ⊗A,χ−1 indG

I χ(q)

is contained in the kernel of Φ, and therefore there exists an RG-homomorphism

Φ : R ⊗A,χ−1 indG
I χ(q) → indG

B χ

such that Φ = Φ ◦ p. The map Φ is surjective as Φ. We will prove that Φ is injective.

Theorem 4.11. Φ : R ⊗A,χ−1 indG
I χ(q) → indG

B χ is an isomorphism.

The proof which follows [SS91] consists in finding a subspace X of indG
I χ(q) such that the

restriction of p to X remains surjective, and the restriction of Φ to X is injective. The first try is
the subspace X ′ of functions with support contained in IHK. From [SS91, Lemma 12, p. 80] we
obtain the following:

e) For any g ∈ G, there exists h ∈ H such that IhIg ⊂ IHK.

The restriction of p to X ′ remains surjective. Indeed for any g ∈ G, the image by p of fIg,χ(q)

and of χ(h)Eh ∗ fIg,χ(q) of support contained in IhIg are equal. This results from relation d and
from the formula fIg,χ(q) + χ(h)((Eh − χ(h)−1) ∗ fIg,χ(q)) = χ(h)Eh ∗ fIg,χ(q).

The element ho ∈ H defined by

h−1
o := diag(1, pF , . . . , pn−1

F )

has the following property:

f) Given h ∈ H and a big enough integer n > 0, there exists h′ ∈ H with h′h = hn
o .

This implies, using Ih′Ihk ⊂ Ih′hK for h, h′ ∈ H, k ∈ K and the argument above, that the
restriction of p to the union

X :=
⋃
n�0

indIhn
o K

I χ(q)

remains surjective. The property c implies that the restriction of Φ to X is injective. The theorem
is proved.
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5. Supersingular modules and Galois Fp-representations of dimension 2

Let R be an algebraically closed field of characteristic p and let G := GL(2, F ). Any irreducible
R-representation σ of W (F/F ) of dimension 2 is trivial on the wild ramification subgroup and any
irreducible R-representation of G has a non-zero I(1)-invariant vector. If there is a local Langlands
R-correspondence for GL(2, F ), and if the main Conjecture 4.1 is true, there will be a ‘local Lang-
lands correspondence’ between the irreducible R-representations of W (F/F ) of dimension 2 and
the supersingular simple right HR(G, I(1))-modules of § 3.2.

Definition 5.1 (Supersingular modules). An irreducible R-representation of G is called supersin-
gular if it is not a subquotient of indG

B χ for some R-character χ of B.
A simple right HR(G, I(1))-module is called supersingular, if it is not isomorphic to a subquotient

of (indG
B χ)I(1), for some R-character χ of B.

Remark. The number of supersingular simple right HR(G, I(1))-modules with a given action of pF

is (q2 − q)/2.

This is coherent with § 3.2 and Theorem 4.2. The terminology ‘supersingular’ instead of ‘super-
cuspidal’ was introduced by Barthel and Livne and is natural in the context of elliptic curves.

An R-character of F ∗ is determined by its value zo on pF and by its restriction to the subgroup
of roots of 1 of order dividing q − 1 in F ∗, identified with a non-regular character χo = χos of
I/I(1). The twist of the simple supersingular HR(G, I(1))-module M(0, z, ω) by the character of F ∗

associated to (zo, χo) is defined as M(0, zzo, ωχo).

5.1 Galois representations
The irreducible R-representations of WF = W (F/F ) of any dimension n � 1 are described in
[Vig97, 1.14]. They are

indWF
WFn

χ,

the representations induced by the regular R-characters χ of WFn , where Fn/F is the unramified
extension in F of degree n. The distinct Gal(Fn/F )-conjugates of χ induce isomorphic represen-
tations and there are no other isomorphisms between the representations. We need only the case
n = 2 but this brings no simplification.

Via local class field theory sending a geometric Frobenius to pF , χ identifies with an R-character
of F ∗

n , determined by its value z ∈ R∗ at pF and by its restriction ρ to the subgroup of roots
of 1 of order dividing qn − 1 in F ∗

n . The determinant of indWF
WFn

χ identifies with the character of
F ∗ associated with (z, ρo) where ρo is the restriction of ρ to the subgroup of roots of 1 of order
dividing q − 1 in F ∗. The Gal(Fn/F )-orbit of χ identifies with the R-characters of F ∗

n associated to
(z, ρm), m ∈ qZ.

Remark. The number of irreducible R-representations of WF of dimension n with a given value of
the determinant at pF , is equal to the number

mn(q) = n−1
∑
d|n

µ(n/d)qd,

of irreducible unitary polynomials in Fq[X] of degree n. Here µ is the Möbius function (see [IR90,
p. 84] when q = p). When n = 2 we get:

m2(q) = (q2 − q)/2.

A marvellous numerical coincidence occurs.
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5.2 Number of supersingular modules
Remark. The number of supersingular simple right HR(G, I(1))-modules with a given action of pF

is equal to the number of irreducible R-representations of WF of dimension 2, with a given value of
the determinant at pF .

Using the following Lemma 5.2, one can show that the next remark holds.

Remark. There is a (not unique) bijection between the irreducible R-representations of WF of
dimension 2 and the supersingular simple right HR(G, I(1))-modules, compatible with the twist by
a character of F ∗ and local class field theory, such that the determinant corresponds to the central
character restricted to F ∗ naturally embedded in HR(G, I(1)).

Let µF be the fundamental character O∗
F → R∗ trivial on 1 + pF OF . The R-characters of I

trivial on I(1) are µi
F ⊗ µj

F for integers i, j modulo q − 1. The non-trivial element of S2 permutes
i, j.

The regular R-characters of O∗
F2

trivial on 1 + pF O∗
F2

are µr
F2

for integers r �≡ qr modulo q2 − 1.
The non-trivial element of S2 permutes r, qr.

One wants a bijection ρ between the set of non-ordered pairs (i, j) of integers modulo q− 1, and
the set of non-ordered pairs (r, qr), r �= qr, of integers modulo q2 − 1, which is equivariant for the
action of the group of integers k modulo (q − 1) which sends (i, j) on (i + k, j + k), and (r, qr) on
(r + k(q + 1), qr + k(q + 1)).

The two sets have q(q − 1)/2 elements. Each orbit of Z/(q − 1)Z in the (i, j)-set or in the
(r, qr)-set has q − 1 elements, with the following exception: if q is odd, the Z/(q − 1)Z-orbit of

– (0, (q − 1)/2) mod q − 1, in the (i, j)-set,
– ((q + 1)/2, q[(q + 1)/2]) mod q2 − 1, in the (r, qr), r �= qr, set has (q − 1)/2 elements.

Hence many bijections ρ exist.

Lemma 5.2. There exists a bijection from the S2-orbits of R-characters of I/I(1) to the regular
S2-orbits of O∗

F2
/(1 + pF OF2), compatible with the twist by the characters of O∗

F /(1 + pF OF ).

Let us give an example for ρ. The number of Z/(q − 1)Z-orbits of q − 1 elements in each set
is [q/2], where [q/2] = q/2 if q is even and [q/2] = (q − 1)/2 if q is odd. One checks that a set of
representatives of these orbits is

– in the (i, j)-set: (0, n) mod q − 1, for 0 � n � [q/2] − 1,
– in the (r, qr), r �= qr, set: (n + 1, q(n + 1)) mod q2 − 1 for 0 � n � [q/2] − 1.

One can choose ρ sending n(0, 1)+ k(1, 1) mod q− 1, to (n+1)(1, q)+ k(q +1, q +1) mod q2 − 1
for 0 � n � [q/2].

We give now some partial results on supersingular irreducible R-representations of G.

Proposition 5.3.

1) Any irreducible R-representation V of G such that the HR(G, I(1))-module V I(1) has a simple
supersingular subquotient is supersingular.

2) A simple module contained in V I(1) is trivial or supersingular when V is a supersingular
irreducible R-representation of G, on which pF acts by multiplication by z ∈ R∗.

Proof.

1) This results from the explicit description of the HR(G, I(1))-module V I(1) when V is a principal
R-representation (Theorem 4.2).
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2) Twisting the irreducible representation V by a character, if necessary, we reduce to the Iwahori
case where V is a quotient of indG

I 1 or to the regular case where V is a quotient of indG
I χ(q) �

indG
I χ(q)s for a regular R-character χ(q) �= χ(q)s of I. We prove part 2 in the Iwahori case; a

similar argument works in the regular case. In the Iwahori case, V I(1) = V I because the order
of the finite quotient I/I(1) is prime to p. Let A be the subalgebra of HR(G, I) generated by
T±2, ST . The central element T 2 acts on V I by multiplication by z. If V I contains a simple
HR(G, I)-submodule M , it contains an ST -eigenvector m with eigenvalue λ. The RG-morphism

φV : indG
I 1 → V

sending the characteristic function fI of I on m is surjective as V is irreducible. The kernel
of φV contains the subrepresentation of indG

I 1 generated by fI(α − µ(α)) = α − µ(α) for all
α ∈ A where µ is the R-character of A such that µ(T 2) = z, µ(ST ) = λ. This means that V
is a quotient of R ⊗A,µ indG

I 1. By Theorem 4.11, λ must be zero because V is supersingular.
We deduce that the eigenvalues of ST in M are 0. A trivial character or a supersingular module
are the only simple right HR(G, I)-modules with this property (see §§ 1.3 and 1.4).

Breuil [Bre01] classified the irreducible supersingular representations, building on the work of
Barthel and Livne when (F,R) = (Qp,Fp), but his proof cannot work when F �= Qp. We prove the
main Conjecture 4.1 for (Qp,Fp).

Theorem 5.4. The I(1)-invariant functor V → V I(1) induces a bijection between the isomorphism
classes of the irreducible Fp-representations of GL(2,Qp) with a central character and the isomor-
phism classes of the finite dimensional simple right HFp

(G, I(1))-modules.

Proof. By Corollary 4.9 we need only to consider the supersingular irreducible representations
of G. From the computations of [Bre01, 3.2.4], proofs of [Bre01, corollaire 4.1.1] and of [Bre01,
corollaire 4.1.3], one deduces that V → V I(1) is an injective map from the supersingular irreducible
representations of G to the supersingular HR(G, I(1))-modules. By a counting argument (see [Bre01,
4.2.3] and § 5.2), the map is a bijection.
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Appendix A

A.1 Computations in Hecke algebras [Vig96, I.8]
Let R be a commutative ring, let G be a locally profinite group, let K be an open subgroup of G
and let (σ, V ) be a finitely generated R-representation of K. The Hecke algebra

EndRG indG
K σ

is isomorphic as an R-module, to the R-module HR(G,σ) of functions f : G → EndR V with
compact support satisfying

f(k1gk2) = σ(k1)f(g)σ(k2)
for all g ∈ G, k1, k2 ∈ K. We describe an isomorphism after some preliminaries.
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For any g ∈ G and any v ∈ V we denote by [Kg, v] the function in ρ = indG
K σ with support Kg

and value v at g. We have the relation

[Kg, v] = ρ(g)−1[K, v].

The functions [Kg, v] for g fixed and for v in a set of generators of the R-module V span ρ := indG
K σ

as an RG-module.

We say that g ∈ G intertwines σ, when the R-module Ig of intertwining operators F ∈ EndR V,

Fσ(k) = σ(gkg−1)F for all k ∈ K ∩ g−1Kg,

is non-zero. This definition is not the same as in [Vig96, I.8.2, I.8.10] where g has been replaced
by g−1. The intertwining set is the set of g ∈ G such that Ig is non-empty. When Ig is non-empty,
for any F ∈ Ig we denote by [KgK,F ] the function in HR(G,σ) with support KgK and value F
at g.

The most important case is when σ is a character K → R∗. Then Ig � R if g intertwines σ.
When F ∈ Ig is the identity, [KgK,F ] is simply denoted by [KgK] or Eg,σ or Eg. These elements
form an R-basis of HR(G,σ).

The R-module isomorphism

A ↔ f : EndRG indG
K σ � HR(G,σ)

is defined by

f(g) : v �→ A[K, v](g) for any g ∈ G, v ∈ V

and conversely,

A : φ �→ f ∗ φ for any φ ∈ indG
K σ

where

f ∗ φ(x) :=
∑

t∈K\G
f(xt−1)φ(t)

is a well defined element of indG
K σ. The isomorphism respects the product if the product on HR(G,σ)

is the convolution given by the formula:

f ∗ f ′(x) =
∑

t∈K\G
f(xt−1)f ′(t) =

∑
t∈G/K

f(t)f ′(t−1x).

Example I. Convolution of a double coset f = [KgK,F ] and of a coset φ = [Kg′, v]:

[KgK,F ] ∗ [Kg′, v] =
∑
Kg′′

[Kg′′, v′′]

where

KgKg′ = ∪g′′Kg′′ (disjoint union),
v′′ = σ(α)Fσ(β)v, g′′ = αgβg′, α, β ∈ K.

Example II. Convolution of two double cosets f = [KgK,F ], f ′ = [Kg′K,F ′]:

[KgK,F ] ∗ [Kg′K,F ′] =
∑

Kg′′K

[Kg′′K,F ′′]
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where

KgKg′K = ∪g′′Kg′′K (disjoint union),

F ′′ =
∑

t

f(t)f ′(t−1g′′),

KgK ∩ g′′Kg′−1K = ∪ttK (disjoint union with m(g, g′; g′′) terms),

F ′′ =
∑
α

σ(α)Fσ(β)F ′σ(γ), t = αg, g′′ = αgβg′γ, α, β, γ ∈ K.

When KgKg′K = Kgg′K and g−1KgK ∩ g′Kg′−1K = K the formula gives:

[KgK,F ] ∗ [Kg′K,F ′] = [Kg′′K,F ′′], g′′ = gg′, F ′′ = FF ′.

This is the case when g or g′ normalizes K, or when K has an Iwahori decomposition and g, g′ are
in ‘good position’ as in § A.7.

A.2 Notations of § 2

We consider the Hecke algebra HR(G,σ) where (G,K, σ) = (GL(2, F ), I, χ), χ �= χs regular.
The intertwining set of χ is T . The elements E(st)a(ts)b for all a, b ∈ Z form a basis of HR(G,χ),
where s, t are defined at the beginning of § 1. Clearly Z := EpF I2 belongs to the center of the
algebra. Set X := Ets and Y := E(ts)−1 . We have Est = ZY because stts = pF I2. We have the
following relations 1–3:

1) Z ∗ Eg = Eg ∗ Z = EpF g for all g ∈ T ;

2) XXn = Xn+1, Y Y n = Y n+1 for any integer n > 0.

The relation XXn = Xn+1 results from parts a and b below:

a) ItsI(ts)nI = I(ts)n+1I, i.e. the length of (ts)n in the generalized affine Weyl group is equal
to n,

b) ItsI ∩ (ts)n+1I(ts)−nI = tsI for any integer n > 0 because we have the disjoint unions

I(ts)nI =
⋃

x∈An

(
1 0

pF x 1

)
(ts)nI, I(ts)−nI =

⋃
x∈An

(
1 x
0 1

)
(ts)−nI, (A.1)

where An is a system of representatives of OF /pn
F OF : A1 is the set of the elements in OF

satisfying xq = x and An := {uo + pF u1 + · · · + pn−1
F un−1, ui ∈ A1}. The proof of the

relation Y Y n = Y n+1 is similar.

3) XY = Y X = qE1.

Proof of XY = qE1. Applying (A.1) to n = 1 we compute ItsI(ts)−1I as a disjoint union of
(I, I)-cosets

ItsI(ts)−1I = I
⋃

u∈A1−0

I

(
1 p−1

F u
0 1

)
I.

The formula (
1 0
x 1

)
=
(

1 1/x
0 1

)
s

(
x 1
0 −1/x

)
(A.2)

when x �= 0, shows that
(

1 p−1u
0 1

)
is not contained in the support ITI of the algebra HR(G,χ), the

character χ being regular. Hence XY = XY (1)E1. Applying (A.1) to n = 1 and χ
(

1 0
px 1

)
= 1 for all

x ∈ A1 we have XY (1) = q. The proof of the relation Y X = qE1 is similar.
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A.3 Notations of §§ 1 and 2

We consider the Hecke algebra HR(G,σ) where σ = χ if χ is non-regular which means χ = χ1 det
for some character χ1 of O∗

F , and σ = χ⊕χs if χ is regular. As t normalizes I, the product by [It, ∗]
in HR(G,σ) is very simple:

[It, F ] ∗ [IgI, F ′] = [ItgI, FF ′], [IgI, F ′] ∗ [It, F ] = [IgtI, F ′F ]

for any F ∈ It, g ∈ G,F ′ ∈ Ig.

Let F ∈ Is = It, S := [IsI, F ]; we compute the square S2.

We have IsIsI = I ∪ IsI (disjoint union) and S2 = [I, S2(1)] + [IsI, S2(s)]. We compute S2(1).
We have

IsI =
⋃

x∈A1

(
1 x
0 1

)
sI. (A.3)

The representation σ is trivial on
(

1 x
0 1

)
for any x ∈ A1 (defined as in (A.1)), and we have((

1 x
0 1

)
s
)−1 = s

(
1 −x
0 1

)
. Hence

S2(1) =
∑
x∈A1

F 2 = qF 2.

We compute S2(s). We have

IsI ∩ sIsI =
⋃

u∈A1−0

(
1 u
0 1

)
sI

because s
(

1 x
0 1

)
s =

(
1 0
x 1

)
is equal to 1 if x = 0 and to

(
1 1/u
0 1

)
s
( u 1

0 −1/u

)
when x = u �= 0 by (A.2).

As before σ is trivial on
(

1 1/u
0 1

)
and

((
1 u
0 1

)
s
)−1

s =
(

1 0−u 1

)
=
(

1 −1/u
0 1

)
s
(−u 1

0 1/u

)
. We have

S2(s) = F 2
∑

u∈A1−0

σ

(
u 1
0 −1/u

)
.

In the non-regular case, σ = χ and χ
( u 1

0 −1/u

)
= χ1(−1). We have

S2 = [I, qF 2] + [IsI, (q − 1)χ1(−1)F 2]. (A.4)

In the regular case χ �= χs, σ = χ ⊕ χs, S2(s) = 0 and we have

S2 = [I, qF 2]. (A.5)

A.4 Functor from representations of G to modules of Hecke algebras

Let (π,W ) be any R-representation of G. The R-module HomRK(σ, π) is a right module for the
Hecke algebra HR(G,σ) defined in § A.1 via the canonical isomorphism

HomRK(σ, π) � HomRG(indG
K σ, π). (A.6)

Explicitly, the action of the double coset [KgK,F ] on D ∈ HomRK(σ, π) is given by

D ∗ [KgK,F ] : v �→
∑

y

π(y)−1 DFσ(κ)(v) (A.7)

for v ∈ σ, where KgK = ∪yKy (disjoint union), and y = gκ. Two particular cases are specially
important. When g normalizes K, we have KgK = Kg and

D ∗ [Kg,F ] : v �→ π(g)−1 DF (v). (A.8)
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When σ is the trivial representation, HomRK(σ, π) identifies to the K-invariant vectors W K of W
and for all w ∈ W K we have

w ∗ [KgK] =
∑

y

π(y)−1w. (A.9)

A.5 Proof of Theorem 4.2
Notations are as in § 4.1 for the principal representations. Set ω = χ(q) if χ(q) = χ(q)s is not
regular and ω = χ(q) ⊕ χ(q)s if χ(q) �= χ(q)s is regular.

The space HomRI(ω, indG
B χ) identifies with (indG

B χ)I(1) = RfBI,χ ⊕ RfBtI,χ.
The space HomRI(χ(q), indG

B χ) identifies with M = (indG
B χ)I(1) when χ(q) = χ(q)s is not

regular, and M = RfBI,χ when χ(q) �= χ(q)s is regular
From (A.9) applied to (G,K, σ, π) = (GL(2, F ), I, χ(q), indG

B χ), the right action of f ∈ HR(G,
χ(q)) on any fχ ∈ M is given by convolution:

fχ ∗ f(g) =
∑

y∈I\G
fχ(gy−1)f(y). (A.10)

With the notations of § A.1, the central element EpF I2 ∈ HR(G,χ(q)) acts by multiplication by
χ(pF I2)−1.

A) We suppose that χ(q) = χ1 det is not regular, where χ1 is a character of O∗
F trivial on

1 + pF OF . The matrix of the action of f ∈ HR(G,χ(q)) on M is(
fBI,χ ∗ f(1) fBtI,χ ∗ f(t)
fBI,χ ∗ f(t) fBtI,χ ∗ f(t)

)

on the basis {fBI,χ, fBtI,χ}.
Let T, S ∈ HR(G,χ(q)) of support ItI, IsI and value 1 at t, s.
As t normalizes I and t2 = pF I2 we have

fχ ∗ T (g) = fχ(gt−1) = fχ(gp−1
F t) = χ(pF I2)−1fχ(gt).

In particular, fχ ∗ T (1) = χ(pF I2)−1fχ(t), fχ ∗ T (t) = fχ(1). The matrix of T is(
0 χ(pF I2)−1

1 0

)
. (A.11)

We compute now fχ ∗ S. Using t = (ts)s we have fχ(t) = χ(ts)fχ(s). By (A.3) and (A.10) we have

fχ ∗ S(g) =
∑
x∈A1

fχ

(
g

(
s

(
1 x
0 1

))−1
)

=
∑
x∈A1

fχ

(
g

(
1 x
0 1

)
s

)
,

fχ ∗ S(1) =
∑
x∈A1

fχ

((
1 x
0 1

)
s

)
= qfχ(s) = qχ(ts)−1fχ(t).

Using (A.2) we have∑
x∈A1

fχ

(
1 0
x 1

)
= fχ(I2) + fχ(s)

∑
u∈A1−0

χ(q)
(

u 1
0 −1/u

)
, (A.12)

fχ ∗ S(s) =
∑
x∈A1

fχ

(
1 0
x 1

)
= fχ(I2) + (q − 1)χ1(−1)fχ(s),

fχ ∗ S(t) = χ(ts)fχ(I2) + (q − 1)χ1(−1)fχ(t).
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This shows that the matrix of S is(
0 qχ(ts)−1

χ(ts) (q − 1)χ1(−1)

)
. (A.13)

Set m := qχ(ts)−1fBI,χ − χ1(−1)fBtI,χ. Then

m ∗ Sχ1(−1) = −m

m ∗ Tχ1(−1)(Sχ1(−1) − q) = (χ(st)−1 + qχ(ts)−1)m

m ∗ (Tχ1(−1))2 = χ(pF I2)−1m.

The HR(G,χ(q))-module M is the image of the standard HR(G, I)-module,

M2(χ(st)−1 + qχ(ts)−1, χ(pF I2)−1)

by the canonical isomorphism HR(G, I) � HR(G,χ(q)) (see § 1.4 and Paragraph 2.1.1).

B) We suppose now χ(q) �= χ(q)s regular . We compute the right action of Ets, Est ∈ HR(G,χ(q))
on fBI,χ.

From (A.1) we deduce

ItsI =
⋃

x∈A1

Its

(
1 x
0 1

)
,

IstI =
⋃

x∈A1

Ist

(
1 0

pF x 1

)
=
⋃

x∈A1

I

(
1 0
x 1

)
st.

(A.14)

Applying the formula (A.10) we get

fBI,χ ∗ Ets(1) =
∑
x∈A1

fBI,χ

((
ts

(
1 x
0 1

))−1
)

=
∑
x∈A1

fBI,χ

((
1 x
0 1

)
(ts)−1

)
= qχ(ts)−1,

fBI,χ ∗ Est(1) =
∑
x∈A1

fBI,χ

(((
1 0
x 1

)
st

)−1
)

= χ(st)−1
∑
x∈A1

fBI,χ

(
1 0
x 1

)
= χ(st)−1

as (A.12) is valid in general and in the regular case

χ(q)
(

u 1
0 −1/u

)
= (χ1/χ2)(u)χ2(−1)

for two distinct R-characters χ1 �= χ2 of F∗
q.

The character given by the action of HR(G,χ(q)) on RfBI,χ sends (T 2, Ets, Est) on

(χ(pF I2)−1, qχ(ts)−1, χ(st)−1).

A.6 Principal representations of G(q)
The Frobenius x → xp induces an automorphism of M2(Fq):

Fr
(

a b
c d

)
=
(

ap bp

cp dp

)

for a, b, c, d ∈ Fq. We denote by U(q) the unipotent radical of the upper triangular subgroup B(q)
of G(q) := GL(2,Fq) and by det : G(q) → F∗

q the determinant. The irreducible Fp-representations
of G(q) were computed by Brauer and Nesbitt in 1937. They are the scalar extensions of the
irreducible rational representations of G(q).
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Assertion A.1 [BL94]. The irreducible rational representations of G(q) are

ρx,y = detx ⊗ Symy, Symy := ⊗f−1
k=0Symyk Frk

for a unique integer x modulo q−1 and a unique integer 0 � y � q−1, where 0 � yo, . . . , yf−1 � p−1
are the integers given by the p-adic expansion

y = yo + y1p + · · · + yf−1p
f−1.

The representations Symn of G(q) for 0 � n � p − 1 are realized in the space of polynomials
homogeneous of degree n over Fq:

Symn

(
a b
c d

)
(Xn−rY r) = (aX + cY )n−r(bX + dY )r

for a, b, c, d ∈ Fq, ad − bc �= 0 and 0 � r � n.

The U(q)-invariants ρ
U(q)
x,y and the U(q)-coinvariants ρx,yU(q) have dimension equal to 1; the split

torus T (q) acts on the U(q)-invariants ρ
U(q)
x,y by the character

χx,y

(
a 0
0 d

)
= (ad)xay,

and on the U(q)-coinvariants ρx,yU(q) by the character χx,ys. The character χx,y is regular iff 1 �
y � q − 2, then χx,ys = χx′,y′ , x′ ≡ x + y, y′ = q − 1 − y.

We consider now any field R containing Fq and the principal R-representations indG(q)
B(q) χ of G(q)

associated to any R-character χ of the torus T (q). The character χ can be written χx,y as above.
When χ is regular, the pair (x, y) is unique. The following proposition is the finite analogue of the
local Proposition 2.1, the Iwahori I and the pro-p-Iwahori I(1) being the local analogues of the finite
groups B(q) and U(q).

Proposition A.2.

a) The dimension dimR HomRG(q)(indG(q)
B(q) χ′, indG(q)

B(q) χ) is equal to

0 if χ′, χ are not S2-conjugate;
1 if χ′, χ are conjugate and χ non-regular;
2 if χ′ = χ is regular.

b) indG(q)
B(q) 1 is the direct sum of the trivial representation and of the Steinberg representation

which is irreducible.

c) In the regular case χ �= χs, the principal representation indG(q)
B(q) χ

i) admits a unique irreducible quotient V (χ), and V (χx,y) � ρx,y;
ii) admits a unique irreducible subrepresentation isomorphic to V (χs);
iii) is of length � 2, and of length 2 for any χ if and only if q = p.

Proof. We recall the well known adjunctions: for any V ∈ ModR G(q)

HomRG(q)(indG(q)
B(q) χ, V ) = HomRT (q)(χ, V U(q)),

HomRG(q)(V, indG(q)
B(q) χ) = HomRT (q)(VU(q), χ).

From the disjoint union
G(q) = B(q) ∪ B(q)sB(q)

we have (indG(q)
B(q) χ)U(q) � χ ⊕ χs and by adjunction we have

HomRG(q)(indG(q)
B(q)

χ′, indG(q)
B(q)

χ) � HomRT (q)(χ
′, χ ⊕ χs),
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from which part a follows. The irreducibility of the Steinberg representation is all that we need to
get part b, thanks to part a. This is proved as in the local case (§ 4.4).

The properties i and ii of part c result from Assertion A.1 by adjunction. The simple representa-
tions ρx,y = V (χx,y) and ρx′,y′ = V (χx,ys) are never isomorphic by the classification of Assertion A.1,
and hence the length of indG(q)

B(q) χx,y is at least 2 and is equal to 2 iff dim ρx,y + dim ρx′,y′ =

dim indG(q)
B(q) χx,y. Writing q = pf the dimensions are

dim ρx,y =
f−1∏
k=0

(yk + 1), dim ρx′,y′ =
f−1∏
k=0

(p − yk), dim indG(q)
B(q) χx,y = pf + 1.

Clearly when f = 1 we have dim ρx,y + dim ρx′,y′ = dim indG(q)
B(q) χx,y = p + 1. When f > 1 there

is always some integer 1 � y � q − 2 such that the sum
∏f−1

k=0(yk + 1) +
∏f−1

k=0(p − yk) is not
equal to pf + 1; take for example y = 1 then yo = 1 and yk = 0 for all 1 � k � f − 1 and
dim ρx,y = 2,dim ρx′,y′ = (p − 1)pf−1 but 2 + (p − 1)pf−1 < pf + 1. We have proved property iii of
part c.

A.7 Iwahori decomposition
Notations are as § A.1. We suppose that (K,σ) has an Iwahori decomposition, i.e. there are closed
subgroups M,N,N,P = MN,P = MN of G with N,N normalized by M = P ∩ P such that

K = K−KoK+ = K+KoK−, (A.15)

where K− := K ∩N,Ko := K ∩M,K+ := K ∩N , and σ is trivial on K− and on K+. An element
h ∈ G contracts K+, normalizes Ko, dilates K− when

hK+h−1 ⊂ K+, hKoh−1 = Ko, hK−h−1 ⊃ K−. (A.16)

The set of such elements is stable by multiplication and forms a semi-group H.

1) In the Hecke algebra HR(G,σ),

[KhK,F ] ∗ [Kh′K,F ′] = [Khh′K,FF ′] (A.17)

for h, h′ ∈ H and F ∈ Ih, F ′ ∈ Ih′ . This results from Example II of § A.1 and from:

i) KhKh′K = Khh′K, indeed hKh′ = h(K+Ko)h−1hh′h′−1K−h′ ⊂ Khh′K;
ii) h−1KhK ∩ h′Kh′−1K = K, indeed we can write the left hand side as h−1K+hK ∩

h′K−h′−1K which is clearly contained in

NK ∩ NK = K. (A.18)

The next two properties are used in [SS91, § 4] when G = GL(n,F ).

2) Let C be a subgroup of G such that K ⊂ C, P ∩ C = P ∩ K.
Then the relation PKhc ∩ PKh �= ∅ with (h, c) ∈ (H ∩ P ) × C implies Khc = Kh.
One shows first that the relation implies c ∈ K.
As PK = PK−, PKh = Phh−1K−h = Ph−1K−h, the relation is equivalent to k1ck2 ∈ P for
some (k1, k2) ∈ (h−1K−h)2 . As h−1K−h ⊂ K− ⊂ C, we deduce that k1ck2 ∈ P ∩C = KoK+

and c ∈ K.
Write c = k+kok− in the Iwahori decomposition of K. Then Khc = Khk− and PKhc =
PKhk−. The relation is equivalent to k′

1k
−k′

2 ∈ P for some (k′
1, k

′
2) ∈ (h−1K−h)2. As P∩K− =

{1}, we get k− ∈ h−1K−h hence Khc = Kh.

3) Let C ′ be a subgroup of G with the Iwasawa decomposition: G = PC ′ and let ho ∈ H ∩P with
h−1

o strongly contracting N : the groups h−n
o K−hn

o for n � 0 form a fundamental system of
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neighborhoods of 1 in N . The cosets P\PKhn
o = P\P (h−n

o K−hn
o ) form a fundamental system

of neighborhoods of the trivial coset. The cosets P\PKhn
og form a fundamental system of

neighborhoods of the coset P\Pg, for any g ∈ G.
Any compact of P\G is a finite disjoint union of P\PKhn

o c where n � 0 and c ∈ C ′.
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