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Abstract

Airborne radar sensors capture the profile of snow layers present on top of an ice sheet. Accurate tracking of these
layers is essential to calculate their thicknesses, which are required to investigate the contribution of polar ice capmelt
to sea-level rise. However, automatically processing the radar echograms to detect the underlying snow layers is a
challenging problem. In our work, we develop wavelet-based multi-scale deep learning architectures for these radar
echograms to improve snow layer detection. These architectures estimate the layer depths with a mean absolute error
of 3.31 pixels and 94.3% average precision, achieving higher generalizability as compared to state-of-the-art snow
layer detection networks. These depth estimates also agree well with physically drilled stake measurements. Such
robust architectures can be used on echograms from future missions to efficiently trace snow layers, estimate their
individual thicknesses, and thus support sea-level rise projection models.

Impact Statement

Global warming is a reality that is harshly affecting the polar ice caps. The increase in their annual melt rates and
their contribution to global sea-level rise can potentially cause drastic socio-economic damage. Radar devices are
the most popular sensors to monitor ice caps, but processing and analyzing their data is not straightforward. In
this work, we propose a deep-learning algorithm that can effectively process polar radar echograms and calculate
the thickness of snow accumulated on top of an ice sheet. The estimated thicknesses can be used by glaciological
models to project global sea-level rise, eventually helping us prepare for any future calamities.

1. Introduction

The increase of global mean annual temperature every year is having a drastic effect on the polar ice-caps.
Intergovernmental Panel on Climate Change (IPCC) 2021 report (Masson-Delmotte et al., 2021) states
that the Arctic has warmed at more than twice the global rate over the past 50 years, and the melting of the
Greenland Ice Sheet (GrIS) will cause sea levels to rise by 2 m by 2,100, potentially flooding regional
coastal areas (Kirezci et al., 2020). Modern climate models that simulate and project sea-level rise rely on
the thickness of the snow accumulated on top of the ice caps (Koenig et al., 2016). Continuousmonitoring
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and evaluation of this thickness is hence imperative to support climate models make accurate projections
and prepare us for future natural disasters.

Polar ice sheets are thick masses of ice, on top of which snow accumulates every year to form snow
accumulation layers. The change in volume of these snow layers changes the surface mass balance
(SMB) of the ice sheet. If the SMB of an ice sheet turns negative, it results in a sea-level increase.
Airborne radar systems such as the Snow Radar (Gogineni et al., 2013) monitor and capture the internal
state of these snow layers annually. Significant variations in snow permittivity reflect the electromag-
netic signals transmitted by Snow Radar. This reflection, which can be seen as the layers in radar
echograms, often occurs at the boundaries of snow stratigraphy, where changes in the physical
properties of the snow, such as density, hardness, grain size, and shape, result in significant discon-
tinuities in the snow’s dielectric properties. However, the visibility and clarity of the snow layers in
Snow Radar echograms degrade when the magnitude of the discontinuity in the snow’s dielectric
properties decreases. Routine data processing has applied deconvolution, filtering, and coherent and
incoherent integration techniques to remove non-ideal system characteristics and improve the signal-to-
noise ratio; however, off-nadir surface backscattering, multipath scattering, and signal loss in the
medium may still exacerbate the degradation of Snow Radar echogram’s quality (see the examples in
the leftmost columns of Figures 1-3).

Due to the degraded quality of the echograms, tracking snow accumulation layers is challenging for
experienced glaciologists as well as conventional vision algorithms (Koenig et al., 2016; Rahnemoonfar

Figure 1.Qualitative comparison of model outputs. From left to right, are the Snow Radar echogram, the
ground truth labels, output by MS-CNN (Rahnemoonfar et al., 2021), and our proposed Skip-WaveNet-
dmey model. The red boxes highlight some of the regions where Skip-WaveNet gives a cleaner prediction
compared to MS-CNN. The two networks achieved an MAE of 3.74 and 4.22 pixels, respectively, across
all the layers in this echogram.

Figure 2.Qualitative comparison of model outputs. From left to right, are the Snow Radar echogram, the
ground truth labels, output by MS-CNN (Rahnemoonfar et al., 2021), and our proposed Skip-WaveNet-
dmey model. The red boxes highlight some of the regions where Skip-WaveNet gives a cleaner prediction
compared to MS-CNN. The two networks achieved an MAE of 3.17 and 4.22 pixels, respectively, across
all the layers in this echogram.
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et al., 2021). Even convolutional neural networks (CNNs; LeCun et al., 2015), which have become the
standard machine learning algorithms for image processing, have issues in making accurate predictions
from these images (Rahnemoonfar et al., 2021; Varshney, Rahnemoonfar, Yari, Paden, et al., 2021;
Varshney et al., 2020) since any interruptions to their input can drastically affect their prediction capability
(Q. Li et al., 2021). To improve the effectiveness of CNNs in processing these radar images, we use

Figure 3.Qualitative comparison of model outputs. From left to right, are the Snow Radar echogram, the
ground truth labels, output by MS-CNN (Rahnemoonfar et al., 2021), and our proposed Skip-WaveNet-
dmey model. The red boxes highlight some of the regions where Skip-WaveNet gives a cleaner prediction
compared to MS-CNN. The two networks achieved an MAE of 5.93 and 8.09 pixels, respectively, across
all the layers in this echogram.
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wavelet transforms (Mallat, 1989), which are signal processing techniques that can represent an image in a
multi-resolution format. They have localization properties, in both the spatial and frequency domains, and
can depict the contextual as well as textural information in the image at different scales through their detail
coefficients (Huang et al., 2017; Mallat, 1989). We use these detail coefficients to guide the CNN toward
an enhanced snow layer representation.

In this work, we exploit the multi-scale nature of wavelet transforms and fuse them in a multi-scale
convolutional neural network (Rahnemoonfar et al., 2021) to improve the accuracy of snow layer
detection. We also show that taking wavelet transforms of intermediate scales of the neural network
helps in learning and extracting features, as compared to taking multi-level wavelet transforms of the
input image. This work is an extension of Varshney, Yari, et al. (2021) with a stronger backbone
network, more types of wavelet transform, analysis of “static” wavelets vs “dynamic” wavelets,
comparison with state-of-the-art networks, calculation of individual layer depths (in terms of number
of pixels), comparison with in-situ stake measurements, along with the use of a more practical Snow
Radar dataset.

The rest of the paper is organized as follows—we highlight the past work on snow layer tracking and
wavelet combined neural networks in Section 2; give a brief background of wavelet transforms, explain
the proposed wavelet-based multi-scale architecture(s), and showcase the evaluation techniques in
Section 3; describe the Snow Radar data and the in-situ observations that we use for our experiments
in Section 4; discuss the quantitative and qualitative results in Section 5, and finally conclude the paper in
Section 6 highlighting some future work.

2. Related works

Recently, there have been extensive studies on using deep learning for tracking snow layers through radar
echograms. At the same time, wavelet transformations are being exhaustively used to improve the feature
extraction capabilities of deep learning networks. Here, we provide a quick overview of the research being
done in these two areas.

2.1. Snow layer tracking through deep learning

Feature extraction capabilities and good generalizability of deep learning networks have been used on Snow
Radar images to track snow layers in Yari et al. (2019), Yari et al. (2020), Rahnemoonfar et al. (2021),
Varshney,Rahnemoonfar,Yari, Paden, et al. (2021),Varshney,Yari, et al. (2021), andWang et al. (2021).Deep
learning has also been used to segment the radar depth sounder (RDS) images in Donini et al. (2022), Ghosh
and Bovolo (2022a), and Ghosh and Bovolo (2022b) into ice and bedrock through various modifications of
UNet (Ronneberger et al., 2015), with or without transformers (Vaswani et al., 2017). In this paper, we focus
on the shallow sensor, the Snow Radar (Gogineni et al., 2013), which tracks the snow layers.

Wang et al. (2021) used a CNN-RNN (recurrent neural network) architecture for tiered segmentation
of radar images to identify the top 4–6 snow layers. Similarly, Ibikunle et al. (2020) built an iterative
neural network architecture to track snow layers, but on simulated radar images, as real radar images
were too complex for feature extraction. Varshney, Rahnemoonfar, Yari, Paden, et al. (2021) used
pyramid pooling modules to learn local-to-global spatio-contextual information of snow layer pixels
and perform semantic segmentation. In the line of multi-scale architectures, Yari et al. (2019) first
explored multi-scale contour detection CNNs for the purpose of snow layer extraction. The authors
noted that using popular pre-training strategies would not work on Snow Radar images due to the
inherent noise present in these images. Further extensions of this work by Rahnemoonfar et al. (2021)
and Yari et al. (2020) showed the usefulness of multi-scale architectures on synthetic radar images and
temporal transfer learning, respectively. Subsequently, wavelet-based multi-scale architectures for
snow layer tracking were first developed by Varshney, Yari, et al. (2021) which showed preliminary
results in this domain. This prior work used a VGG-13 architecture (Simonyan & Zisserman, 2015) on a
small Snow Radar dataset, which achieved an F-score of a little over 0.7. We expand upon this work by
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training a VGG-16 architecture, which is known to give robust representations (Rahnemoonfar et al.,
2021), on a new dataset specifically catered towards dry zone areas, where the snow layers can be
tracked. Furthermore, andmost importantly, we also calculate the individual layer depths in terms of the
number of pixels. We also show that using wavelet transforms of each scale of a multi-scale network
helps in learning inherent image features, as compared to using multi-level wavelet transforms of the
input image.

2.2. CNNs with wavelet transformations

Wavelet transforms have had immense applications in image denoising (Bnou et al., 2020; P. Liu et al.,
2019; Mallat, 1989), image compression (Naveen Kumar et al., 2019; Xiong & Ramchandran, 2009),
and image restoration (Bae et al., 2017; Huang et al., 2017; P. Liu et al., 2019). Many recent works
such as P. Liu et al. (2019), Williams and Li (2018), Huang et al. (2017), Han and Ye (2018), and Bae
et al. (2017) have used the downsampling properties of wavelets and replaced the convolutional or
pooling layers in a CNN, since incorporating the wavelet coefficients typically helps reduce infor-
mation loss (P. Liu et al., 2019). Williams and Li (2018) showed that using wavelet transform for
downsampling would create much cleaner and sharper images, as compared to using pooling layers,
and improve generalizability. Similarly, P. Liu et al. (2019) found that wavelet transforms not only
enlarge a kernel’s receptive field but also prevent information leakage which generally takes place
during a pooling operation. By using multi-level wavelet transforms, Han and Ye (2018) developed
deep convolutional framelets to reconstruct sparse-view computed tomography images and Huang
et al. (2017) developed a wavelet-based loss function to super-resolve facial images. Furthermore,
Bae et al. (2017) showed that residual learning improves by training on wavelet subbands. The variety
of these works shows that by incorporating wavelet transforms in a CNN, the feature extraction
capability of the latter improves due to sharper feature maps, increased receptive field, and enhanced
residual learning.

3. Methodology

In this section, we briefly explain the background of wavelet transforms, describe our base architecture
without wavelets called Multi-Scale CNN, and then explain the wavelet combined neural networks for
snow layer tracking.

3.1. Wavelet transform

We use the discrete wavelet transform (DWT) for our computations. For an image f x,yð Þ having
dimensions X × Y , DWT is given as Equations 3.1 and 3.2 for j≥ j0:

Wϕ j0,m,nð Þ= 1ffiffiffiffiffiffiffiffi
X:Y

p
XX�1

x = 0

XY�1

y= 0

f x,yð Þϕj0,m,n x,yð Þ (3.1)

Wi
ψ j,m,nð Þ= 1ffiffiffiffiffiffiffiffi

X:Y
p

XX�1

x= 0

XY�1

y= 0

f x,yð Þψi
j,m,n x,yð Þ (3.2)

In these equations,Wϕ is the approximation coefficient (A), andWi
ψ are the detail coefficients for each

level of wavelet transform j, where i∈ H,V ,Df g. H, V, and D are the horizontal, vertical, and diagonal
details, respectively, m,n are the subband dimensions (Williams, Li, et al., 2018), and j0 is an arbitrary
starting level. Each subsequent level of wavelet transform is computed on the previous level’s approxi-
mation coefficient. In the beginning, the input raw image is treated as an approximation coefficient.
Furthermore, ϕ is a scaling function, and ψ is the wavelet function, both of which downsample an input
image by a factor of 2 in both X and Y dimensions. Readers are encouraged to go through Daubechies
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(1992) to get a detailed understanding of ϕ, ψ, and the wavelet basis functions. We use the downsampling
property of wavelets and combine their transforms with the side outputs of multi-scale networks. Figure 4
shows a level 2 (i.e. j = 2) transform of an input image. In our work, we experiment with three popular
discrete wavelets, i.e. Haar, Daubechies, and “Discrete”Meyer. We will be abbreviating them as “haar,”
“db,” and “dmey” in subsequent sections for ease of reading. The wavelet functions (ψ) for the three
wavelet types have been plotted in Figure 5.

Figure 4. A level 2 wavelet transform of a given input image. The subscript denotes the level number.

e39-6 Debvrat Varshney et al.

https://doi.org/10.1017/eds.2024.25 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2024.25


3.2. Multi-scale CNN (MS-CNN)

In this work, we use a multi-scale network built for contour detection (Xie & Tu, 2015), which was
proven to be useful for snow layer tracking (Rahnemoonfar et al., 2021; Yari et al., 2019). This is a
VGG-16 (Simonyan & Zisserman, 2015) network with the terminal fully connected layers and the last
pooling layer removed. The final convolutional layers of every stage, right before the max pooling layer
of every stage, are convolved with a 1 × 1 filter to generate what we call “side output(s)”. Each side

Figure 5. The three types of wavelets that we use for our experiments, and their shorthand representation
in parenthesis.
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output is at a downsampled resolution of the previous stage’s side output. All side outputs are finally
upsampled through transposed convolutions, followed by cropping, to match the resolution of the input
image. The five side outputs, from the five stages, are concatenated together to form a “fuse” layer. All
five side outputs along with the final “fuse” layer are trained together in a deeply supervised manner
(Lee et al., 2015) with a cumulative loss function, Equation 3.5, as explained in the following
paragraph.

To train the network, we calculate the binary cross entropy loss (l) for every pixel i as follows:

l xi;Wð Þ= α � log 1� xið Þ if yi = 0

β � log xið Þ if yi = 1

�
(3.3)

In Equation 3.3, xi is the sigmoid activation map obtained from a network with weights W , yi is the
ground truth label of the corresponding pixel in the input image I having a total of ∣I∣ pixels, and α, β are
defined as Equation 3.4.

α = λ � ∣Y + ∣
∣Y + ∣+ ∣Y�∣

β =
∣Y�∣

∣Y + ∣+ ∣Y�∣

(3.4)

In Equation 3.4, ∣Y + ∣ denotes the count of all positive labels, i.e. those pixels representing the top of a
layer (yi = 1) and ∣Y�∣ denotes the count of all negative labels i.e. all other pixels which are background
(yi = 0). λ is a hyperparameter used to balance these positive and negative labels.

The total loss is computed as Equation 5 where k depicts each of the side outputs or stages, i.e. K = 5.
This network, called Multi-Scale CNN, is the current state-of-the-art model for snow layer tracking
(Rahnemoonfar et al., 2021) and forms our baseline architecture to compare with our wavelet-based
architectures. Multi-Scale CNN is shown in Figure 6 andmost of the time abbreviated asMS-CNN for the
rest of the paper.

Figure 6. MS-CNN—The multi-scale architecture of Rahnemoonfar et al. (2021) which forms our base
model.
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L Wð Þ=
X∣I∣
i= 1

XK
k = 1

l xki ;W
� �

+ l xfusei

�
;WÞ

 !
(3.5)

3.3. Wavelet combined neural networks

We set up two wavelet-ased architectures, and exploit the multi-level nature of wavelet transforms to
embed them into the base multi-scale architecture, MS-CNN. The two wavelet-based network modifi-
cations are termed as “WaveNet” and “Skip-WaveNet,” and are described below:

3.3.1. WaveNet
In Figure 3, from stages 2 to 5 of the base architecture, the feature maps get downsampled to a scale of
2× to 16× (with respect to the input image) to form the side outputs. Multi-level wavelet transforms of
the input image also give us downsampled features at similar scales, which are sharp, denoised, and
contain the horizontal, vertical, and diagonal detail coefficients (see subsection 3.1). By fusing wavelet
information of the image to every scale, local as well as global, of the multi-scale network, the side
outputs can be enriched for feature extraction. Hence, in this architecture, we take a level 4 wavelet
transform (since there are four stages which have downsampled resolution as compared to the input
image—stages 2 to 5) of the input image and fuse the detail coefficients in the following manner: we
concatenate all three detail coefficients i.e. H,V ,D of a wavelet transform of level l of the input radar
echogram to the side output l+ 1 of the base architecture. This means that the detail coefficients from
level 1 of the wavelet transform fuse with side output 2 of the architecture, detail coefficients from level
2 of the wavelet transform fuse with side output 3 of the architecture, and so on. The WaveNet
architecture is shown in Figure 7.

Figure 7. WaveNet—A wavelet-based architecture. Here, the input image goes through a multi-level
wavelet transform, where each level is shown with a different color, ranging from light pink to yellow.
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3.3.2. Skip-WaveNet
The side outputs of MS-CNN are feature maps containing image patterns extracted at different scales,
from local to global. These feature maps contain an improved representation of the features,
i.e. are “more learned,” after every iteration of training and also contain noise in the form of unuseful
network weights. Hence, they have the potential to be denoised further which can add value to overall
network training. So for the Skip-WaveNet architecture, we take a wavelet transform of each side
output and add it as an extra layer to the successive side output to supplement network learning. This
will help form skip connections, support residual learning (Bae et al., 2017; He et al., 2016) and also
propagate information between scales. Since the wavelet transform is at a downsampled resolution to
its input signal, the dimensions of a transform of side output s will be the same as the dimensions of
side output s+ 1. Furthermore, by fusing the wavelet transform of a scale to its successive scale, we
are also propagating information between scales which can support network learning. With this
intuition, we form the Skip-WaveNet architecture as follows: we take a level 1 wavelet transform of
a side output s (s∈ 1,4½ �) and fuse its detail coefficients to side output s+ 1. In this case, for a given
input image, the wavelet transforms will be renewed after each epoch of training. This can be
compared against the WaveNet architecture where the transforms generated for an input image will
be the same during all epochs. Hence, such multi-scale “dynamic” wavelets should improve the
denoising and feature extraction capabilities of the network. The architecture of Skip-WaveNet is
shown in Figure 8.

Apart from the above-defined modifications, WaveNet and Skip-WaveNet are trained in the same way
as the base architectureMS-CNN, i.e. they are trainedwith deep supervision through binary cross-entropy
loss, and have the final fusion of five side outputs, etc.

3.4. Experimental setup

All the architectures, including the base architecture, and wavelet combined neural networks share the
same hyperparameters as those used in Xie and Tu (2015) and Rahnemoonfar et al. (2021). For our
experiments, we augment the training dataset with scaling factors ∈ 0:25,0:5,0:75½ � and left-to-right
flipping. The augmentation helps in expanding the training dataset to 6,430 images, which we train for
15 epochs. All networks took approximately 10 hours, on average, when trained on NVIDIA GeForce
RTX 2080 Ti GPU with an Intel Core i9 processor.

3.5. Post-processing and evaluation

We perform non-maximum suppression (NMS) on the network outputs to make finer predictions of the
layers. NMS gives grayscale predictions, which we compare against our ground truth by evaluating the
ODS (optimal dataset scale) and OIS (optimal image scale) F-scores (Y. Liu et al., 2019). The ODS
F-score looks for a single threshold across the entire dataset which can binarize the predicted image, and
give the most optimum F-score with respect to the ground truth. On the other hand, the OIS F-score
searches for a similar optimum threshold for each image. The optimum F-scores thus found from each
image are then averaged over the entire dataset to obtain the OIS F-score. Here, the F-score refers to the
standard F1-score used in computer vision, defined as Equation 3.6. In this equation, TP, FP, and FN are
true positives, false positives, and false negatives, respectively.We also use average precision (AP), which
is the area under a precision-recall curve (Su et al., 2015), as an evaluationmetric of network performance.

F =
TP

TP + 1
2 FP +FNð Þ (3.6)

Based on the optimum threshold we get, we binarize the network outputs to get predictions similar to
the ground truth. We then calculate the row indices (or the “range bin” indices of an echogram) of each
layer in the predicted image matrix and compare them with corresponding row indices of the manually
labeled ground truth to evaluate the mean absolute error (MAE) of layer depth using Equation 3.7. The
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overallMAEwas then obtained by estimating theMAE for each layer in every echogram for the entire test
set using Equation 3.8.

MAEk
j =

Pi =Wk
i = 1 ∣GTDk,j

i �PDk,j
i ∣

Wk
(3.7)

MAE =
1
T

Xk = T
k = 1

Pj =Nk
j = 1 MAEk

j

Nk
(3.8)

In Equations 3.7 and 3.8,GTD, andPD are the ground truth and predicted layer depths, respectively, in
terms of the number of pixels. For example, PDk,j

i represents the the row index of the jth predicted layer in
the ith column of the echogram k.Wk andNk , respectively, represent the total number of columns (width),

Figure 8. Skip-WaveNet—A wavelet-based architecture with skip connections. Here, we take a level
1 wavelet transform of each side output. This is in contrast toWaveNet where thewavelet transformwas of
the input image.
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and the total number of traced layers, in an echogram k. T represents the total number of echograms in the
test set.

3.6. Comparison with in-situ stake measurements

The snow thickness and annual accumulation rates can be computed from traced annual layers. To assess
the effects of tracing imperfections on the annual accumulation rate estimates, we compare the radar-
derived accumulation rates with the ground measurements. Of the available in-situ stake measurements
compiled by the SUMup group (see Section 4), the closest measurement to the flight line of the radar data
set used in this paper is chosen as the reference for comparison. The stake location is only�16 km away
and is thus suitable for reliable comparison. Given the scale of the ice-sheet, we do not expect the
accumulation to vary at such a short distance. We estimate the radar-derived snow accumulation rates
similar to J. Li et al. (2023) which uses Benson’s density-depth model (Benson, 1960) and an interpret-
ation model from Clarke et al. (1989). The in-situ stake measurements provide the required initial values
of snow density and accumulation at the surface for the interpretation model (Clarke et al., 1989). The
monthly stake-measured snow accumulations between September and August in two consecutive years
are added up as the annual accumulation rate. The MAE effects are assessed by comparing the radar-
derived accumulation rates with and without the MAE of each layer, which is calculated by Equation 3.8.

4. Dataset

We use Snow Radar images publicly hosted by the Center for Remote Sensing and Integrated Systems
(CReSIS; CReSIS, 2012). This dataset was captured over different regions of the GrIS and used to
analyze the ice sheet’s annual accumulation rates (Koenig et al., 2016). The blue line on the map in the
left panel of Figure 9 shows one of the transects. The right panel of the figure presents the radar
echogram of a 250 km section along the transect showing the snow layers to a depth of � 12 m. This
transect contains 1,286 training images and 321 test images where each image has a vertical resolution
of approximately 2.5 cm and an along-track resolution of 14.5 m (Table 1). We use binary labels for
training and evaluating our model, where the top of each snow layer is labeled as “1,” and all other pixels
are labeled as “0.” These labels are prepared manually by scientific experts tracing out the echograms
through visual inspection.

To validate our model predictions with in-situ observations, we use the SUMup dataset (Dibb &
Fahnestock, 2004; Thompson-Munson et al., 2022). This dataset contains surface mass-balance field
observations of snow density, accumulation on land ice, and its errors over�60-year time period across
the Arctic and Antarctic. This data set contains ice cores/snow pits, radar isochorones, and stake
measurements. In the stake measurements, midpoint depth, snow layer densities, monthly snow
accumulation, and error in accumulation are available. Figure 9 highlights the ice cores from the

Table 1. Key parameters of the Snow Radar sensor used for data collection

Parameter Value

Bandwidth 2–8 GHz
Pulse duration 250 μ s
PRF 2 kHz
Transmit power 100 mW
Intermediate frequency range 62.5–125 MHz
Sampling frequency 125 MHz
Range resolution � 4 cm
Along-track resolution 14.5 m
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SUMup dataset which are closest to our flight line in 2012. For a fair comparison, we chose a stake
(Dibb& Fahnestock, 2004) whose measurements have a temporal overlap with the radar data collection
time span.

5. Results and discussion

Wenote that trainingwith all five side outputs of our baseMS-CNNmodel on the new dry-zone dataset by
CReSIS is detrimental to performance since there are hardly any global features or contours that this
network (or humans in general) can detect (see for example, the radar echograms in Figures 1 and 2).
Hence, we use only the first four side outputs and the fuse layer to train the baselineMS-CNNmodel. This
is not the case for wavelet combined neural networks which are able to detect layer contours across all
scales and can generate the fifth side output as well, capturing global context. In this section, we showcase
our results on wavelet combined neural networks vs the baseline model and also discuss the wavelet

Figure 9. Left: Flightline of NASAOperation IceBridge 2012 in blue, nearest ice cores to the flight line in
red, and the site which has a temporal overlap with IceBridge data in cyan. Right: A radar echogram
spans 250 km along this flight line, marked by points “A” and “B”.
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architectures WaveNet vs Skip-WaveNet. We also compare our performance with the only other work on
Snow Radar layer tracing (Wang et al., 2021). Furthermore, in Figure 10, we showcase Skip-WaveNet’s
ability to trace snow layers along a 50-km transect.

5.1. Wavelet combined neural networks vs MS-CNN

We tabulate the ODS and OIS F-scores, the average precision (AP), as well as the mean absolute error
(MAE) of depth estimates in Table 2. These estimates are calculated on the final fuse layer of our
experiments. From Table 2, we see that all wavelet combined neural networks, except forWaveNet with a
dmey wavelet, perform better than the baseline MS-CNN model. The wavelet-based networks also give
higher AP and MAE scores (3.31 pixels) as compared to CNN3B+RNN (Wang et al., 2021). Wang et al.
(2021) were able to predict the top four to six layers from an echogram, while the multi-scale architecture,

Figure 10. Radar echogram of a 50-km transect with the ground truth marked in black. Layers predicted
by Skip-WaveNet on the test regions are shown in green. The network is able to trace faint layers deeper
than 12 m, whose ground truth is difficult to prepare.
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whether MSCNN or wavelet-based, can trace out the deeper, twenty to thirty, layers from the echogram
(Figures 1-3).

In the wavelet-based networks, Skip-WaveNet with a dmey wavelet achieves the highest F-scores,
with all Skip-WaveNet models performing better than WaveNet. In the rest of the manuscript, we use the
words Skip-WaveNet and Skip-WaveNet-dmey interchangeably. The wavelet transforms help in improv-
ing the ODS F-score by 2.11%–3.99% and the OIS F-score by 1.96%–3.7%, over the baseline architec-
ture, for different experiments. Thus, the wavelet transforms not only help in denoising feature maps but
also extract features at the global scale (fifth stage), which the comparative MS-CNN does not. Since
images are extremely noisy with different images having varying levels of intensity and contrast (see the
different sample radar echograms in Figures 1-3), the layers can be almost impossible to see by human
eyes. Hence, extracting features at a global fifth stage is a useful property that the wavelet architectures
have achieved. In Figures 1-3, it can be seen that the layers detected by the wavelet network give a
consistent and useful tracking result than the baseline MS-CNNmodel. The baseline model is misguided
by a lot of degraded features in the input radar echograms, and falsely classifies redundant backscatterings
as a layer, as can be seen by its intermediary predictions between two layers, highlighted in red in the
figures. The layers predicted by MS-CNN mostly have missing values and are discontinuous in nature
(i.e. have gaps in between) giving a reduced tracking accuracy (Table 2). MSCNN’sMAE is worse by�6
pixels which will give inaccurate thickness estimates eventually adding to uncertainties in accumulation
rates (Kahle et al., 2021). Further, it should be noted that all multiscale architectures (MS-CNN,WaveNet,
and Skip-WaveNet) have the same baseline CNN architecture, and hence the same number of trainable
parameters. InWaveNet and Skip-WaveNet, the wavelet coefficients are additional filters computed from
either the convolutional layers (side outputs) or the input images, and hence neither act as parameters
which require training nor are updated by backpropagation. In this regard, both Skip-WaveNet and
WaveNet are able to achieve a higher tracking accuracy even though their complexity, in terms of number
of trainable parameters, is the same as that of MS-CNN.

5.2. Skip-WaveNet vs WaveNet

Our experiments confirm that wavelet-based architectures, by supplying additional information from the
wavelet coefficients, enhance feature extraction. From Table 2 we see that Skip-WaveNet performs better
than others, where the wavelet transform obtained in each epoch is from a learned and improved side
output (so the wavelets are “dynamic” and change after each epoch), whereas inWaveNet, the multi-level
wavelet transforms are always fixed for a given input image for every epoch (the wavelets are in a way
“static” across the entire training period). We further see that the performance of theWaveNet experiment
deteriorates with the wavelet complexity, whereas the performance of Skip-WaveNet improves with
wavelet complexity (ODS F-score of dmey > db > haar). What would be interesting for future studies is
to investigate how the different types of wavelets are affecting network learning in different ways.

Table 2. Evaluation metrics were obtained across different model architectures on the test set. Highest
scores are highlighted in bold

Network Wavelet ODS OIS AP MAE

CNN3B+RNN
MS-CNN

None NA NA 0.853 8.730
None 0.852 0.866 0.918 9.492

WaveNet haar 0.876 0.888 0.936 3.517
db 0.870 0.883 0.931 3.541
dmey 0.835 0.851 0.905 3.967

Skip-WaveNet haar 0.880 0.892 0.938 3.451
db 0.879 0.890 0.937 3.438
dmey 0.886 0.898 0.943 3.309
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5.3. Validation with snow stake measurements

In addition to the geographical proximity, the measurements at the selected snow stake site (Dibb &
Fahnestock, 2004; the cyan dot in the left panel of Figure 9) span the temporal range of 2003 to 2016,
thereby exhibiting a temporal overlap with the radar data collection period. This temporal alignment
renders it particularly well-suited for conducting comparative analyses with our model predictions
applied to the 2012 IceBridge dataset. We use this snow stake site and find the test echogram closest to
it, to compare Skip-WaveNet’s predictions over this echogram and the measurements at the selected
stake site. Figure 11 shows the annual accumulation rate for different years (2004–2012), as well as the
associated error in these measurements at the stake measurement site. Similarly, the plot also shows the
radar-derived accumulation rate and its error due to the mean absolute error achieved by SkipWaveNet-
dmey for the first eight annual snow layers between 2004 and 2011. The depth of the 2004 layer is ~4.5
m below the surface. As can be seen from the plot, the estimates from SkipWaveNet are within the error
bounds of the stake accumulation measurements. Moreover, the radar-derived accumulation rates from
training labels (i.e. without MAE, and marked by *) agree well with the accumulation rate measured at

Figure 11. Comparison of the accumulation rate and its error at the site of stake measurements (blue)
with the radar-derived accumulation rate from the traced annual layers marked by the training labels (*),
and with the mean absolute error achieved by SkipWaveNet (red).
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the stake site. The MAE of the first eight layers in SkipWaveNet’s predictions is 2.2 pixels corres-
ponding to an error in accumulation rate estimation of �0.011 m w.e. a-1. Therefore the tracing
improvement of 6.2 pixels by Skip-WaveNet dmey over MS-CNN (see Table 2) results in reducing the
uncertainty by 0.031 m w.e. a-1 in accumulation rate estimation. We also compare the radar-derived
accumulation rates from the mean absolute error of SkipWaveNet and MSCNN for the same echogram
in Figure 12 which shows that Skip-WaveNet was able to give a smaller error in accumulation rates
estimates as compared to MS-CNN.

At this stake site, however, the available density measurements were made between 1997 and 2002 in
different months. In Figure 13 we plot these density measurements, made from the surface to a depth of
3 m, in the form of blue circles. The red line shows the density-depth profile obtained from linear fitting
with the leastmean square error. The orange line shows the density-depth profile used by the interpretation
model (Clarke et al., 1989) for the accumulation rate estimation from tracked snow layers in a radar
echogram. Figure 14 presents the corresponding profiles of snow deposition age and dielectric constant
versus depth, respectively.

6. Conclusion

Radar echograms are used for capturing the profile of multiple snow layers accumulated on top of an ice
sheet. These echograms can have varying characteristics that can make snow layers difficult to detect
visually or through automated algorithms. In this work, we use wavelet transforms to extract multi-scale
textural information from radar echograms to supplement neural network learning. Our novel architecture
helps in improving layer detection from noisy echograms. We also find that using wavelet transforms of
intermediate side outputs and forming skip connections with them help in feature extraction and network
learning, as compared to using ‘static’wavelets of the input radar echogram. We show that our algorithm
can be used for layer tracking and calculating snow thickness accurately, thus reducing accumulation rate
error as compared to in-situ stake measurements. Since our models are data-driven in nature they are

Figure 12. Comparison of the radar-derived accumulation rate from the mean absolute error of
SkipWaveNet (red) and MSCNN (black), both centered at the radar-derived accumulation rate from the
traced annual layers (*). Clearly, SkipWaveNet gives a lower error.
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Figure 13. Snow density measurements at the stake site (Dibb&Fahnestock, 2004) in blue, their linear fit
in red, and the density-depth profile (through the interpretation model of Clarke et al. (1989)) of snow
layers traced from the closest radar echogram in orange.

Figure 14. Profiles of snow layer deposition age (in blue) and dielectric constant (in red) versus depth
estimated through the interpretation model of Clark e et al. (1989) at the location of the radar echogram
closest to the stake site (Dibb & Fahnestock, 2004). Layers traced by Skip-WaveNet on this radar
echogram are marked by circles.
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mainly effective for echograms captured in similar dry snow zone regions and can provide thickness
estimates for glaciological models to use. Our future works are looking at tracing the layers for ablation
zones (where the layers are much fainter, as seen through radar), leveraging larger datasets to incorporate
regional variation and improve generalizability, as well as using multiple sensors to introduce comple-
mentary information.

Author contribution. Conceptualization: M.R. Resources: M.R; J.P; A.G. Software & Methodology: D.V; M.Y.; M. R; O.I; J. L.
Data curation: O.I. Data visualization: D.V. Formal Analysis: D.V; M.R. Snow accumlation rate comparison and validation: J. L;
Supervision: M.R. Funding acquisition: M.R; Investigation: D.V; M.R. Writing original draft: D.V. All authors reviewed and
approved the final submitted draft.

Data availability statement. The dataset is publicly hosted by the Center for Remote Sensing and Integrated Systems (CReSIS) at
CReSIS (2012).

Funding statement. This study was funded by NSF BIGDATA awards (IIS-1838230, IIS-1838024), the U.S. Army Grant
No. W911NF21-20076, IBM, and Amazon.

Competing interest. None

References
Bae,W,Yoo, J, andYe, JC (2017). BeyondDeepResidual Learning for Image Restoration: Persistent Homology-GuidedManifold

Simplification. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 1141–1149. https://
doi.org/10.1109/CVPRW.2017.152

Benson, CS (1960). Stratigraphic studies in the snow and firn of the greenland ice sheet [Doctoral dissertation, California Institute
of Technology].

Bnou, K, Raghay, S, and Hakim, A (2020). A wavelet denoising approach based on unsupervised learning model. EURASIP
Journal on Advances in Signal Processing, 2020(1), 1–26.

Clarke,GKC.,Cross,GM, andBenson,CS (1989). Radar imaging of glaciovolcanic stratigraphy,mountwrangell caldera, alaska:
Interpretation model and results. Journal of Geophysical Research: Solid Earth, 94(B6), 7237–7249. https://doi.org/10.1029/
JB094iB06p07237

CReSIS. (2012). NASA OIB Greenland. https://data.cresis.ku.edu/data/temp/internal_layers/NASA_OIB_test_files/image_files/
Dataset/snow/temp_data_share/OLD_2012_Greenland_P3/2012_Greenland_P3/frames_001_243_20120330_04/ Accessed
08/10/2024.

Daubechies, I (1992). Ten Lectures on Wavelets. Society for Industrial; Applied Mathematics. https://doi.org/10.1137/
1.9781611970104

Dibb, JE, and Fahnestock, M (2004). Snow accumulation, surface height change, and firn densification at Summit, Greenland:
Insights from 2 years of in situ observation. Journal of Geophysical Research: Atmospheres, 109(D24), D24113. https://doi.
org/10.1029/2003JD004300

Donini, E,Bovolo, F, and Bruzzone, L (2022). A Deep Learning Architecture for Semantic Segmentation of Radar Sounder Data.
IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14. https://doi.org/10.1109/TGRS.2021.3125773

Ghosh, R, and Bovolo, F (2022a). A Hybrid CNN-Transformer Architecture for Semantic Segmentation of Radar Sounder data.
IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 1320–1323. https://doi.org/10.1109/
IGARSS46834.2022.9883124

Ghosh, R, and Bovolo, F (2022b). TransSounder: A Hybrid TransUNet-TransFuse Architectural Framework for Semantic
Segmentation of Radar Sounder Data. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–13. https://doi.
org/10.1109/TGRS.2022.3180761

Gogineni, S, Yan, JB,Gomez, D, Rodriguez-Morales, F, Paden, J, and Leuschen, C (2013). Ultra-wideband radars for remote
sensing of snow and ice. IEEE MTT-S International Microwave and RF Conference, 1–4. https://doi.org/10.1109/
IMaRC.2013.6777743

Han, Y, and Ye, JC (2018). Framing U-Net via Deep Convolutional Framelets: Application to Sparse-ViewCT. IEEE Transactions
on Medical Imaging, 37(6), 1418–1429.

He, K,Zhang, X,Ren, S, and Sun, J (2016). Deep Residual Learning for Image Recognition. Proceedings of the IEEE conference
on computer vision and pattern recognition, 770–778.

Huang, H, He, R, Sun, Z, and Tan, T (2017). Wavelet-SRNet: A Wavelet-based CNN for Multi-scale Face Super Resolution.
Proceedings of the IEEE International Conference on Computer Vision, 1689–1697.

Ibikunle, O, Paden, J,Rahnemoonfar, M,Crandall, D, and Yari, M (2020). Snow Radar Layer Tracking Using Iterative Neural
Network Approach. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2960–2963. https://
doi.org/10.1109/IGARSS39084.2020.9323957

Environmental Data Science e39-19

https://doi.org/10.1017/eds.2024.25 Published online by Cambridge University Press

https://doi.org/10.1109/CVPRW.2017.152
https://doi.org/10.1109/CVPRW.2017.152
https://doi.org/10.1029/JB094iB06p07237
https://doi.org/10.1029/JB094iB06p07237
https://data.cresis.ku.edu/data/temp/internal_layers/NASA_OIB_test_files/image_files/Dataset/snow/temp_data_share/OLD_2012_Greenland_P3/2012_Greenland_P3/frames_001_243_20120330_04/
https://data.cresis.ku.edu/data/temp/internal_layers/NASA_OIB_test_files/image_files/Dataset/snow/temp_data_share/OLD_2012_Greenland_P3/2012_Greenland_P3/frames_001_243_20120330_04/
https://doi.org/10.1137/1.9781611970104
https://doi.org/10.1137/1.9781611970104
https://doi.org/10.1029/2003JD004300
https://doi.org/10.1029/2003JD004300
https://doi.org/10.1109/TGRS.2021.3125773
https://doi.org/10.1109/IGARSS46834.2022.9883124
https://doi.org/10.1109/IGARSS46834.2022.9883124
https://doi.org/10.1109/TGRS.2022.3180761
https://doi.org/10.1109/TGRS.2022.3180761
https://doi.org/10.1109/IMaRC.2013.6777743
https://doi.org/10.1109/IMaRC.2013.6777743
https://doi.org/10.1109/IGARSS39084.2020.9323957
https://doi.org/10.1109/IGARSS39084.2020.9323957
https://doi.org/10.1017/eds.2024.25


Kahle, EC, Steig, EJ, Jones, TR, Fudge, T,Koutnik, MR,Morris, VA, Vaughn, BH, Schauer, AJ, Stevens, CM, Conway, H,
et al. (2021). Reconstruction of temperature, accumulation rate, and layer thinning from an ice core at South Pole, using a
statistical inverse method. Journal of Geophysical Research: Atmospheres, 126(13), e2020JD033300.

Kirezci, E, Young, IR, Ranasinghe, R, Muis, S, Nicholls, RJ, Lincke, D, and Hinkel, J (2020). Projections of global-scale
extreme sea levels and resulting episodic coastal flooding over the 21st Century. Scientific reports, 10(1), 1–12.

Koenig, LS, Ivanoff, A,Alexander, PM,MacGregor, JA, Fettweis, X, Panzer, B, Paden, JD, Forster, RR,Das, I,McConnell,
JR, et al. (2016). Annual Greenland accumulation rates (2009–2012) from airborne snow radar. The Cryosphere, 10(4),
1739–1752.

LeCun, Y, Bengio, Y, and Hinton, G (2015). Deep learning. nature, 521(7553), 436–444.
Lee C-Y, Xie S, Gallagher P, Zhang Z and Tu Z (2015) Deeply-supervised nets. In Lebanon G and Vishwanathan SVN (eds.),

Proceedings of the Eighteenth International Conference on Artificial Intelligence and Statistics, Vol. 38. San Diego, CA:
Proceedings of Machine Learning Research, pp. 562–570. Available at https://proceedings.mlr.press/v38/lee15a.html.

Li, J,Rodriguez-Morales, F,Fettweis, X, Ibikunle, O,Leuschen, C,Paden, J,Gomez-Garcia, D, andArnold, E. (2023). Snow
stratigraphy observations from operation icebridge surveys in alaska using s and c band airborne ultra-wideband fmcw
(frequency-modulated continuous wave) radar. The Cryosphere, 17(1), 175–193. https://doi.org/10.5194/tc-17-175-2023

Li, Q, Shen, L, Guo, S, and Lai, Z (2021). WaveCNet: Wavelet Integrated CNNs to Suppress Aliasing Effect for Noise-Robust
Image Classification. IEEE Transactions on Image Processing, 30, 7074–7089. https://doi.org/10.1109/TIP.2021.3101395

Liu, P, Zhang, H, Lian, W, and Zuo, W (2019). Multi-Level Wavelet Convolutional Neural Networks. IEEE Access, 7,
74973–74985.

Liu, Y, Cheng, M-M, Hu, X, Bian, J-W, Zhang, L, Bai, X, and Tang, J (2019). Richer Convolutional Features for Edge Detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(8), 1939–1946. https://doi.org/10.1109/TPAMI.2018.2878849

Mallat, SG (1989). A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 11(7), 674–693.

Masson-Delmotte, V,Zhai, P,Pirani, A,Connors, S,Péan, C,Berger, S,Caud,N,Chen,Y,Goldfarb, L,Gomis,M,Huang,M,
Leitzell, K, Lonnoy, E,Matthews, J,Maycock, T,Waterfield, T,Yelekçi, O,Yu, R, and (eds.), B. Z. (2021). Climate Change
2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental
Panel on Climate Change (tech. rep.). Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press.

NaveenKumar,R, Jagadale, B, andBhat, J (2019). A lossless image compression algorithm usingwavelets and fractional Fourier
transform. SN Applied Sciences, 1(3), 1–8.

Rahnemoonfar,M,Yari,M, Paden, J,Koenig, L, and Ibikunle, O (2021). DeepMulti-Scale Learning for Automatic Tracking of
Internal Layers of Ice in Radar Data. Journal of Glaciology, 67(261), 39–48.

Ronneberger, O, Fischer, P, and Brox, T (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation.Medical
Image Computing and Computer-Assisted Intervention – MICCAI 2015, 234–241.

Simonyan, K, and Zisserman, A (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. International
Conference on Learning Representations, 1–14.

Su,W,Yuan, Y, and Zhu,M (2015). A Relationship between the Average Precision and the Area under the ROC Curve, 349–352.
https://doi.org/10.1145/2808194.2809481

Thompson-Munson, M,Montgomery, L,Lenaerts, J, and Koenig, L (2022). Surface Mass Balance and SnowDepth on Sea Ice
Working Group (SUMup) snow density, accumulation on land ice, and snow depth on sea ice datasets 1952-2019. Arctic Data
Center. https://doi.org/10.18739/A24Q7QR58

Varshney, D, Rahnemoonfar, M, Yari, M, and Paden, J (2020). Deep Ice layer Tracking and Thickness Estimation using Fully
Convolutional Networks. 2020 IEEE International Conference on Big Data (Big Data), 3943–3952.

Varshney, D,Rahnemoonfar,M,Yari,M,Paden, J, Ibikunle, O, andLi, J (2021). Deep Learning onAirborne Radar Echograms
for Tracing SnowAccumulation Layers of the Greenland Ice Sheet.Remote Sensing, 13(14). https://doi.org/10.3390/rs13142707

Varshney, D, Yari, M, Chowdhury, T, and Rahnemoonfar, M (2021). Refining Ice Layer Tracking through Wavelet combined
Neural Networks. ICML 2021 Workshop on Tackling Climate Change with Machine Learning. https://www.climatechange.ai/
papers/icml2021/49

Vaswani, A,Shazeer, N,Parmar,N,Uszkoreit, J, Jones, L,Gomez,AN,Kaiser,Ł, andPolosukhin, I (2017). Attention is all you
need. In I. Guyon, U. V. Luxburg, S. Bengio, H.Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Advances in neural
information processing systems (NeurIPS) (Vol. 30). Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Wang, Y, Xu, M, Paden, JD, Koenig, LS, Fox, GC, and Crandall, DJ (2021). Deep Tiered Image Segmentation for Detecting
Internal Ice Layers in Radar Imagery. 2021 IEEE International Conference on Multimedia and Expo (ICME), 1–6. https://doi.
org/10.1109/ICME51207.2021.9428365

Williams, T,Li, R, et al. (2018). An Ensemble of Convolutional Neural Networks UsingWavelets for Image Classification. Journal
of Software Engineering and Applications, 11(02), 69.

Williams, T, and Li, R (2018). Wavelet Pooling for Convolutional Neural Networks. International Conference on Learning
Representations.

Xie, S, and Tu, Z (2015). Holistically-Nested Edge Detection. 2015 IEEE International Conference on Computer Vision (ICCV),
1395–1403. https://doi.org/10.1109/ICCV.2015.164

e39-20 Debvrat Varshney et al.

https://doi.org/10.1017/eds.2024.25 Published online by Cambridge University Press

https://proceedings.mlr.press/v38/lee15a.html
https://doi.org/10.5194/tc-17-175-2023
https://doi.org/10.1109/TIP.2021.3101395
https://doi.org/10.1109/TPAMI.2018.2878849
https://doi.org/10.1145/2808194.2809481
https://doi.org/10.18739/A24Q7QR58
https://doi.org/10.3390/rs13142707
https://www.climatechange.ai/papers/icml2021/49
https://www.climatechange.ai/papers/icml2021/49
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/ICME51207.2021.9428365
https://doi.org/10.1109/ICME51207.2021.9428365
https://doi.org/10.1109/ICCV.2015.164
https://doi.org/10.1017/eds.2024.25


Xiong, Z, and Ramchandran, K (2009). Chapter 18 - wavelet image compression. In A. Bovik (Ed.), The essential guide to image
processing (pp. 463–493). Academic Press. https://doi.org/10.1016/B978-0-12-374457-9.00018-4

Yari,M,Rahnemoonfar,M, andPaden, J (2020).Multi-Scale and Temporal Transfer Learning forAutomatic Tracking of Internal
Ice Layers. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 6934–6937. https://doi.
org/10.1109/IGARSS39084.2020.9323758

Yari, M, Rahnemoonfar, M, Paden, J, Oluwanisola, I, Koenig, L, and Montgomery, L (2019). Smart Tracking of Internal
Layers of Ice in Radar Data viaMulti-Scale Learning. 2019 IEEE International Conference on Big Data (Big Data), 5462–5468.

Cite this article: Varshney D, Yari M, Ibikunle O, Li J, Paden J, Gangopadhyay A and Rahnemoonfar M (2024). Skip-WaveNet:
a wavelet based multi-scale architecture to trace snow layers in radar echograms. Environmental Data Science, 3: e39.
doi:10.1017/eds.2024.25

Environmental Data Science e39-21

https://doi.org/10.1017/eds.2024.25 Published online by Cambridge University Press

https://doi.org/10.1016/B978-0-12-374457-9.00018-4
https://doi.org/10.1109/IGARSS39084.2020.9323758
https://doi.org/10.1109/IGARSS39084.2020.9323758
https://doi.org/10.1017/eds.2024.25
https://doi.org/10.1017/eds.2024.25

	Skip-WaveNet: a wavelet based multi-scale architecture to trace snow layers in radar echograms
	Impact Statement
	Introduction
	Related works
	Snow layer tracking through deep learning
	CNNs with wavelet transformations

	Methodology
	Wavelet transform
	Multi-scale CNN (MS-CNN)
	Wavelet combined neural networks
	WaveNet
	Skip-WaveNet

	Experimental setup
	Post-processing and evaluation
	Comparison with in-situ stake measurements

	Dataset
	Results and discussion
	Wavelet combined neural networks vs MS-CNN
	Skip-WaveNet vs WaveNet
	Validation with snow stake measurements

	Conclusion
	Author contribution
	Data availability statement
	Funding statement
	Competing interest


