Can. J. Math., Vol. XXXI, No. 1, 1979, pp. 189-196

SOME RADICAL PROPERTIES OF JORDAN MATRIX
RINGS

MICHAEL RICH

Introduction. Let 4 be a ring (not necessarily associative) in which
2x = « has a unique solution for each a« € 4. Then it is known that if 4 con-
tains an identity element 1 and an involution j : x + & and if J, is the canonical
involution on 4, determined by

ar ()

a = (€3]
0 a

(i.e., J,: (xy) —a ' (x;)a) where the a; a,”', 1 £ 17 < n are symmetric
elements in the nucleus of 4 then H(4,, J,), the set of symmetric elements of
A,, forn = 3isa Jordan ring if and only if either 4 is associative or n = 3 and
4 is an alternative ring whose symmetric elements lie in its nucleus (2, p. 127].
In this paper we show that for certain radicals there is a natural connection
between the radical of 4 and that of H(4,, J,). In particular, if R denotes
the prime or Levitzki radical then R(H (4, J,)) = H(A,, Jo) M R(4),. Also,
if 4 is 3-torsion free then the same result holds for the strongly semiprime
radical. As usual, the associator (x, v, z) denotes (xy)z — x(yz) and the com-
mutator [x, ¥] denotes xy — yx. With this notation a ring 4 is alternative if
(v, x,x) = (x,x,y) = 0forall x, yin 4 and Jordan if [x, y] = (x?, y,x) =0
for all x, y in 4. The nucleus, N(A), of an arbitrary ring 4 is defined by

NA) ={n€ Al(n,x,v) = (x,n,9) = (x,y,n) =0V x,vy € 4}.

Recall that if 4 is an alternative ring then the Moufang laws

(1) [ax)yle = a(xyx)

(2) xly(xa)] = (xyx)a

(3) (xa) (yx) = x(ay)x
hold for all x, v, @ in A.

We shall rely heavily on the fact that if H(4,, J,), » = 3, is Jordan then
there is a one-to-one correspondance between the j-invariant ideals I of 4
and the ideals of H(A4,, J,) given by I — I, N\ H(4,, J,). Also an ideal
K =1,MNHA, J,) of H(4,, J, satisfies K2 = 0 if and only if
I? = 0 [2, p. 129] (K" denotes all sums of monomials of degree = in the
Jordan ring K). It is also clear from the argument in [2] that K-* = 0 if and
only if I* = 0.
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1. The prime radical P. If 4 is an associative ring then it is well known
that P (4,) = P(4),. In this case J, is an involution acting on the associative
ring 4, so that by [1] we have P(H(4,, J,)) = H(4,, Jo) M P(4,). Thus we
have P(H(A4,, Jo)) = H(A,, Jo) N P(4),if n > 3. In this section we prove
the same result for » = 3; i.e., when A is an alternative ring with identity
whose symmetric elements lie in its nucleus.

Lemyma 1. If A is an alternative ring with tnvolution j, then A is semiprime if
and only if A is j-semiprime.

Proof. Clearly, if 4 is semiprime then it is j-semiprime. Conversely, if 4 is
j-semiprime then it has no nilpotent j-invariant ideals. If 4 is not semiprime
then it contains an ideal I ## 0 such that /2 = 0. Then I 4+ [7is a j invariant
ideal of 4 and (I + I7)2(I + I7)? = 0. Since squares of ideals are ideals we
have (I + 17)? = 0 which implies that / + [7 = 0. Thus, I is zero, a con-
tradiction.

The following lemma follows easily from Lemma 1 and the one to one corre-
spondence between Jordan ideals of H(4,, J,) which cube to zero and ideals
of 4 which cube to zero.

Lemma 20 If H(A4,, J,) @s @ Jordan ring, then H(A,, J,) is semiprime if und
only if A is semiprime.

THEOREM 1. If A 1s @ ring with identity and J, a canonical involution on A,
for n = 3 such that H(A,, J,) 1is a Jordan ring, then

P(H(A,, Ja) = H(4,, Jo) M P(4),.

Proof. As mentioned earlier we need only concern ourselves with the case
n = 3 for which 4 is an alternative ring with involution j whose symmetric
elements lie in its nucleus. Now, for any ideal K of 4, (A4/K); = 4;/K,.
Therefore, if K is a j-invariant ideal of 4 then the involution j determines a
natural involution on 4 /K and since 4 is 2-torsion free we have

4) H((A/K)s J,) =X H(A43/Ky, J,) =< H/(HN K3)

where H denotes H (43, J,) for convenience. Let K = P(A4). Since 4/P(A)
is semiprime we conclude from Lemma 2 that H(4;/P(A4)s, J.) and hence
H/(H M P(A4)3) is a semiprime Jordan ring. But this implies that P(H) C
HNP(A)s,.

Conversely, by the 1 — 1 correspondence between ideals of H and j-invariant
ideals of 4 we may assume that P(H) = H (M Bj; for some j-invariant ideal
B of 4. Then by (4) we have

0 =P(H/(H M By)) = P(H((A/B)s, Ja)).

Therefore, by Lemma 2 P(4/B) = 0 from which it follows that P(4) C B.
Thus P(4;) N H C B3N H = P(H) to complete the proof.
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2. The strongly semiprime radical SP. An element x of an alternative
ring 4 is called an absolute zero divisor if xAx = 0. Similarly an element x of a
Jordan ring J is called an absolute zero divisor if JU, = 0 where U, = 2R2 — R,
for R, the multiplication operator in J, ¢R, = ax. An ideal B of a ring
R (alternative, Jordan) is called sirongly semiprime if R/B contains no absolute
zero divisors. The strongly semiprime radical, SP(R), of R is the intersection
of all the strongly semiprime ideals of R. Clearly R/(SP(R)) is strongly
semiprime. If R is associative then P(R) = SP(R). If R is Jordan then
P(R) € SP(R) [1] and if R is 3-torsion free alternative then P(R) =
SP(R)[4]. Finally it is shown in [4] that if R is a 2 and 3-torsion free alternative
ring with involution and S is the Jordan ring of symmetric elements, then
P(S) = SN P(R).

If 4 is an associative ring then by [1] we have SP(H (4,,J,)) = H(4,,J.) M
SP(A,). Thus SP(H(A,, J.)) = H(4,, J,) NYSP(A4),. Hence, if # > 3 and
H = H(4,, J,) is Jordan then SP(H) = H N\ SP(A4),. We shall extend this
to the case in which 4 is a 3-torsion free alternative ring with identity. Thus,
throughout this section we assume that 4 is 3-torsion free and that H (43, J,)
is a Jordan ring. Hence A4 is alternative with 1 with symmetric elements in the
nucleus.

Lemma 3. If A is a 3-torsion free alternative ring then SP(H (A3, J,)) 2
H(As, J2) N SP(A)s.

Proof. By our earlier remarks P(H) C SP(H) and since 4 is 3-torsion free,
P(4) = SP(4). By theorem 1, P(H) = H(M P(A); Putting these facts
together we have

SP(H) 2 P(H)y = HNP(A); = HNSP(A),.
We shall prove the inverse inclusion to Lemma 3 by a series of lemmas.

Levmwma 4. If 4 strongly semiprime and X = (x45);14, 7 = 1,2, 3 1s an clement
of H(As, J,) such that H(As, J,) Uy = 0 then x;; = 0 for 1 = 1, 2, 3.

Proof. Let s € S, the set of symmetric elements of 4. Then

sa; 0 0
o= 0 0 0])€ H(4s o)

000

and by hypothesis §i; Uy = 0. A direct calculation shows that the (1, 1) com-
ponent of §i, Uy is
(say) Uz“ + %[(5(11, X1g, X21) — (%12, X1, SA1)]
+ 3[(sa1, x13, x31) — (%13, X531, Sa3)].

Since A is alternative (or since sa; € N(A4)) each of the last two terms is
zero. Therefore (sa1)U;, = 0. Also, since X ¢ H(A4;, J,) it follows that
X = Yawhere V = (y;) € H(43), the set of symmetric elements of 43 under
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the standard involution (i.e., @ = I) [2, p. 60]. Therefore x1; = yy¢1 and
(sa1) Uy, a, = 0. Consider the involution I, on A where I, :x — a7 '%a;.
Then the set 7" of symmetric elements of 4 under the involution I, is given by
T = {say|s € S}. Thus TU, . = 0.Since yi1 € S, ynay € 1. Therefore, y11a:
is an absolute zero divisor of the Jordan ring 7". But by (4]

SP(T) = TN SP(4).

Since A is strongly semiprime, it follows that SP(1") = 0. Therefore y¢;1 =
x11 = 0. In similar fashion by letting Uy act on $ds = (sas)es and on Zay =
(say)ess and by considering the involutions I, and I,, we may conclude that
Xog = X33 = O

It follows from our proof that any element X of H(A4,, J,) which is an abso-
lute zero divisor is of the form

0 YVi2@2  Yi13G3
X = }—’12(11 0 Vos3
Y1zt Vosae 0

Lemma 5. If 4 1s strongly semiprime and

/ O Vil 0
X = ky12(11 O Vo33
Yist1  Yasae 0

is an absolute zero divisor of H (A3, J,) then v;Sy:; = 0 for1,j =1, 2, 3.

Proof. Since N(A4) is a subring of 4, sa, € N(A4) for every s € S. Thus, it
follows that the (2, 2) component of 1 Uy can be written as 2F 120151120y
s - . A
and its (3, 3) component as 2¥3¢15¢1y13a3. Also the (3, 3) component of S, Uy
18 2¥ 930052V, Therefore, since A is 2-torsion free we have ¥a ¢y, = 0
forall 7 = j. Since ¢, is invertible this reduces to 7, ;sa v ;; = 0. If we multiply
on the left by ays" and on the right by s'¥;,¢; for any s’ € S we obtain
(@i’ Via)s(@yis'yia) = 0. Now apys'y,a; € S. Therefore it is an
absolute zero divisor of S. But S is strongly semiprime since 4 is. Theretore
we have «y;;5,,¢, = 0 for all © < j. Since «; is invertible it follows that
¥:3:55:; =0 for all 7« = j. Continuing, we obtain ¥,;5v,,59;5v,; = 0 for any s € S.
Thus since §,;8v:; € .S it follows that §5,;Sy;; = 0 for all < < j. But since

Vi = v we have v;,.59;; = 0 for all © < j. Thus, in all cases v;;59,; = 0.

LemMMA 6. Under the hypothesis of Lemma 5, v;,;Syi; = v + ¥4, = 0 for
1,7 =123

Proof. We first show that y,;Sy,;; = 0 for all 7, 7. By hypothesis
[(X(la)(’,lz -+ (X(Ll)(hl] UX =0

since for any x in 4 (xap)err + (Xay)es € H(As, J,). Thus the (2, 1) com-
ponent of [ (xaz)e1s + (Xa,)eq] Uy is zero for each x in A. Now, since v ;594 = 0
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for all 7, j and since «, € S a straightforward computation gives

(5)  [(&ar) (y1202) + (Froa1) (xa2)] (Fraar) + (Fraar)[ (xaz) (F12a1)
+ (Yroae) (Far)] 4 [(Far) (Yisas)] (Frsar) + (vesas)[ (Fasae) (Rar)] = 0.

Now, let x = a17'sas™! for s € S. Then x € N(4) and since y;;S¥,; = 0 the
(2, 1) component reduces to 2¥125512¢1 = 0. Thus, 125912 = 0 for each s € S
so that 5125912 = 0 = ¥12Sy1.. In similar fashion by considering

[(xas)ers + (Rai)es:] Uy

and [(xas)ess + (Zas)ess) Uy we get v;Sy;; = 0fore,j =1, 2, 3.
For the second part of the lemma consider

SUT/,','+17,']' = SUI/,‘J‘J/,‘]' + SUl/i]' + SU77,']' = yiisj_}i]' + yijsyif
+ 35SV + yiuSyey = 0

by our previous result and Lemma 5. Since y;; + 3;; € S, if ¥4 + 54, # 0 we
would have a contradiction to the fact that 4, and consequently S, is strongly
semiprime. Therefore v;; + y,; = 0 for all 4, j.

We are now able to prove the main theorem of this section.

TaEOREM 2. If A is a 3-torsion free ring with identity and J, a canonical
wnvolution on A, for n = 3 such that H(A,, J.,) is a Jordan ring, then
SP(H(Am Ja)) = H(Am Ja) m SP(A)I%

Proof. If n > 3 then A4 is associative and we are done as mentioned earlier.
Assume now that # = 3 so that 4 is an alternative ring. In view of Lemma 3 it
is sufficient to prove that SP(H (43, J.)) € H(A4s, Jo,) M SP(A);. We first
establish the result in the case in which 4 is strongly semiprime. In this
case, if H(A4s; J,) is not strongly semiprime then there is an element
0= X ¢ H(As, J,) such that H(43, J,) Uy = 0. Then the results of Lemmas
4, 5, and 6 apply to

0 Viea  Yi13ds
X = 5’12@1 0 Vosls
Vizd1  Ya3e 0

By Lemmas 5 and 6, y4; + ¥i; = ¥494 = 0. Thus y,;* = 0 for all ¢, j. Since
Y = —Yi; (5) reduces to:

6) [(12a1) (xaz) — (%ai) (y12a2)] (y1201)
+ (y12a1)[(waz) (¥1201) — (Y12a2) (Ra1)] — [(Ra1) (y1sas)] (Visa1)

— (y2303)[y2302) (Xa1)] = 0

for any x € 4. :
In (6) consider the term [(&a1) (¥12¢2)] (¥1261) = [(((&a1)yiz2)as)yiz]a; since
a1, as € N(A). But by (1), [(((Za1)yi2)a2)yizlar = [(Xa1) (y12a2y12)]ar. But by
Lemma 6, yisa:yie = 0. Therefore [(Xa1)(yi2a2)](y12¢1) = 0. Similarly
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[Ear) (isas)] (yisar) = 0. Also  (y12a1)[(y12a2) (Ra1)] = (Yi2a1) [y12(e2Far)] =
yiolar[yiz(ae®ar)]] = (yiearyi2) (@2Xa,) by (2). Therefore, by Lemma 6,
(_’ylztlrl)[(ylgaa) (55‘(11)] = 0. Slmllarly, (yzg(l;;)[(yzg(lz) (9_6(11)] = 0. ThUS, (G) re-
duces to 2yis(a1xas)yiea; = 0. Since A is 2-torsion free and «; and as are
invertible this becomes y;54y12 = 0 so that by hypothesis y12 = 0. In similar
fashion we get y;; = 0 for all 7, . Thus X = 0 and we have established that 4
strongly semiprime implies that H (43, J,) is strongly semiprime.

Assume now that 4 is not strongly semiprime. Since 4/(SP(4)) is strongly
semiprime it follows from our previous remark that H((4/(SP(4)))s, J,) is
strongly semiprime. But, as in the proof of theorem 1,

H((A/(SP(A)))s, Ja) = H(A4s/(SP(A4))s, Ja)
= H(As, Ja)/ (H (A3, Jo) N (SP(4)y).

Therefore H(A3, J,)/(H (A3, Jo) M (SP(A);) is strongly semiprime. It follows
from the definition of the strongly semiprime radical that SP(H (43, J.)) ©
H(A43, J,) M SP(A4)s;, completing the proof.

It is not known in general whether the prime radical and the strongly semi-
prime radical coincide for Jordan rings. In the case of a Jordan matrix ring,
however, we have:

CoRrROLLARY. If H(A,, J.), n = 3, is a Jordan matrix ring determined by a 2

and 3-torsion free ring A with identity then P(H(A,, J,)) = SP(H(4,, J.)).

Proof. If n = 3 then A4 is alternative and since 4 is 3-torsion free P(4) =
SP(A). Thus, SP(H(As, Jo)) = H(As, J) NSP(A); = H(As, J,) N P(A4);
= P(H(A43,J,)) by Theorems 1 and 2. In case # > 3 then 4 is associative and
the same proof works without the assumption of 3-torsion freeness.

3. The Levitzki radical L. Recall that a ring is called locally nilpotent if
every finitely generated subring is nilpotent. The Leviizkt radical, L(A4), of a
ring A (associative, alternative, Jordan) is the maximal locally nilpotent ideal
of A. L(A4) contains all locally nilpotent ideals of 4 and 4/L(A) is Levitzki
semisimple. It is known that if 4 is a 2-torsion free associative ring with involu-
tion * and S is the set of *-symmetric elements of 4 then L(S) = SN L(4)
[3]. We first treat the easy case in which 4 is associative. In this case we need
not assume that 4 contains an identity element.

LeEMMA 7. If A is an associative ving then L(A4,) = L(A), for any positive
integer n.

Proof. L(A4) is a locally nilpotent ideal of 4. Therefore, if C is a finitely
generated subring of L(A4), generated by

n n
M, = Zl ¥1i€0jy « « + M, = 21 Thij€ 15y

1, J= i, =

https://doi.org/10.4153/CJM-1979-020-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-020-1

RADICAL PROPERTIES 195

then the ring D generated by all the 7,55, t =1,...,h;1¢,7=1,...,nisa
finitely generated subring of L(A4). Therefore there is a positive integer m such
that D™ = 0. But then C™ = 0 and L(4), is locally nilpotent. Therefore
L(4), S L(4,).

For the converse assume first that 4 contains an identity element. Then if

121 bye; € L(4,)
1=

it is easy to see that b;; e;; € L(4,) for every 1, j. Therefore e1,(b;; ¢ij)en =
bs; en € L(4,) for every 1, j. Therefore any finitely generated subring of
(bi; e11), the ideal of 4, generated by b;; en, is nilpotent. In particular, if
1, 79, . . ., ry are elements of (by;), the ideal of 4 generated by b;;, then the
subring of 4, generated by rie11, 72€11, . . ., 7ze11 is nilpotent. Therefore, the
subring of 4 generated by 71,7, . . ., rris nilpotent and (b;;) is locally nilpotent.
Therefore, b;; € L(A4) for every 1, j. Hence > b;e;; € L(4), and L(4,) C
L(A),.

If A does not contain an identity element then if we imbed 4 into a ring
A’ with 1 in the usual way then it is straightforward to see that L(4) =
ANL(A")and L(4,) = A, N\ L(A’,) (thisis also true as a consequence of the
fact that the Levitzki radical is hereditary on associative rings). Therefore
L(4,) = 4, N L(A",) = 4, L(A"), = (AN L(A")), = L(4),.

CoroLLARY. If A 1s an associative ring with itnvolution j and H = H(4,, J,)

is a Jordan matrix ring determined by the canonical 1tnvolution J,, then L(H) =
H N L(4),.

Proof. A, is an associative ring with involution J,. Therefore by [3] L(H) =
HNL(A,) = HN L(A),.

If A is an arbitrary ring and xi, xo, . .., x, are elements of 4, denote by
[x1, X2, ..., %,] the subring of 4 generated by xi, xs, ..., x,. If H(43, J,)
is a Jordan matrix ring then denote by J{x1, xs, . . . , x,,] the Jordan subring of
H (A3, J,) generated by the elementsx [ jk] fors = 1,2,. .. ,nandj, k= 1,2,3.

The following technical lemma will be useful in extending the previous result.

LEMMA 8. Let A be an alternative ring and let H(As, J,) be a Jordan matrix
ring. Then if My 1is a monomial of [x1, X2, . . ., X,] of degree k it follows that
Mlig] € Jlxr, ..., 0" for ¢ 5 7.

Proof. We use the fact that if x, y € 4 and <, j, [ are all different then
2x[4j] - y[jI] = xy[il] and proceed by induction on k. If & = 1 the result is
certainly true. Suppose true for any s < k. Now either M, = Mx, or
My = x,M for some x, and a monomial M of degree & — 1 or M, = MM,
wheres < kandt < k. If M}, = Mx,thenif,j, and [ are all different, M ,[j] =
Mx [17] = 2M[4d) - x[lj] € J*¥1J = J* by the induction hypothesis.
Similarly if M, = x,M. Finally if M, = M M, then M[i] = MM [i] =
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2M [4l] - M [lj] for 2,1, and j all different. By hypothesis M € J *and M, € J %
Therefore in all cases M € J[x1, X2, . . ., %) "

TuroreMm 3. If A is a ring with identity element and J a canonical involution
on A,, n = 3, such that H = H(A,, J,) ts a Jordan ring, then L(H (4,, J,)) =
H(A4,, Jo) M L(A4),.

Proof. If n > 3 then A is associative so the result is true by the corollary to
Lemma 7. Suppose then that » = 3 so that 4 is alternative. It is apparent that
HN L(4), € L(H) as in the proof of Lemma 7. For the converse first note
that L(H) = H M B, for some j-invariant ideal B of A. Also B is a locally
nilpotent ideal of A. For if x1, x2, ..., x,areelements of B then J{xy, x2, ..., %,]
is a finitely generated subring of L(H). Hence

][xly LTI ,x"]'k =0

for some k. Thus, by Lemma 8, if M is a monomial of [xy, xs, . . ., x,] of degree
k then M, = 0. Hence [x1, xs, . . ., &, is nilpotent of degree < k. Therefore B
is locally nilpotent and B € L(4). Hence, we get L(H) € HMN L(4), to
complete the proof.
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