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§ 1. Introduction

When a perfectly conducting uniform thin circular disc is kept at
a potential Fo in an external electrostatic field of potential <D, electric
charge is induced on the surface of the disc; the problem is to find
the surface-density1 a of this induced charge and its potential V so
tha t the total potential V + 3> has the constant value Fo on the
surface of the disc. This problem was first discussed by Green2 in
1832, and the solution in the case when there is no external field was
deduced by Lord Kelvin3 from the known formula for the gravita-
tional potential o'f an elliptic homoeoid. The problem is still of
interest since similar ideas occur in the theory of diffraction by a
circular disc and in the theory of the generation of sound waves by a
vibrating disc when the wave-length is large compared with the
radius of the disc.

The problem can be reduced to that of solving a pair of dual
integral equations, due essentially to H. Weber4. Let us take the
centre of the disc as origin, and the axis of the disc as Oz; in
cylindrical coordinates (p, <f>, z), the disc is then defined by z = 0,
p < a. The potential F vanishes at infinity and is equal to Vo — <J>
on the surface of the disc. But since Fo — ® is assumed to be a one-
valued continuous function of position on the disc, its value there can
be expanded as a sum of terms of the form f(p) cos n (<£ + a), where
n is a positive integer or zero. I t suffices to consider the case when
Fo — <D reduces to a single term of this form, the general result being

•obtained by superposition. In this case, V will be of the form
W cos n (<f> + a) where

W = f e-l^'^{t)Jn{Pt)dt. (1)

1 By IT we mean the total surface density on the two faces of the disc.
2 Trails. Gamb. Phil. Soc, (Nov. 12, 1832), reprinted in Green's Mathematical

Papers (London, 1871), 172-183.
3 Papers on Electricity and Magnetism, (Cambridge, 1884), 175-191.

* Journal/. Math., 75(1873), 75-105.
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But this is the potential due to a distribution of electric charge over
the plane z = 0 of surface density a (p) cos n (<f> + a), where

/•00

2na(p)= it{t)Jn(pt)dt.

Hence </r (t) is the solution of the dual integral equations

f <P(t)Jn(Pt)dt=f(p) (0<P<a),
po

t<P(t)Jn(pt)dt=O

Solutions of these equations in various special cases have been
given by Weber1 (n = 0, /(p) constant), Gallop2 (n = 0, /(p) — Jo (cp)),
Basset3 (n—l, f(p) = J1(cp)), and Macdonald4 (n arbitrary
/(p) = Jn (cp)). The solution when /(p) is an arbitrary function was
first given by Beltrami5 for the case n — 0 and by L. V. King6 for any
integral value of n. In all these cases the analysis is difficult and
requires considerable insight into the properties of the discontinuous
integrals of Weber and Schafheitlin'. Quite recently Titchmarsh8 has
given a more direct solution of the dual integral equations by means
of the theory of Mellin transforms.

Although the analysis is difficult, the final results arc simple, and
this suggests that there should be a simpler solution. In the present
note it is shown that this is the case, provided that one does not start
from the potential function (1), which is too general for the purpose.
When one starts with a more suitable form of potential function, one
obtains a single integral equation which involves a repeated integral,
and this can be solved by two applications of the known solution of
Abel's integral equation.

1 H. Weber, loc. cit.
2 Quarterly Journal of Mathematics, 21 (1886), 229-256.
3 Proc. Oamb. Phil. Soc, 5 (1886), 425-443.
4 Proc. London Math. Soc. (1), 26 (1895), 257-260.
6 Bologna Memork (4), 2 (1880), 461-505.
6 Proc. Boy. Soc. (A), 153 (1936), 1-16.
7 Of. Watson, Theory of Bessel Functions (Cambridge, 1944), 398-406.

» The Theory of Fourier Integrals (Oxford, 1937), 334-339.
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§ 2. Three Lemmas

Lemma 1. If n is a positive integer or zero and if a and b are
positive

f2" ein*d<j) 4 fUin(«.W t2ndt

VI («2 - t2) (b2

the two square roots being positive.
On account of the symmetry and homogeneity of the former

integral in a and 6, we may assume that 6 = 1 and 0 < a < 1. Putting
z = e'*, we have

z" dzf2- _ e<"» d<j> = i f
Jo \/{d- + 1 — 2 a cos <£} i J < {2(2 — a)(l —az)}

where 0 is the circle 12 j = 1 and the branch of y'{ z (z — a) (1 — az)}
is chosen which has the value 1 — a when z = 1. The integrand is
regular in the z-plane supposed cut along the real axis from 0 to a
and from I/a to infinity. The value of the integral is unaltered if the
path C is deformed into a loop surrounding the cut from 0*to a. Making
the loop coincide with the two sides of the cut, we obtain

rndrf2ir e.in<> d(f> _ f«
K V W 2 + 1 — 2 a c o s </>} ~~ J 0

4 f°
= a« J n

0-v/{r(a - r ) (1 - ar)}

t2ndt

where t2 = ar. This completes the proof of Lemma 1.

Lemma 2. I^et f (x) and f (x) be continuous in 0 ^ x ^ a. Then
the solution of the integral equation

g ^ dt (0<x<a)
>o V {x* ~ I2)

is
2

9 (x) = _

Lemma 3. Let f(x) and f (x) be continuous in c £S x ^ a. Then
the solution of the integral equation

v l & ) * {c<x<a)

is
xf'(t) ,. 2 <
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Lemmas 2 and 3 are trivial transformations of the well-known
solution of Abel's integral equation under conditions which are
sufficient for our present purpose. The transformation t = x sin 8
turns the integral equation of Lemma 2 into Schlomilch's integral
•equation1.

§ 3. The solution of the problem of the electrified disc

Theorem. Let the potential on the surface of the circular disc z = 0,
0 < p < a be f(p) cos n (<f> + a), where a is a constant, n is a positive
integer or zero andf(p) is continuously differentiable in 0 5S p ^ a.

Let the function

be continuously differenliable in t _ p = a for any -positive value of

Then the surface-density of electric charge on the surface of the disc
is a (p) cos n (<f> + a), where

The potential at the point of cylindrical coordinates (p, <f>, z) due
to a distribution of electric charge of surface-density a (p, <f>) on the
•disc is

f° f2lr u
V = a («, 6) — <Z0 du

0 0 *̂
"where r is the distance from (p, <£, z) to the point (u, 9, 0) of the disc.
We have to choose a so that V =f(p) cos n (<f> -f a) when 2 = 0. Bu t
if we expand a(p, <f>) as a Fourier series in <f> of period 2TT, we see a t
once that it must reduce to one term, a (p) cos n (<£ + a) say, where
a (p) has to be chosen so that

f2" cos n (9 + a)f° f2

a(u)u\
J n •> n

d9 du = / ( p ) cos n(<j> + a) (4)
-\/ {p -(- u — 2/ pu cos (v — ©)}

when 0 < p < a.
By Lemma 1, we have

f2- cos n (9+ a) d9 __ 4 cos TO (<j> + a) rMin(p.") t 2 " ^
J o ^/ {p2 + zt2 — 2pu cos (0 — ^>)} p" M" J o \ / {(w2 — t2) (p2

1 0/. Whittaker and Watson, Modern Analysis (Cambridge, 1920), p. 229.
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Hence equation (4) becomes

4 ff , . f» l2ndt4 ff f«
o" [Jo Jo

•du

P"

Inverting the order of integration, we obtain

To solve the repeated integral equation (5), we substitute

and obtain
n>t»>8(t)di ( 0 < p < a ) . ( 7 )

But since / (p) and / ' (p) are continuous, we may apply Lemma 2 to
(7). This gives

„ 1 d [»

^y hypothesis, this function and i ts first derivative are continuous in
^ p Sis a, for any positive value of e(< a). Hence by Lemma 3,

f" tS(t)dt

V ( i 2 - p 2 ) '
which solves the problem.

§ 4. Some special solutions

The simplicity of the present method of solution of the problem
of the electrified disc is well illustrated by applying it to the special
cases mentioned in § 1. That the conditions of the theorem apply in
each case is easily verified.

(i) The disc is raised to unit potential with no external field.

Here n = 0 and/(p) = 1. Hence we have

g ( p ) - i l f tdt _ B L

-~ l d f
in agreement with the result of Green, Kelvin and Weber.
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(ii) The disc is earthed in an external uniform field parallel to its
surface.

If we take the external field strength to be unity, we have
Vo = o, O = p cos <f>, so that n = 1, /(/>) = p. Hence

t3dt 1_ 1 d (p

2 Ttp1 dp J o V (p 2 - t 2 ) ~ IT

(t2 — p2) IT- V (a2 — p2)

(iii) Gallop's problem.
In this case n — 0 and /(p) = J o (cp). We easily show that

,, > 1 d (p tJ0 (ct) lA Id /sin cp\(p) = -— — ——g-1—^ at = — — ( I_ 1 d /sin cp\ _ cos cp
2lT'

, . 1 d (" t cos ct ,,
a(p) = s- -T- —r-rr̂  ^. atTT^P dp J P -y (t — p )

cos ca , 1 fa c sin
_i

77 'y/ (flf — p ) 77 J p "X/ ( t p )

1 fOT c sin ct , cos ca If00 c sin c* ,

after using Mehler's formula1 for Jof^)-
(iv) Macdonald's problem.

In this case n is an arbitrary positive integer and f(p) = Jn (cp).
The expressions for $ (p) and a (p) then reduce to

7.) (cp)- * '

1 0/. Watson, loc. cit., 180 (14).
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