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Abstract

In environmental science, where information from sensor devices are sparse, data fusion for mapping purposes is often
based on geostatistical approaches. We propose a methodology called adaptive distance attention that enables us to
fuse sparse, heterogeneous, and mobile sensor devices and predict values at locations with no previous measurement.
The approach allows for automatically weighting the measurements according to a priori quality information about the
sensor device without using complex and resource-demanding data assimilation techniques. Both ordinary kriging and
the general regression neural network (GRNN) are integrated into this attention with their learnable parameters based
on deep learning architectures. We evaluate this method using three static phenomena with different complexities: a
case related to a simplistic phenomenon, topography over an area of 196 km?* and to the annual hourly NO,
concentration in 2019 over the Oslo metropolitan region (1026 kmz). We simulate networks of 100 synthetic sensor
devices with six characteristics related to measurement quality and measurement spatial resolution. Generally,
outcomes are promising: we significantly improve the metrics from baseline geostatistical models. Besides, distance
attention using the Nadaraya—Watson kernel provides as good metrics as the attention based on the kriging system
enabling the possibility to alleviate the processing cost for fusion of sparse data. The encouraging results motivate us in
keeping adapting distance attention to space-time phenomena evolving in complex and isolated areas.

Impact Statement

Data fusion is commonly employed with the assumption of having access to a substantial volume of data.
Unfortunately, measurement campaigns of complex phenomena in isolated areas often result in significantly
reduced amount of information. We show that combining geostatistical tools and deep learning models into a
distance attention overcomes this issue. We applied our method to static environmental phenomena using
synthetic sensor devices of different measurement characteristics representative of real sensors. The encouraging
results suggest that such methods can be applied to space-time environmental phenomena.

1. Introduction

Monitoring real-time environmental phenomena enables experts to detect unusual events such as
abnormal air quality, greenhouse gas emission sources, and extreme meteorological events, among
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others. For this purpose, numerical modeling tools are developed and networks of monitoring stations
as well as satellite-based remote sensing provide data. Nonetheless, providing highly accurate
information at high spatial and temporal resolution on vast areas requires heavy numerical processing,
high-technology sensors, and an expensive maintenance that only national organizations and large
companies can afford. To reduce these costs, high quality sensor devices are deployed more sporad-
ically, and, given suitable data quality, low-cost sensors (Castell et al., 2017; Hassani et al., 2023;
Schneider et al., 2023; Van Poppel et al., 2023) can complement these. In addition, numerical models
are run from global to local scale with highly variable spatial resolution. Finally, a combination of
these sources is processed to retrieve the target information, for instance, low-cost sensor calibration
(De Vito et al., 2018, 2020; Ionascu et al., 2021) and land-use regression (Hong et al., 2019;
Weichenthal et al., 2021) for air quality, atmospheric temperature downscaling (Chau et al., 2021),
downscaling of satellite data for air quality (Stebel et al., 2021), and multi-sensor data fusion to
estimate evapotranspiration (Semmens et al., 2016).

In environmental science, data fusion based on neural networks and machine learning is used to
combine regularly spaced gridded datasets, such as satellite data (Schneider et al., 2021, Shetty et al.,
2024) and images from unmanned aerial vehicles, thereby enabling resolution space-time enhancement,
pansharpening, and classification (Ghamisi et al., 2019). For datasets with dense and irregular point cloud
data, such as hyperspectral imaging and lidar, point fusion (Xu et al., 2018) enables classification,
clustering, and point enrichment.

In the case of sparse point clouds, data fusion is often based on geostatistical techniques such as kriging
(Wackernagel, 2003; Rue et al., 2017) (both with and without spatial auxiliary variables), for example, for
spatiotemporal mapping of air quality (Schneider et al., 2017, 2018). In addition, data assimilation
approaches, such as Kalman filter, Optimal Interpolation, 3D-Var, and 4D-Var (Miyoshi et al., 2010;
Wattrelot et al., 2014; Lussana et al., 2019; Mijling, 2020; Hassani et al., 2023; Schneider et al., 2023), in
which deep learning has been recently integrated (Arcucci et al., 2021; Peyron et al., 2021), use the
uncertainty of each data source to determine their weight while fusing. While kriging requires solving
the kriging equation system, other less computational processing demanding kernel regression approaches
enable the prediction of space-time phenomena such as a graph convolution network (Appleby et al., 2020)
and a GRNN (Specht, 1991; Robert et al., 2013).

This research work is carried out in the context of advancements in measurement campaigns, where
heterogeneous, mobile, and autonomous devices (Jonca et al., 2022; Samad et al., 2022; Scheller et al.,
2022) monitor local phenomena in isolated areas (Miner et al., 2022) for prediction purposes, for instance,
spatial mapping (Hassani et al., 2023). We limit our paper to sensors being preprocessed at level
1, following (Schneider et al., 2019). We have thus observation devices providing sparse measurements
at different spatial and temporal resolutions, with different measurement qualities, and possibly at non-
regular sampling frequencies. In this context, data fusion of environmental sensor devices faces two
challenges: i) fusing nonoverlapping multiple sources of information with heterogeneous characteristics
and ii) predicting complex phenomena with sparse data. To overcome these challenges, we propose a
methodology based on three axes: i) the use of a priori information about measurement characteristics and
its quality to weight their influence in data fusion, ii) an inclusion of deep neural networks into ordinary
kriging (OK) and GRNN, and iii) determining an attention framework as Vaswani et al. (2017) to enable
inter-comparison between the prediction approaches.

Our paper is structured as follows. Section 2 describes the materials and methods used in this study.
Section 2.1 describes the measurement characteristics in a network of sparse, heterogeneous, and mobile
sensors devices. Section 2.2 describes the adaptive distance attention, Section 2.3 describes the GRNN
and OK as adaptive distance attention, Section 2.4 describes the data fusion model architecture,
Section 2.5 describes the three cases studies of this study, and Section 2.6 describes the experimentation
plan. Section 3 presents the results and the discussion. Section 3.1 presents the metrics for the different
data fusion models applied to the three case studies, Section 3.2 presents the effect of the data fusion model
and the measurement campaign on the learnable parameters, and Section 3.3 presents a discussion of the
results. Finally, the conclusion is presented in Section 4.
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2. Materials and methods

2.1. Measurement characteristics in a network of sparse, heterogeneous, and mobile sensors devices

In this section, we describe the characteristics that are common to measurements from several heteroge-
neous sensor devices.

Let us assume a network of several sensor devices measuring the same physical phenomena.
We assume all sensor devices to be at level 1 according to Schneider et al. (2019) and provide
measurements with an identical unit. In this article, we use the term sensor device to describe any
instrumentation that provides observations in space and time.

The measurements of these sensor devices are described by five characteristics: their spatial and
temporal resolution, their location, their sampling frequency, and their quality. These characteristics are
intrinsic to the device, for example, the quality of the sensor, the electronic hardware, the mechanical
structure, the programmatic procedures, and the telecommunication method, to name a few. In our study,
we assume sensor devices to be mobile, and being able to provide, for each sampling, a constant
measurement over an area surrounding their location. The characteristics of the measurements used in
this study are schematically presented in Figure 1.

2.1.1. Measurement resolution

Without losing generality, we focus here on the spatial resolution of measurement characterized by a shape
in Figure 1. A crossed circle represents a sensor device whose measure is representative at this point, and a
square represents a sensor whose measure represents an average of the phenomena surrounding this area.
The larger the size of the shape the larger the domain of the average and the lower is the spatial resolution.
We assume each type of sensor device having an area representative of their measurement to be of any
shape. Instead of using measurement resolution as key, and to increase the amount of information, we
assume any points located under this shape to be constant. Each value within the shape is then characterized
by the same measurement quality.

C H
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(a) Timestep 1 (b) Timestep 2

Figure 1. Sequence of two timesteps of a network of heterogeneous sensors measuring spatial
phenomena. A crossed circle represents a sensor device whose measurement is representative at this
point. A square represents a sensor whose measure represents an average of the phenomena surrounding
this area. The quality of the measurement goes from high (color green), to medium (color orange) and to
low (color red). Sensor device might be mobile and not providing measurement at every timestep.
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2.1.2. Measurement quality
Asiillustrated in Figure 1, the quality of the measurement ranges from high (color green), to medium (color
orange), and finally to low (color red). For example, sensor devices designed as green crossed circle can be
seen as reference monitoring stations and red crossed circle as low-cost sensor devices. Accuracy and
precision are used in this study to quantify the quality of the measurements, and are schematically
explained in Figure 2. A comparison of several sensor devices is possible by incorporating their specific
accuracy and precision as depicted in Figure 3. The higher the accuracy and the precision, the closer is the
measure to ground truth. Both accuracy and precision are considered as metrics processed over time.
Because the ground truth is unknown, these metrics are determined with the measurements of the sensor
device against the ones of a reference device whose measurements are of high quality. We assume that
several items of a specific sensor device provided by one manufacturer get identical accuracy and
precision. Realistically, we assume each type of sensor device to be tested beforehand either in laboratory
conditions or by co-location with a reference sensor device (Castell et al., 2017; Schneider et al., 2018;
Vogt et al., 2021). Accuracy and precision are thus a priori information about a sensor device.

In our study, we use root mean square error (RMSE) as accuracy and variance as precision. Large
values of RMSE imply low accuracy and small values of RMSE implies high accuracy. In addition, large

(29 ®
KE
S8 & ®
(a) (b) (©) (d)
High accuracy, Low accuracy, Low accuracy, High accuracy,
High precision High precision High precision Low precision

Figure 2. Schematic description of accuracy and precision for three identical sensor devices measuring
one phenomenon. The center of each target represents the phenomena to be measured. Case (a) sensor
devices with high accuracy and high precision, cases (b) and (c) sensor devices with low accuracy and
high precision, and case (d) sensor devices with high accuracy and low precision.
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Figure 3. Accuracy-precision diagram representing the measurement quality of three types of sensor
devices: a reference station, a medium-cost sensor device, and a low-cost sensor device.
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values of variance imply low precision, and small values of variance imply high precision. The expression
of RMSE reads:

RMSE(\?, V) = ]lva: (\7,»— V,-)2 1

with ‘7,- the measurement of the sensor device at time i and V;, the measurement of the reference sensor
device, and N the amount of timesteps.
And the expression of variance reads:

N 1, 2
variance (V, V) = NZ <| Vi—Vi— bias|) (2.2)
where bias being determined as ﬁZfV (\A/i — Vi).

2.1.3. Measurement sampling and device mobility

As presented in Figure 1, any sensor device has a specific geographical location. Some sensor devices
might have issues in providing a measurement at regular frequency; for instance, one red square and one
orange crossed circle did not provide any measurement at timestep 2. Besides, some sensor devices might
be mobile; for instance, two squares and two crossed circles moved from their original locations between
timestep 1 and timestep 2. Each measurement is thus related to a location and a timestamp, used as keys.
No measurement does not provide any information and will not be replaced by any fill-in methods.

2.2. Adaptive distance attention

This section aims at presenting adaptive distance attention as a framework for prediction that satisfies the
measurement characteristics of a network of sparse and heterogeneous sensor devices.

Letus assume a network of k reference stations located in x; with measurements V; following a Normal
distribution. We assume the mean and the standard deviation of the Normal distribution to be stationary. A
general formulation of a spatial prediction that suits both OK (Wackernagel, 2003), and GRNN (Specht,
1991) is presented as follows: the prediction V, atlocation x, is estimated from a) an ensemble of weights
involving the Euclidean distance between the location of the target and the locations of the predictors
||lx4,x;]|, that is, the distance of de-correlation of the phenomenon R and b) the value of the predictors V.
Figure 4 illustrates this general formulation. The closer a station is to the prediction location, the higher is

{"?31 VS}

{3?4' V4}
{251 VS}

Figure 4. Schematic illustration of a network where each station is identified as {x[, Vj}, the location of
the prediction is identified as x.., and its area of similitude is characterized by a radius R.
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its weight and thus the involvement of its value. For example, the prediction at location x, will be
characterized mostly by the value of the station located at x,. The value located at x; will get a lower
impact. Besides, values from stations located at x3, x4, and x5 will get a minor weight due to their locations
outside of the area of representativity delimited by the circle of radius R. Following this description, we
write the prediction \7* at location x,. as:

k
V.= ZA(”X*I’:"l)V,- 2.3)
i=1

where A represents the attention weight based on a score involving the Euclidean distance between x;
and x,.

We replace the expression 1/R by W to avoid any issues of division by zero while training a model in
Section 2.6. We call W the learnable parameter. Finally, following the notation related to attention in
Vaswani et al. (2017), we call x, the query Q and x; the key K. Then, expression 2.3 writes:

k
Vo= AUIQ.KIW)Vi (24)
i=1
2.2.1. Multi-dimension
As done in Kyriakidis and Journel (1999) and (Li et al. (2020), the query Q and the key K can represent
both space and time. More generally, we let Q and K represent a d-dimensional space. Besides, Q and K
can both represent multiple locations. Thus, we have Q a matrix € R?*“, and K a matrix € R¥*¢,

2.2.2. Adaptive parameter

In the d-dimension, processing the attention weight function faces an anisotropy effect. Thus, it requires the
learnable parameter W to be adaptive (Robert et al., 2013) to each dimension of Q and K. More generally,
we let the parameter be adaptive for any points of K and Q. Consequently, we have two learnable
parameters depending, respectively, of O and K, written, respectively, W, € R?* 4 and Wx € RF*4.

2.2.3. Multivariable

We let V and V describe more than one variable v. Nonetheless, we keep the number of variables identical

for both the value V and the prediction V. Thus, we see V being a matrix € R**” and V amatrix €R9*".
Our multivariable prediction with a multidimensional adaptive attention then reads:

k
Vo=> A(IWeQ. WiKill)V; 25)
i=1
2.3. GRNN and OK as adaptive distance attention

This section is dedicated to the integration of two prediction methods, namely GRNN and OK, within the
context of an adaptive distance attention framework.
GRNNs follow the Nadaraya—Watson kernel regression (Nadaraya, 1964; Watson, 1964):

ES k Kr(Q.K)
Vo= — Y, 2.6
¢ ;EleKR(Q,K> 20

where K represents a kernel with bandwidth R. .
. . . . . . 2 . . .
GRNN is based on an isotropic radial basis function e 12K1"2%" a5 parametric kernel. Finally, by using
the softmax expression e"/ Zj‘: ,€", expression 2.5 becomes:

k
Vo= Asc(IWoQ WkK|)V; 2.7)
i=1
with subscript S as softmax function and superscript G as Gaussian kernel.
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OK gets its attention weights by solving the kriging system /9 = A’IAQ, where A represents the semi-
variogram matrix. In the case of Q representing a single location, we obtain:

Vs A o Ay 1 Ao
PP I IV L e 2.8
| a A - Mgy 1 © Ak @9
p I e 1 0 1

where u is a Lagrangian multiplier and A;; represents the semi-variogram between location x; and x;

Assuming an existing function linalg that solves the linear kriging system and using the case where the
variogram follows an exponential function 1 — e~ "W of variance 1 and range 1/W, expression 2.5
becomes:

k
Vo=> ALe(IWoQ WkK|)V: (2.9)

i=1

with subscript L as linalg function and superscript E as an exponential kernel.

Although alternative kernel types and semi-variograms are applicable to GRNN and OK, our emphasis
lies on the utilization of simpler variants. Specifically, we prioritize those that a) allow learnable
parameters to impart richness to the structure and b) mitigate the risk of encountering issues related to
infinite loss during model training.

2.4. Data fusion model architecture

This section is dedicated to introducing our data fusion approach for predicting values, along with a
detailed exploration of its underlying model architecture.

Our data fusion uses a similar approach as cross-kriging (Journel and Huijbregts, 1978) in the distance
attention framework. An attention weight is processed using queries Q and keys K belonging to two
different networks. During the training phase, a first network, called X, provides Q and their respective
values as targets, and network Y provides K and values V. During the prediction phase, the network X only
provides Q, and network Y, provides K and V. Given expressions 2.7 and 2.9, the data fusion expression
reads:

k
Vo=Wo > A(IWoQ.WkK|)V; (2.10)

i=1

where A is an adaptive distance attention and can be either Ag of Ar g, and Wy, called the learnable
parameter of the output, makes the expression able to adapt in case of trend in the measurement; it writes
Wo €R?™Y. A visualization of the model architecture is shown in Figure 5.

The learnable parameters Wo, Wy, and Wg are the outputs of three multilayer perceptrons. Each
multilayer perceptron reads:

O'(W )X +pU! )
MLP(X)= J=a(WOHWV +p). @2.11)
O=a( WEH® +p)

where X is the input matrix, W are the hidden-layer weights matrices, b' is the bias vectors, and o(.)
is the ReLU activation function. We have thus:

Wo=MLPy(Q) (2.12)
with Wi e R, Wi e rih, W) e R, b)) e RV B e RV, b e R Y
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Figure 5. Schematic illustration of the data fusion architecture. Network X provides input X and network
Y provides inputs K and V. Learnable parameters are W, W, and W. Attention is represented by the
symbol A without any subscript to ease the reading. The prediction at query Q is symbolized as V.

Wk =MLPg (K) (2.13)
with W) e R W@ e Rt W) e ri=d b e R4 pP e R pP) eRI*d
Wo=MLPy(Q) (2.14)

with Wy e R WS e R WS e R, b)) e RV, by e RV, by e RV
Ultimately, we address the challenge of overfitting by implementing dropout with a probability of p
specifically applied to the attention mechanism.

2.4.1. Models overview

We highlight 12 data fusion models in the adaptive distance attention framework following expres-
sion 2.10. They differ both in terms of attention A; g or Agg, as well as with different assumptions
simplifying expressions 2.12, 2.13, and 2.14: i) the learnable parameters of each dimension of Q and
K are either constant or not ii) the presence or absence of the learning parameter W, iii) both networks
X and Y measure a physical phenomenon with identical or different spatial structures. For example, a
model with attention Ay g, in absence of W, and where networks X and Y are measuring a physical
phenomenon with identical spatial structure is a data fusion approach based on OK. An overview of
each model with their name, their attention, and the characteristics of their learnable parameters is
given in Table 1. For readability, we designate models incorporating a kriging system like OK as
“krig,” and models involving the Nadaraya—Watson kernel, such as GRNN, as “NW.” The addition of
the “NN” suffix to the name signals the involvement of learnable parameters through multilayer
perceptrons.

2.5. Cases studies

This section aims at describing the three case studies of this article. It describes first the phenomena that
synthetic sensor devices will measure, the construction of heterogeneous networks of mobile sensor
devices, and finally the presence of several networks used for the experimentation.

For each case study, we assume a phenomenon representing ground truth to be constant in time and
provided by a model or a dataset M. We chose three case studies spanning a spectrum of complexities,
ranging from simple to intricate. The complexity is related to the ground truth to be measured, and the
spatial resolution of the measurements of the sensor devices.
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Table 1. Description of the 12 data fusion models, with their name, their attention, and the
characteristics of their learnable parameters

Learnable parameters

Name Attention Constant Conditions Number of parameters
kl‘ig AL,E yes WO = I,WK = WQ d

NW AS,G yes WO = 1, WK = WQ, d

kr1g2 AL,E yes Wo#1,Wg= WQ v+d

NwW2 AS,G yes Wo#1,Wg= WQ v+d

krig3 ALk yes Wot 1L Wg+Wo v+2d

NW3 AS,G yes WoFE1 Wk # WQ v+2d

krigNN ALg no Wo=1MLPx=MLPg h(2d+h+2)+d
NWNN As g no Wo=1MLPx=MLP, h(2d+h+2)+d
krigNN2 Arg no Wo=MLPo,MLPx=MLPg h(3d+2h+tv+4)+v+d
NWNN2 Asc no Wo=MLPo,MLPx=MLPg h(3d+2h+v+4)+v+d
krigNN3 ALg no Wo=MLPo,MLPx#MLPg h(5d+3h+v+6)+v+2d
NWNN3 Asc no Wo=MLPo,MLPx#MLPg h(5d+3h+v+6)+v+2d

2.5.1. Simplistic

This simplistic ground truth evolves over an area with dimensions x&€[0;1] and ye€([0;1]. Its
spatial area is 1 unit, and its spatial resolution is 2.5.10~> unit. Its values follow the expression
V(x,y) = cos?(2zx) + sin®(2zx) (Figure 6).

2.5.2. Topography

This ground truth is a subset of the 25-m spatial resolution Digital Elevation Model EU-DEM vl.1
(Copernicus, 2016) over an area of 196 km?* with x-coordinates between 4342031 m and 4356031 m and
y-coordinates between 4085001 m and 4099001 m in the reference-system EPSG:3035 (Figure 7).

2.5.3. Annual hourly nitrogen dioxide concentration

This ground truth is the result of an annual average of hourly nitrogen dioxide concentration (AH NO;)
in 2019 over an area of 1026 km? over the Oslo metropolitan region resulting from the simulation using the
EPISODE dispersion model (Hamer et al., 2020). EPISODE is a two-step model: first, a 3D Eulerian
model provides a 1-km? spatial resolution grid, and then a sub-grid model using preprocessed point and
line source emissions provides NO, concentrations at, in this case, 21209 point locations (also called
“receptor points”). The spatial density of these locations is irregularly distributed: most of the information
is located over the urban areas and on main roads with large sources of traffic-related NO, emissions and
strong spatial gradients in pollution patterns. Outside of these areas, the spatial density of the output is
lower, with receptor points distributed at every 1 km. Instead of processing a spatial interpolation between
each location to get a grid of 100-m spatial resolution over the whole area of interest, we directly exploit
the receptor point data (Figure 8).

2.5.4. Heterogeneous networks of mobile sensor devices

This section presents the characteristics used in creating synthetic mobile sensor devices in order for them
to be as representative as possible compared to environmental sensors as described in Section 2.1 and
illustrated in Figure 1. We use six types of sensor devices, whose type is characterized by their spatial
resolution and their measurement quality. A network is composed of k sensor devices moving over N
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Figure 6. lllustration of the static two-dimensional ground truth used in case study “Simplistic.’
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Figure 7. lllustration of the static two-dimensional ground truth used in case study “Topography.” It
represents a subset of the 25-m spatial resolution Digital Elevation Model EU-DEM v1.1 over an area of
196 km? in Norway.

predefined locations uniformly distributed over the domain for each case study. At each timestep, k sensor
devices randomly chosen among the six types of sensor devices provide one measurement each.

The sensor devices are characterized by two types of measurement spatial resolution. The first type is
chosen identical to the spatial resolution of the dataset. The second type is at a coarser spatial resolution
where a measurement is a spatial average over a square area. None of the sensor devices provides
measurement as multi-pixel but only as a single pixel. For the case studies of the simplistic phenomena
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Table 2. Information about measurement spatial resolution for the three cases studies

Case studies

Spatial resolution type Simplistic Topography AHNO,
High 2.5.1073 25 m Point®
Low 3.44.1072 482.75 m 1000 m"

*Output from the sub-grid model.
°Qutput from the 3d-Eulerian model.

59.9°N ps

59.8°N |;

10.5°E ) 11°E

Figure 8. lllustration of the static two-dimensional ground truth used in case study “AH NO,.” It
represents the annual average of hourly nitrogen dioxide concentrations in 2019 over the Oslo
metropolitan region simulated with the EPISODE dispersion model.

and the topography, a spatial average is processed on the ground truth. For the case study AH NO,, the data
with a coarser spatial resolution comes from the 3D-Eulerian model and data with the higher resolution
comes from the sub-grid model. The characteristics of the measurement spatial resolution for the three
case studies are presented in Table 2.

The sensor devices are characterized by three types of measurement quality: high, medium, and low.
We produce measurements V7 for a sensor device at a specific time and location by adding uncertainty to
the ground truth M? with spatial resolution D, following a Normal distribution in a total error framework
(Working Group on Guidance for the Demonstration of Equivalence, 2010; Lepioufle et al., 2021). Thus,
the measurements of a sensor device are given by:

VP~ ./V(ﬂO.MtD +B1.02, + o2, +af) (2.15)

Given ground truth to be perfect, its structural error is nil, and so is its standard deviation ;. The
standard deviation o, is the parameter of the sensor device error. It is chosen proportionally to the
measurements as used in Ref. (Translation of the Report on the Suitability Test of the Ambient Air
Measuring System, 2007), that is, ¢,, = MPa,. It is usually determined as a percentage. The choice of the
parameter o, follows Refs. (Translation of the Report on the Suitability Test of the Ambient Air
Measuring System, 2007; Directive 2008/50/EC, 2008). For instance, a reference monitoring station
has g, < 5%, and a low-cost sensor device has g, > 30%. In addition, we make the simplifying assumption
that the sensor of the device does not exhibit any aging effect, that is, f, is equal to one and o, is constant
over time. In our case, errors due to both external effects (e.g., meteorology, environment) and internal
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Table 3. Parameters related to the three measurement quality types

Measurement quality type og (in %) b or
High 2 1 1
Medium 10 2 2
Low 30 5 5

Note. Case study “Simplistic” sees its parameters 4, and o, multiplied by 1.10%.

effects (e.g., mechanical and electronic components) are represented in a remnant error characterized by
the parameters f; and o,. We assume the sensor devices of the first type to run on an internal system
characterized as robust, the second type on a medium one, and the third on a weak one. Besides, we
assume the external environment of the three case studies to be different: from gentle for the “Simplistic”
case study to difficult for “AH NO,” case study. As a consequence, the external environment affects the
signal of the sensor devices by amplifying the error related to the internal system. We chose the parameters
of the remnant error in a heuristic manner. Parameters describing the three types of measurement quality
are given in Table 3. Remnant error parameters remain identical for the case studies “Topography” and
“AH NO,.” Nonetheless, given the lower values for case study “AH NO,,” these parameters will get a
higher impact on the signal of the sensor device. In addition, based on empirical testing, the remnant error
parameters are multiplied by 1.10? for case “Simplistic” to keep the effect of the external environment
gentle.

Finally, we describe a sensor device by its two characteristics: its spatial resolution (R) and its
measurement quality (Q), to each of which we add a subscript to describe the type of characteristics:
high (H), medium (M), and low (L). Thus, the six types of sensor device read Ry Qy, Ry Qys, RuQ;, R1.Q,
ROy, and RLQ; .

2.6. Experimentation plan

In this section, we describe our experimentation. It consists of testing our model architecture, described in
Section 2.4 on the three case studies described in Section 2.5.

2.6.1. Seven heterogeneous networks

For each case study, the experiment is based on seven heterogeneous networks of sensor devices, all
distinct from each other. Our data fusion model requires two networks X and Y for the three phases: the
simultaneous training and validation phases, and the evaluation phase of the prediction model. In addition,
one last network is used to assess the measurement quality as it is carried out for real measurement
campaigns, either with co-location or in a laboratory with a climatic chamber: every measurement of one
type of sensor device is compared to a reference instrument representing a high quality point sensor
device. The resulting metrics are then used as a priori information about the measurement quality of the
sensor device.

2.6.2. Networks X and Y

During the training, validation, and evaluation phases, both networks X and Y are built-up in the same
manner. They consist of 600 sensor devices moving across 1000 fixed locations. For each network X and
Y, several sensor devices might occupy the same location. However, the 1000 locations of the sensor
devices in X will be different from the 1000 locations in Y. At each timestep, 100 sensor devices randomly
chosen within network X and 100 sensor devices randomly chosen within network Y provide measure-
ments of one variable. We have, thus, g=k =100 and v= 1. The network used for the calibration consists
of 600 sensors representing the six measurement characteristics co-located with sensor devices with high-
quality point measurements. Ground truth being constant over time, we do not use time as a dimension
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describing the values. Therefore, the keys K and the queries Q are represented in a four-dimensional
space, that is, the x-coordinate (shortened as x), the y-coordinate (shortened as y), the a priori accuracy
(shortened as acc), and the a priori precision (shortened as prec), thus d = 4.

2.6.3. Model architecture

For every model architecture, we use hidden layers of size 2=32. According to Table 1, we have the
models “krig” and “NW” described by 4 parameters, the models “krig2” and “NW2” with 5 parameters,
the models “krig3” and “NW3” with 9 parameters, the models “krigNN” and “NWNN” with 1860
parameters, the models “krigNN2” and “NWNN2” with 2597 parameters, and the models “krigNN3” and
“NWNN3” with 3945 parameters. We use a dropout of p =0.1. In addition, for models using A g, solving
the kriging system with sensor devices of network Y with potentially identical locations will result in
nonuniqueness of the solution. We overcome this issue by using a function /inalg that computes a solution
to the least squares problem of the kriging system. Finally, we write the learnable parameters Wg and Wy
related to each dimensionas W , W _;, W_ g, and W .. where the dot determines either K or Q.

2.6.4. Training, validation, and evaluation

The training of the models is done using the optimization algorithm Adam (Kingma and Ba, 2014) with a
learning rate of 1.10~*. We use mean square error (MSE) as loss while training and validating the models.
We use 200 epochs with an early exit stopping the training phase if the loss does not improve during
20 consecutive epochs with the validation dataset. During training, validation, and evaluation, the
prediction is established with standardized V, Q, and K. During training and validation, the losses are
processed by keeping standardized outputs while this is not the case during the evaluation phase. Metrics
such as RMSE, variance and coefficient of determination (R?) are used to evaluate the prediction of the
models.

2.6.5. Experimentation

The first part of the experiment consists of evaluating the 12 models of Section 2.4 on the three case
studies described in Section 2.5 with heterogeneous sensor devices as input and with high quality point
measurement data as target. The six types of sensor devices, as described in Section 2.5, are equally
represented. Besides, each location of network X can be predicted using several sets of 100 sensor devices
of network Y as input. We thus produce an ensemble of predictions for each location of network X and
evaluate the median of the ensemble during the evaluation phase. Hereafter, to enhance clarity, we use the
terms single prediction and ensemble median, respectively.

The second part of the experiment focuses on highlighting and visualizing the effect of the model
architecture, the sequence over time of the mobile sensor device locations, and their characteristics on the
learnable parameters and the predictions. We focus on the “Topography” case study, and krigNN2 and
NWNN2 as model architectures. These models provide good metrics with a reasonable amount of
parameters for non-simplistic phenomena. For this experiment, the 100 sensor devices belonging to
network X can move on 1000 predetermined locations. The same applies to the 100 sensor devices
belonging to network Y. Only the sequence over time of the location of the sensor devices and their
characteristics change. We train four models (two krigNN2 and two NWNN?2) using four distinct
sequences of mobile sensors. For each of the four trained models, we produce an ensemble of predictions
using network X. Finally, for each model architecture, we highlight the difference by comparing i) the
maps of the learnable parameters and ii) the maps of the dispersion of the members of the ensemble.
Quantifying the dispersion of the ensemble is done by producing two maps; a first one by subtracting the
S-percentile of the ensemble to the median on every point of prediction, and a second-one by subtracting
the median to its 95-percentile. The first map is called the lower dispersion and the second is called the
upper dispersion. Finally, iii) the maps of the metrics (RMSE and variance) between the members of the
ensemble and the observation at each location. To ease the visualization, the prediction is inferred over
6400 locations uniformly distributed over the area of the case study.
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2.6.6. Implementation
We developed the Python package Steams based on Pytorch (Paszke et al., 2019), and ran the experiment
on a machine equipped with an Intel Core 15-9500 CPU @ 3.00GHz x 6.

3. Results and discussion

3.1. Metrics for the different data fusion models applied to the three case studies

We present the metrics of the 12 models for the 3 case studies in Tables 4—6 for the case studies
“Simplistic,” “Topography,” and “AH NO,,” respectively. Generally, involving deep neural networks
in the learnable parameters Wg, Wy, and W has a positive impact on the metrics of single prediction.
Nonetheless, each case study gets its proper metrics pattern: a light impact on the metrics for case study
“Simplistic” with coefficient of determination going from 0.65 to 0.89, a strong impact on the metrics for
case study “Topography” with coefficient of determination going from —1.09 to 0.91, and an average
impact on the metrics for case study “AH NO,” with a coefficient of determination going from —6.43 to
0.69. Furthermore, increasing the amount of parameters of a model architecture does not automatically
increase the metrics. In addition, using the ensemble median increases the metrics RMSE and variance.
Nonetheless, regarding metric R?, it tends to increase this metric for positive values and worsen it for
negative ones. Finally, for single prediction, the model NWNN3 provides better metrics for case study
“Simplistic” and “Topography.” For the ensemble median, model NWNN3 provides better metrics for
case study “Simplistic,” and both models NWNN2 and NWNN3 provide close metrics for case study
“Topography.” For case study “AH NO,” and single prediction, the model krigNN2 provides better
RMSE and variance and the model NWNN2 provides a better coefficient of determination. For the
ensemble median, the model krigNN provides better RMSE and variance and NWNN2 provides a better
coefficient of determination.

As an illustration, we present, for each case study and based on the model with the best RMSE and
variance metrics, a prediction on 6400 locations made by 100 heterogenecous sensor devices chosen
randomly over the area. Case study “Simplistic” has its prediction based on model NWNN3 and is shown in
Figure 9. Case study “Topography” has its prediction based on model NWNN3 and is shown in Figure 10.
Finally, case study “AH NO,” has its prediction based on model krigNN2 and is shown in Figure 11.
Generally, the prediction well reproduces the phenomena presented as ground truth and keep prediction
values in the same range of values of the ground truth.

Table 4. Metrics of the data fusion models for case study “Simplistic”. Bold values represent the best

metrics.
Single prediction Ensemble median
Name RMSE variance R? RMSE variance R?
krig 0.23 0.03 0.65 0.17 0.02 0.77
NW 0.26 0.04 0.54 0.18 0.02 0.72
krig2 0.22 0.02 0.76 0.13 0.01 0.89
NwW2 0.25 0.04 0.63 0.16 0.01 0.82
krig3 0.22 0.03 0.75 0.15 0.01 0.87
NW3 0.27 0.04 0.60 0.18 0.02 0.77
krigNN 0.22 0.03 0.71 0.19 0.02 0.77
NWNN 0.16 0.01 0.85 0.13 0.01 0.89
krigNN2 0.16 0.01 0.84 0.13 0.01 0.88
NWNN2 0.15 0.01 0.85 0.13 0.01 0.89
krigNN3 0.16 0.01 0.82 0.15 0.01 0.85
NWNN3 0.13 0.01 0.89 0.11 0.00 0.93
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Table 5. Metrics of the data fusion models for case study “Topography”. Bold values represent the
best metrics.

Single prediction Ensemble median

Name RMSE variance R? RMSE variance R?

krig 84.14 4543.58 —0.62 75.29 3858.17 —0.69
NW 88.47 5031.97 —1.09 80.12 4436.96 —1.44
krig2 81.77 4207.19 0.09 66.21 2935.13 0.22
NW2 83.74 4400.30 0.01 67.93 3055.72 0.14
krig3 79.97 3980.34 0.15 64.28 2834.48 0.29
NW3 80.67 4190.81 0.13 66.17 2958.29 0.28
krigNN 36.04 727.87 0.87 32.13 589.05 0.90
NWNN 39.17 874.31 0.84 34.95 689.88 0.87
krigNN2 31.88 583.51 0.90 30.06 505.17 0.91
NWNN2 31.13 541.95 0.91 29.25 460.75 0.92
krigNN3 31.93 583.69 0.90 31.27 550.28 0.91
NWNN3 30.96 495.90 0.91 30.17 454.74 0.92

Table 6. Metrics of the data fusion models for case study “AH NO, . Bold values represent the best metrics.

Single prediction Ensemble median

Name RMSE variance R? RMSE variance R?

krig 10.93 65.94 —2.04 9.87 54.18 —9.11
NW 10.14 60.55 —-3.41 9.52 54.28 —6.32
krig2 10.56 62.03 —6.43 10.27 60.33 —18.03
NW2 10.15 58.75 —2.38 9.34 51.29 —4.17
krig3 10.46 60.84 —5.84 10.20 59.68 —13.08
NW3 10.09 57.54 -2.10 9.32 50.49 —3.37
krigNN 6.12 18.97 0.61 5.70 16.50 0.65
NWNN 6.47 22.35 0.45 6.12 19.71 0.49
krigNN2 5.90 18.63 0.63 5.75 17.02 0.64
NWNN2 6.14 19.83 0.69 5.96 17.84 0.70
krigNN3 6.06 18.70 0.63 5.96 16.95 0.64
NWNN3 6.05 18.84 0.66 5.82 16.53 0.68

We show accuracy-precision diagrams to compare the metrics of the 12 models used for single
prediction with the six types of sensor devices used as a priori information in Figures 12-Figure 14
for the case studies “Simplistic,” “Topography,” and “AH NO,,” respectively. Sensor devices of high
spatial resolution and high measurement quality (RyQy) are chosen as reference. First, we observe
that given the different case studies, the “quality” order of the different types of sensors differ. For
example, a sensor device of low spatial resolution and of high measurement quality is the second best
sensor device for case study “Simplistic,” and among the last ones for the case study “AH NO,.” In the
case study “AH NO,,” a sensor device of low spatial resolution and of low measurement quality can get a
better accuracy than a sensor device of low spatial resolution and of high measurement quality. Finally, we
observe that models involving deep neural networks in the learnable parameters Wx, W, and W achieve
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Figure 9. lllustration of one prediction for the case study “Simplistic” based on the measurements of
100 sensor devices (left). Each type of sensor device is described as a symbol: circle: RyQpy, triangle
down: RyQyy, square: RyQ;, pentagon: Ry Qy, star: ROy, and diamond: Ry Q;. The prediction is based
on the model NWNN3 and is carried out at 6400 locations (middle). Ground truth on these 6400 locations
is presented on the panel on the right.
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Figure 10. lllustration of one prediction for the case study “Topography” based on the measurements of
100 sensor devices (left). Each type of sensor device is described as a symbol: circle: RyQy, triangle
down: Ry Qyy, square: RyQ;, pentagon: Ry Qy, star: R Qy,, and diamond: Ry Q;. The prediction is based
on the model NWNN3 and is carried out at 6400 locations (middle). Ground truth on these 6400 locations
is presented on the panel on the right.
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Figure 11. lllustration of one prediction for the case study “AH NO,” based on the measurements of
100 sensor devices (left). Each type of sensor device is described as a symbol: circle: RyQpy, triangle
down: RyQyy, square: RyQ;, pentagon: RpQy, star: Ry Qyy, and diamond: Ry Q;. The prediction is based
on the model krigNN2 and is carried out at 6400 locations (middle). Ground truth on these 6400 locations
is presented on the panel on the right.

metrics close to those from sensor devices of high spatial resolution and of medium measurement quality.
Models not involving deep neural networks achieve metrics similar to a sensor device of high spatial
resolution and low measurement quality for the case studies “Topography” and “AH NO,,” and between
sensor devices of low spatial resolution and high measurement quality and sensor devices of high spatial
resolution and low measurement quality for the case study “Simplistic.”
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Figure 12. Accuracy-precision diagram for case study “Simplistic” with both a priori measurement
quality related to the 6 types of sensor devices (black circles) and the metrics of the 12 data fusion models
(green stars). Some green stars represent several models with identical metrics (e.g., NWNN, krigNN2,
and krigNN3).

3.2. Variability of the learnable parameters from architecture krigNN2 and NWNN?2 for case study
“Topography”

We show the 2D representations of the learnable parameters Wx and W, with sensor devices of high spatial
resolution and high measurement quality as input in Figures 15 and 16, respectively. The figures represent
the learnable parameters obtained using the two trained krigNN2 models and two trained NWNN2 models.
Our attention models being based on the Euclidean distance, we ease the visualization, without changing
any meaning, by plotting the absolute values of the learnable parameters related to their dimension. The
higher the value of a learnable parameter, the higher the weight of its dimension in the distance attention.
The maps of Wi , Wk, Wi acc, and Wk e €ach have their own color scale to highlight the patterns and
order of magnitude. For two trained models of identical architecture, we see their learnable parameters to
have different patterns. Nonetheless, they all keep a coherent pattern distributed in space. In addition, their
values respect an identical order of magnitude for each dimension. Finally, the learnable parameters
corresponding to model architecture krigNN2 are constrained by its kriging system and are thus charac-
terized by lower values than the ones corresponding to model architecture NWNN2.

We then show the 2D-maps of the dispersion of the ensemble of prediction obtained from the two
trained krigNN2 models in Figure 17 and the two trained NWNN2 models in Figure 18. Each ensemble is
composed of around 600 members. The upper figures show the lower dispersion, and the lower figures
show the upper dispersion. From one model architecture to another, we see two distinct dispersion
patterns. Nevertheless, when employing an identical model architecture, we observe a comparable
dispersion pattern, despite a slight variance in magnitude. Furthermore, for each trained model, the upper
dispersion and the lower one have almost symmetric patterns. Only the isolated patches with higher values
alter the symmetry.
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Figure 13. Accuracy-precision diagram for case study “Topography” with both a priori measurement
quality related to the 6 types of sensor devices (black circles) and the metrics of the 12 data fusion models
(green stars).

Finally, we present the 2D-maps of the metrics between the members of the ensemble obtained from
the two trained krigNN2 models and the two trained NWNN2 models against the observations,
respectively, in Figures 19 and 20. The upper panels show the RMSE and the lower panels show the
variance. Identically to the dispersion 2D-maps, we see two distinct patterns from one model architecture
to another. In addition, the trained models with identical architecture provide similar patterns with a small
difference in the order of magnitude. Furthermore, for each trained model, contrarily to 2D-maps of metric
RMSE described by local variability, 2D-maps of metric variance have larger patterns that match the
asymmetry between the dispersion 2D-maps. Finally, given the global metrics in Table 5, where the
RMSE is around 32 m and variance around 550 m” for both krigNN2 and NWNN2, these 2D-maps of the
metrics highlight local but large errors in the prediction; for instance, the 2D-map visualizing the RMSE of
the krigNN2 model can reach 200 m and 120 m for NWNN2, and the 2D-map variance of the krigNN2
and NWNN2 models can reach 1400 m?,

3.3. Discussion

Adaptive distance attention allows the fusion of the measurements collected by sparse, heterogeneous and
mobile sensor devices and the prediction of values at locations with no measurements. We tested this method
on three static phenomena over time with different complexities. For each case study, a first network of
100 moving and heterogeneous sensor devices were deployed and trained using a second network of
100 moving high quality sensor devices. In general, the results are positive. By including deep learning
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Figure 14. Accuracy-precision diagram for case study “AH NO, " with both a priori measurement quality
related to the 6 types of sensor devices (black circles) and the metrics of the 12 data fusion models
(green stars).

models into learnable parameters, we improved the metrics from the baseline models OK and GRNN, called
“krig” and “NW?” in this study. For the three case studies, accuracy-precision diagrams highlight the
capability of adaptive distance attention to provide predictions at arbitrary locations with a quality close to
sensor devices of medium quality, that is, with an uncertainty of 10% of the signal. Furthermore, the method
allows for automatically incorporating the way measurements are weighted according to their a priori
quality without using any methods such as Kalman filter or data assimilation. Distance attention using the
Nadaraya—Watson kernel provides metrics in the same order of magnitude as the attention based on the
kriging system; while solving the kriging system involves a matrix inversion, the Nadaraya—Watson kernel
is a good alternative to alleviate processing cost for data fusion of sparse data.

In this study, we assume the existence of 100 sensor devices of high quality at high spatial resolution
used as targets to train the data fusion model. This choice is useful to test our data fusion model
architecture; it represents nonetheless a high instrumental cost for a measurement campaign. Reducing
the instrumentation cost might be done by training a model with sensor devices of different qualities and
different spatial resolutions as targets. For this purpose, future work will focus on connecting the raw
signal output of the sensors described as level 0, following Ref. (Schneider et al., 2019), to both their
external environment and their internal system and bring these variables as keys into the data fusion
model. This approach will allow the modeling of the ageing effect of the sensor and the hardware.

Our study focuses on evaluating a trained model with observations belonging to the same bounding
area as the training and testing datasets. To enable the use of the trained model with heterogeneous sensors
in areas outside of this domain we will test other keys K connected to the phenomena of interest. In the
case of “AH NO,,” and in addition to the coordinates, such auxiliary datasets could include information on
the underlying emissions (Grythe et al., 2022), the characteristics of the cities from OpenStreetMap as in
Steininger et al. (2020) and meteorological information. Further investigation will be required to test the
potential of our method from extrapolation to transfer learning for cities with difference ranging from
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Figure 15. 2D-maps of the learnable parameters W and W for a sensor device of high spatial
resolution and high measurement quality. Two sets of learnable are presented corresponding to two
krigNN2 models trained using two different sequences of sensor devices evolving on a same network X
and Y. From top to bottom: W x, Wiy, Wk acer Wk prec, and Wo.

subtle to significant; for example, it would be interesting to start testing the trained model to predict “AH
NO,” on highways connected to the Oslo metropolitan area but outside this area, then to use the trained
model to predict “AH NO,” over other cities within Norway, and finally to test the trained model to predict
“AH NO,” in cities worldwide.
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Figure 16. 2D-maps of the learnable parameters W and W ¢ for a sensor device of high spatial
resolution and high measurement quality. Two sets of learnable parameters are presented corresponding
to two NWNN2 models trained using two different sequences of sensor devices evolving on a same
network X and Y. From top to bottom: W x, Wi ,, Wk ace, Wi prec, and Wo.

Our case studies assume phenomena constant in time. This choice is useful to test our data fusion model
architecture. Adapting our method for the prediction of time-dependent phenomena will require adding
variables related to time into the keys K. Keeping in mind our interest in predicting hourly urban air quality,
we will first follow the work of Stojanovi¢ et al. (2023) by using B-splines to encode periodic time-related
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Figure 17. 2D-maps of the lower dispersion (top) and upper dispersion (bottom). Two sets of dispersion
are presented corresponding to two krigNN2 models trained using two different sequences of sensor
devices evolving on a same network X and Y.
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Figure 18. 2D-maps of the lower dispersion (top) and upper dispersion (bottom). Two sets of dispersion
are presented corresponding to two NWNN2 models trained using two different sequences of sensor
devices evolving on a same network X and Y.
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Figure 19. 2D-maps of metrics RMSE (top) and variance (bottom). Two sets of dispersion are presented
corresponding to two krigNN2 models trained using two different sequences of sensor devices evolving on
a same network X and Y.
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Figure 20. 2D-maps of metrics RMSE (top) and variance (bottom). Two sets of dispersion are presented
corresponding to two NWNNZ2 models trained using two different sequences of sensor devices evolving on
a same network X and Y.
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features related to the human behavior. Then, we will test time-embedding methods, such as Kazemi et al.
(2019), on meteorological variable influencing air quality, such as temperature, wind, and relative humidity.
Finally, for forecast purposes, we will adapt the transformer architecture (Lin et al., 2022) to our method.

Quantifying the uncertainty automatically is crucial for optimizing measurement campaigns and
sensor selection. In our study, we employ ensemble prediction to create error maps. However, this
approach has a significant computational cost and provides post-measurement insights. Our future work
will focus on refining the model architecture for real-time and cost-effective error prediction. We will
follow the work of Tagasovska and Lopez-Paz (2019), where the uncertainty in deep neural networks is
estimated using a single model and simultaneous quantile regression as a loss function. This method
effectively captures all conditional quantiles, enabling well-calibrated prediction intervals with complex
characteristics such as asymmetry, multimodality, and heteroscedasticity.

We assume that measurement campaigns are random sequences of sensor devices deployed at different
locations, with different measurement qualities, and different spatial resolutions following predefined
characteristics. Our results show that the patterns of learnable parameters differ from one measurement
campaign to another; contrary to the constant pattern from feature extraction (Steininger et al., 2020),
adaptive distance attention extracts representative information of the phenomena that are ad hoc to one
measurement campaign. Nonetheless, even though metrics of the same model architecture are of the same
order of magnitude, some local errors characterized as spikes can occur. In a measurement campaign,
localizing the areas with potentially significant errors is useful to plan further campaigns and minimize
these errors. Highlighting, a posteriori, the locations of these errors with ensemble prediction is possible
but has a processing cost. Avoiding the local errors while keeping a reasonable processing cost might be
possible by planning the measurement campaign to catch relevant information while minimizing local
metrics. For this purpose, future studies should focus on designing the measurement campaign workflow
(Vasiljevic etal., 2020) of the sensor device while letting them adapt to any external or internal constraints
using reinforcement learning (Zhou et al., 2020). In doing so, it is important to limit the computational
requirements reasonable while keeping models that allow accurate predictions. Finally, we will take the
direction of combining this approach with intelligent instrumentation design (Ballard et al., 2021) to help
designing new sensor devices to reach better metrics, for instance, in the case study of “AH NO2.”

4. Conclusion

We describe the methodology and demonstrate the potential of an adaptive distance attention technique
that allows for i) the fusion of observations made by sparse, heterogeneous, and mobile sensor devices; ii)
the prediction of values at locations with no measurements; and iii) the automatic weighting of the
measurements according to a priori quality information about the sensor device without using any
methods of data assimilation.

We integrate both OK and a GRNN into this attention with their learnable parameters based on deep
learning architectures. We evaluate this method using three static phenomena with different complexities:
a case related to a simplistic phenomenon, topography over an area of 196 km?* and to the annual hourly
NO, concentration in 2019 over the Oslo metropolitan region (1026 km?).

We simulate networks of 100 synthetic sensor devices with six characteristics related to measurement
quality and measurement spatial resolution. This approach allows us to generate a set of sensor devices
describing reference monitoring stations, low-cost sensor devices, and pixels of satellites.

Outcomes are promising: we significantly improve the metrics from baseline geostatistical models
without using any methods of data assimilation.

For the three case studies, accuracy-precision diagrams highlight the capability of adaptive distance
attention to provide predictions at arbitrary locations with a quality close to sensor devices of medium
quality, that is, with an uncertainty of 10% of the signal of ground truth.

In addition, distance attention using the Nadaraya—Watson kernel provides as good metrics as the
attention based on the kriging system enabling the possibility to alleviate the processing cost for fusion of
sparse data.
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Finally, fusing heterogeneous sensor devices with adaptive distance attention can be used for
measurement campaigns of local phenomena in isolated areas. The results are encouraging, and we are
planning to continue adapting this approach to space-time phenomena evolving in complex areas.
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