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Abstract

Following Terry (Pacific J. Math. 52 (1974), 269-282), the positive solutions
of equation (E): D*[r(¢t) D" y(¢)]+a(t) fIy{(c(t))] = 0are classified according
to types B;. We denote

yt) = Diy(t)fori=0,...,n—1;
ydt) = D*-7[r(t) D y(t)}fori = n, ..., 2n—1.

A necessary condition is given for a By-solution y(t) of (E) to satisfy
Yax(®)=m(#)>0. In the case m(z) = C>0, we obtain a sufficient condition
for all solutions of (E) to be oscillatory.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 34 C 10;
secondary 34 C 15, 34 K 05, 34 K 15, 34 K 20, 34 K 25.

In this paper a number of results are presented concerning the possible rate of
growth of nonoscillatory solutions of a functional differential equation of even
order. We let R = (—00,00), R, = [0,0), R¥ = (0,c0) and consider the equation

M Dr(6) D™y (1)) +a(?) fIAo(t)] = O,
where f(u) is a nondecreasing function in C[R, R],

a(t)eC[Ry, R*), r(t)eC{Ry,[m,M]}, m>0,

o(t)eC[Ry, R*], uf(u)>0 for u#0, o{t)<t and lim,,  o(f) =+o0.
In a special case, the main result will yield a criterion for the oscillation of all
solutions of (1). When r(f)=1 and n = 1, the main result and its corollary will
reduce to Theorems 3 and 4, respectively, of Burton and Grimmer (1972).

A solution y(¢) of (1), or of the equation (7) below, is said to be oscillatory on

[a,00) if for each o> a there is a 8> « such that y(B) = 0. Following Terry (1974),
we define auxiliary functions y(¢) by

Djy(t)’ j=0""’n_1,

Di-"r () Dy(®)], j=n,....2n—1.
195

N yi(t) = {

Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.141, on 14 Jul 2025 at 19:51:21, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/51446788700038775


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1446788700038775
https://www.cambridge.org/core

196 Raymond D. Terry 2]

A solution y(¢) of (1) is of type By, on [Ty, o) if for 1 > Ty, y,(t) >0 forj=0,...,2k+1
and (—1)"*1y(1)>0 for j =2k+2,...,2n—1. Since lim,,, o(f) = +o0, there is a
T,>T, such that o(¢) > T, for t>T,. As shown in Terry (1974), a positive solution
¥(2) of (1) is necessarily of type B, for some k = 0, ..., n— 1. Moreover, the following
lemmas have been established.

LemMA 1. Let y(t) be a solution of (1) of type B,, on [Ty,). Then there exist
constants N;;_, >0 such that
- yO<N;1y;4(0, 12T,

©)
O<2N;y ya(), 13203

LEMMA 2. Let y(t) be a solution of (1) of type B, on [Ty,0). Let 2k+12r2s.
Then there exist constants N, ;>0 such that
(T yOSN. . y0), 12T,

and
oy () <27 N,  y(1), t>2T,.

It is clear that the N, ; may be defined in terms of the N ;_,;. Specifically,
r
Nr,s = H Iij—l'
j=s+1

Estimates for the N;; , may be found in Terry (1974); those for the N, , are in
Terry (1975). We let My =m if y,()<0, My = M if y,(£)>0, w; = 2n—2k—1)!
if 2k>n, wk =:M0(2n—2k— 1)! if 2k<n, 'yk = 22k W, N2k” Where Nzk = NZk,O' In

addition to this notation, we introduce the oscillation transform I, defined by

I y@)] = | (u—T)2v—2%1 a(u) flyz (o (@) p(o(u))] du.
T

Repeated applications of the oscillation transform will be indicated in the séquel
by standard notation for the composite of two functions, that is,

(Ipysy0Ir,6) () = Iy .l 5,(f)).

The product symbol []%, Ir . will be used, where appropriate, to represent
multiple composition, not ordinary multiplication. In terms of this notation we
may state the main result of this paper.

THEOREM 1. Let m(t) € C[Ry, R*]. Suppose that there is a positive integer N such
that any finite sequence {T; .} o with O<T, and T,<T,,,

@ f : a(sy) f [N;,}(U(SN))”‘(Iji,_[:ITN_j,a(sN_j,(wk m(so)))]dsN = +o0.

N+1

Then there is no solution y(t) of (1) of type By, for which y,(t) = m(t) for large t.
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3] Growth of positive solutions of a delay differential equation 197

Proor. We argue by way of contradiction and suppose that y(¢) is a solution of
(1) of type B;, on [T, 00). If k >n/2, we multiply (1) by (s—T)?*"—2¥—1 and integrate
by parts from Tj to ¢ to obtain

(32) f; (s—Tn=2%=1 D*{r(s) D™ p(s)] ds = Ry(#)—(2n—2k — 1)! [yo1(8)Iir,»

where

2n—2k—

Ry(s) = (s—T)*" 27 yppa(5) — ;ZZ 1( = 1Y (2n—2k—1);_4 (s— T)*" 27 yy,_4(5)

and (n),=n(n-1)...(n—k+1). If k<nf2, we proceed as above, pausing
momentarily at the stage where r(s) D" y(s) appears undifferentiated to change
the equality to an inequality using m<r(s)<M. In this case we obtain

(5b) r (s — TY2"—2%=1 D™[r(s) D™ y(s)]ds > Ry(t) — My(2n— 2k — 1) [y51 ()i
Jr
where

Ryfs) = (s— Tpn—21y,(s) = 31 (- 1Y @2 Dy (= TP )

2n—2k—1 .
—My T (=1 @n—2k—1);_ 4 (s—T)** 2 yygy_(s).

j=n+1

When r(t)=1, the two expressions coincide. See Ladas (1971) for another
application in this case. We note that w;, y,;(T7) and each of the component terms
of R(?) are positive. Omitting them, it follows that

(50) w yull)> f | (5= TP a(s) ST s

Since (f) is of type B; on [Ty, 0), 12*yy(t)<2% Ny, p(t) for t>2T;, where
Ny, = Ny Moreover, since limy,, o(f) = +oo, there is a T;,>2T; such that
o(f) > 2T; whenever ¢ > Ty,. Thus, for ¢ > Ty, the following chain of inequalities hold:

Wo(®)) = 27 NG (o(O))** yau(o(t))
= 272 NgH(o(6))** m(o(2))
= 27 Ny wg(o(1))** wy m(o(?))
= Y (o()** wy m(o(1)).
Since f(u) is a nondecreasing function of ,
FOo(PIZSf Ty (o($))** oy m(o(s))]-
Multiplication of this inequality by (s—T;)**—2k-14(s) preserves the inequality
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198 Raymond D. Terry [4]

as does integration over the interval [T;, 7]. From (5¢)

o Yuls) > ;(so—n)%—zk-l a(se) f Ty (o(s0))™ wy m{o(se)) 1 dso;

n

that is,
(5d) Vaul(8) = wi Iy (wm(sy)), s2Thy.

Since lim,, o(f) = + oo, there is a T,> Ty, such that o(s)>Ty, for s;>7T,. Thus,
we may let s = o(s;) in (5d) so that

y2k(a(sl)) 2 w;l ITn,a'(sl)(wk m(sﬂ))'
Multiplying this by 2-2% Nzl(a(sp)?,

o(sD) 2y Ho(5D)** I, o5 (@) m(s0)-
Since (5c) holds with ¢ replaced by s, s replaced by s, and T; replaced by T,

Wy yuls) > f " (5= TPt als) S Dot )

> [ Gy T2 ) STy ) et (o)) sy

o

= Ip, I, o5, (@ M(sp))]-

Since lim,.,, o(f) = + o, there is a T;> T, such that o(sy) > T} for s,> T;. Thus, we
may let s = o(s,) in the above expression to obtain

@i Yar(0(52)) 2 Iy oa) [y, oS M @r (o))

Proceeding in this way, it follows that there exist T, ...,Ty such that for
i=2,.,N-1,T,,,>T, o(s)>T; and

i-3
wg Yor(o(s)) = l;[o Ir,_ s, pllry otsp(@5 M(So))]-
2
In particular, for i = N,
N-2
Wy y2k(a(sN)) 2 j].;[o ITN_I,O'(SN_j) [ITu,O’(sl)(wk m(SO))]'

As in previous computations,

Wa(sn)) =272 NyH(o(sy))** yarl(o(sy))
N-2
(6) > YEI(U(SN))zk l;[o ITN_j,d(sly.]-)[ITu,U'(Sl)(wk m(so))]'
7
An integration of (1) from Ty, to ¢ yields

YanaTys) — Vama(d) = f Y LR

N+1
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5] Growth of positive solutions of a delay differential equation 199
that is,

Vana(®) = Vemr(Tws)— f | alon) SI(olsn)]ds

N+1

so that
. W
B 0201 = Fona(Tive) = [ o) ST
[ Tr41
An application of (6) and the integral condition in the statement of the theorem
shows that lim, ., 4(f) = —co. Since
Yona()<0 and  Dy,, 4(r) = —a(t) f[¥(e(1)]1 <0,

it follows that y,(£)<0 for j=0,...,2n—2, contradicting the fact that y(f) is of
type B, in addition to the hypothesis that y,,(f) = m(f) > 0.

REMARK 1. When N = 0, the multiple integral of (4) reduces to a single integral.
Even in this case the result is new.

REMARK 2. When n=1, k=0, m()>0, we may choose N,, = as discussed
in Terry (1976). Moreover, for r(f)=1, m=M=1 so that M,=1,
@Cn—2k—1)!=1, wp=1and y, = 1.

81
T, al@] = [ (50~ T als0 Do)
1

The integral condition (4) reduces to

f ® aw) 1y otsp - (zyyotog @)V dsy = +0,

Ty+1

which is a variant of the hypothesis of Theorem 3 of Burton and Grimmer (1972).
The conclusion here is that there are no Bg-solutions y(¢) of

Y'(O)+a(@) f(He@)] =0
such that y(t)>m(¢)>0, which is the conclusion of Theorem 3 of Burton and
Grimmer (1972).
REMARK 3. Suppose we define ¥, = 2%, Ny, where
_ 22n—2k—1(3p 2k —1)!, k=nf2,
wi =
T 2ty (n—2k—1)1, k<nf2,

and let le,sl be defined in the same manner as I, ; with the exceptions that y, is
replaced by y;, and (s,— T7)?>" 21 is replaced by s3"—2¥-1, Then

Yerl(8) = @7 Ip, o (@), m(s0)).
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200 Raymond D. Terry [6]

orn=1land k=0

81

I, D601 = [ 500050 FEBYo(o)) s

This time the hypothesis of the theorem is the same as that of Theorem 3 of Burton
and Grimmer (1972) except for the factor } appearing in the integrand of IT1 o
The conclusions are identical.

REMARK 4. When k£ =0 and m(t) = C>0, the conclusion is that there are no
By-solutions 3(f) of (1) such that () > C>0. However, a By-solution y(¢) of (1)
satisfies y(¢) >0 and »'(¢) > 0. Thus, if (4) holds for all constant functions m(t), the
conclusion of Theorem 1 may be strengthened to exclude all positive non-
oscillatory solutions of (1). When n=1 and r(z)=1, the above statement is
formalized in Theorem 4 of Burton and Grimmer (1972).

REMARK 5. The lemmas, the theorem and the above remarks hold for the more
general equation

) D¥=i[r(t) D* (O} +a(®) f[He(®)] =0
provided we redefine the y(¢) as follows:
-Djy(t)s j=0,'-"i_'1,
¥ =

DiI-ir() D y(®)], j=1i,....,2n—1.
The details of this are left to the reader.
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