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Abstract

In p-adic Hodge theory and the p-adic Langlands program, Banach spaces with Q-coefficients and p-adic Lie
group actions are central. Studying the subrepresentation of G-locally analytic vectors, W2, is useful because W12
can be studied via the Lie algebra Lie(G), which simplifies the action of G. Additionally, W often behaves as a
decompletion of W, making it closer to an algebraic or geometric object.

This article introduces a notion of locally analytic vectors for W in a mixed characteristic setting, specifically
for Z;,-Tate algebras. This generalization encompasses the classical definition and also specializes to super-Holder
vectors in characteristic p. Using binomial expansions instead of Taylor series, this new definition bridges locally
analytic vectors in characteristic 0 and characteristic p.

Our main theorem shows that under certain conditions, the map W +— W acts as a descent, and the derived
locally analytic vectors Rfa(W) vanish for i > 1. This result extends Theorem C of [Por24], providing new tools for
propagating information about locally analytic vectors from characteristic 0 to characteristic p.

We provide three applications: a new proof of Berger-Rozensztajn’s main result using characteristic 0 methods,
the introduction of an integral multivariable ring X;}a in the Lubin-Tate setting, and a novel interpretation of the
classical Cohen ring AQp from the theory of (¢, I")-modules in terms of locally analytic vectors.
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1. Introduction

In p-adic Hodge theory and in the p-adic Langlands program, one often encounters a Banach space W
with Q,-coeflicients endowed with an action of a p-adic Lie group G. It has proven useful to study the
subrepresentation of G-locally analytic vectors W!* ¢ W. One reason for this is that W'® has an action
of the Lie algebra Lie(G), which is often simpler to study than the action of G. Another reason for this
usefulness is that W' sometimes behaves as a decompletion of W which is then closer to being of an
algebraic or geometric nature.
As a classical example we consider Sen theory. Let Q}°

tained by adding all p-power roots of unity to Q,, K be a finite extension of Q,, K% = KQ;,YC,
Hg = Gal(K/K®°) and G = Gal(K®*/K) which is isomorphic to an open subgroup of Z;. We also
let C,, be the completion of 6,,. If X is a smooth proper variety over K, let V = H} (X%, Q). Then V

denote the cyclotomic extension ob-

is a representation of Gal(K/K), and we set
W =(C, &q, V) .

It can then be shown (see, e.g., Théoréme 3.4 of [BC16]) that W' is a vector space over K° to which
W descends. Furthermore, the action of Lie(G) = Z, gives a linear operator, called the Sen operator,
which acts on W3, Its eigenvalues belong to Z and as a set are equal to the negatives of the Hodge
numbers {hi’j}i+j=n of X.

One issue with the classical definition of G-locally analytic vectors is that it is available only in the
setting of Q,-coeflicients, while one would want to consider spaces W with Z,, and F,-coeflicients as
well. Nevertheless, it is clear that some phenomenon of this kind exists. For example, a Sen operator
in a mixed characteristic was recently introduced in work of Bhatt-Lurie ([BL22]). It is unclear how to
interpret it in terms of locally analytic vectors. In another direction, Berger and Rozensztajn introduce
in ([BR22], [BR24]) the notion of super-Holder vectors, which serve as an analogue of locally analytic
vectors in characteristic p.

In this article, we focus on the notion of locally analytic vectors for W with coefficients in a mixed
characteristic setting, namely for Z,-Tate algebras. This notion generalizes the classical notion and
specializes to the super-Holder vectors notion of Berger and Rozensztajn in the characteristic p setting.
The basic idea is to use binomial expansions rather than Taylor series expansions to define analytic
functions. This idea is well known to the experts, introduced, for example, in [Gull19], [JN19], and
[BR22]. One then defines a locally analytic vector to be an element w of W whose associated orbit map
orb,, : G — W is locally analytic.

Why use binomial expansions instead of Taylor series expansions? First, we lose nothing by doing
this: in characteristic 0, it is known by the Amice theorem [Ami64] that locally analytic functions are
the same as those with exponentially decreasing binomial expansions. Second, new analytic functions
can be produced in mixed characteristic and characteristic p. This can be motivated by the example
R = F,((X)) with the action of Z, given by a(X) = (1 + X)“ (as considered in [BR22]). We would
like to consider such a function as analytic. Writing a — a(X) = >,,>0 (Z)X ' we see it has a binomial
expansion in a with the coefficients X" tending to O exponentially in the topology of F,((X)). On
the other hand, it does not have a Taylor series expansion: indeed, in characteristic p, it is easy to see
that Taylor series expansions only give rise to locally constant functions on Z¢, since they must factor

through F4.
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One nice feature of this new definition is that it allows to link locally analytic vectors in characteristic
0 and characteristic p. A template for this situation is as follows: we are given a module A with
coefficients in a Z,-Tate algebra so that A=A/pisalsoaZ p-Tate algebra, together with an injection
of A[1/p] into a Q,-algebra B. If A and B are endowed with G-actions, we have maps A" — B!

—I
and A" — A" Now Bl is a Q,,-vector space and thus can be studied via p-adic analysis and the
—1
action of Lie(G). If the map A" — A s sufficiently well behaved (e.g., if it is surjective), one can

use the inclusion of A* ¢ B to study Zla and thus study the analytic vectors in a characteristic p
object using p-adic analysis in characteristic 0! A template example for this would be to take A =
Z, [[X"/P"11(p/X)[1/X], the ring of functions of a preperfectoid pseudorigid disc, A = F, ((x'/P7y)
and B = Zp[[Xl/I’m]Kp/X, X/p)[1/X] = Zp[[Xl/Pw]](p/X, X/p)[1/p] the ring of functions on a
preperfectoid annulus, with the action of Z, given by a(X) = (1 + X)“. The key point is that topology
on B is both X-adic and p-adic, so it can be linked to A on the one hand, and studied via p-adic analysis
of B' on the other. A very similar example will be studied in our first application in §4.

The main goal of this paper is to analyze the extent to which W +— W' acts as a decompletion.
We suppose W is a finite free module over a Z ,-Tate algebra R endowed with a semilinear action of a
compact p-adic Lie group G. The main result of this article is the following.

Theorem 1.1. Suppose that the ring R satisfies the Tate-Sen axioms (TS1)-(TS4) (see §3.2).
Then:

1. The natural map
R®pu W — W

is an isomorphism.
2. If moreover the Lie algebra Lie(G) is abelian, the derived locally analytic vectors Rfa(W) of W are
Ofori > 1.

This theorem is a generalization of Theorem C of [Por24]. The basic idea of the proof is in essence to
take a “fiber product” of the original method of [Por24] and the mixed characteristic results of [Por22b].
As Theorem C of [Por24] has been applied in several subsequent articles, we hope the current result
will be useful in a similar way.

Note that the vanishing of Rlla(W) is precisely the type of behavior that will allow us to propagate
information regarding locally analytic vectors along reductions. Indeed, if W lives over some mixed
characteristic Z,-Tate algebra such as Z, [ [ X]]{p/X)[1/X], we also have the F ,-Banach space W and
an exact sequence

0—>W£>W—>W—>O.

After passing to locally analytic vectors, the vanishing of Rlla(W) implies that W& — Wla is surjective.

We give three applications of our results. Our first result is a new proof of the main result of
[BR22]. There, Berger and Rozensztajn show that for the action of G = Z;(, on the X-adic completion of
U F,((X 1/P"Y), taking G-locally analytic vectors undoes the X-adic completion. We show how to de-
duce this using characteristic 0 methods, as sketched above. Our second application is the introduction
of an integral multivariable ring AH" in the Lubin-Tate setting, together with an appropriate overconver-
gence result for (¢, I')-modules. Previously, such a ring was only available rationally with pro-analytic
vectors (as in [Ber16]). Our third and final result is a surprising description of the classical Cohen ring
Aq, appearing El the theory of (¢, I’ )—Lnodules in terms of locally analytic vectors. We show how to
endow the ring Aq, of Witt vectors of Q) with the structure of a mixed-characteristic Fréchet space,
and its ring of locally analytic vectors is ¢~ (Aq,,). This reveals an analogy between ¢~ (Aq, ) and
the ring U, Q,,({pn)[[1]] of locally analytic elements in BJ,, and suggests a way to give a lift of the
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field of norms beyond the Lubin-Tate setting, a question studied by several authors and motivated by
Iwasawa theory (see, for instance, [Ber14], [Poy22]).

1.1. Structure of the article

In §2 we give the definitions and basic results regarding locally analytic vectors and functions in mixed
characteristic. In §3 we prove the main result of the article. The reader may desire to skip this section if
they are only interested in using the main result. Finally, in §4 we give three applications of our methods.

1.2. Notations and conventions

1.2.1. Valuations
By a valuation on a ring R, we mean a map valg : R — (—o0, o] satisfying the following properties for
X,y € R:

(1) valg(x) = oo if and only if x = 0 (i.e., R is separated);
(2) valg(xy) = valg(x) + valg(y);
(3) valg(x +y) > min(valg(x), valg(y)).

This definition naturally extends to valuations on an R-module M. We set M* := M¥am=0_If
f : X — M is a function, we set valig (f) = infyex valps (f(x)) for the operator valuation.

1.2.2. Z,-Tate algebras

A Z,-Tate algebra is a Tate ring (see Definition 2.2.5 of [SW20]) which is a Z,-algebra, such that
the map Z, — R is continuous. We can always endow such a ring with a valuation valg by taking
some topologically nilpotent unit @ € R and letting valg (x) = inf,{w”x € R*} for some open subring
R* C R. However, it sometimes happens that there is a more natural valuation inducing the same
topology which does not arise in this fashion, such as the X-adic valuation on F, ((X 1/P™)) In any case,
whenever R is a Z,-Tate algebra endowed with a valuation valg, we shall always assume:

(1) There is a topologically nilpotent unit @ € R such that for any R-module endowed with a valuation
we have valy; (wx) = valg(w) + valys (x) for x € M. In particular, we always have valg (1) = 0, and
(2) We have the inequality! valg(p) > 0.

1.2.3. Miscellaneous
Given n € Z4 we write |n| = max;<;<4 |n;| and || = ¥, ;<4 |1 For a real number a we denote by
La] the largest integer which is smaller than or equal to a. Finally, for x € RY we let | x| = Zflzl [xi].

2. Locally analytic functions and vectors in mixed characteristic

In this section we introduce the spaces of functions and analytic vectors that will appear in this article.

2.1. Locally analytic functions on Zf,

Let R be a Z,-Tate algebra with valuation valg inducing its topology (recall our conventions regarding
valuations in §1.2). Let M be an R-module endowed with a compatible valuation valy,.
In particular, when M = R, we have the function from Z;,’ to R given by

X = (X1, .., xq) P (i) = (2) Cee (j:l)

1This condition is not automatic for a Z,-Tate algebra, as can be seen in the example R = Z, [ [ @ ]]( p2lw)[l/w].
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Given a function f : Z;’, — M and an element y € Z¢, we write Ay(f): Z;l, — M for the function
given by Ay (f)(x) = f(x +y) — f(x). The operators Ay and A, are commuting for y,z € Z‘If. We set
AT (f) for the n-th application of A to f. Given a d-dimensional vector n, we write A™ = A'l” 0...0 Azd ,

where A = Ay, for 1 € Zg being 1 on the k-th copy of Z, and O elsewhere. Setting (—1)2 =
(=1)mi+-+ma it can be checked that

AL (x) = Y (1) (?) fli+x)

i=0

and that for m < n one has Am(( ) = (%)

n—m.
For this section it will also be important to introduce for z € ZZ the shift operator sh, given by
shy (f)(x) = f(z+x). It commutes with the Ay, and we have the identity

A£+X(f)=(ShX°A£)(f)+Ax(f)- (D

Recall §1.2 for the notation valy).

d . 7d
Lemma 2.1. Let y € Zj,. Then for every f : Zj, — M we have
valy (A}(f)) 2 min (Val Ay,

Proof. Using continuity, we may restrict to the case y € Zio. By writing y as a sum of 1;’s and applying
the identity (1) inductively, we may write

Ay=>" ajshy A,

J

for some a; € Z, z, € Z? and 1 < i; < d (the i; may repeat). Raising this to the n-th power, we
obtain a writing of A, as a Z-linear combination up to shifts of A™’s where for each m we have
>.m; = n. For each such m, choose the maximal coordinate m;. For every g : Z, — M one has
ValOp (Am(g)) > Valop (Am' (2)); applying this observation to shifts of f and using that m; > [n/d], this
concludes the proof O

We write C°(Z<, M) for the continuous functions from Z p to M. The following version of Mahler’s
theorem shows each continuous function has an expansion in terms of the ().

Theorem 2.2. The following are equivalent for a function f : Z;’, — M.

1. We have f € C%(Z4,M).
2. The function f has an expansion of the form f(x) = Zﬂezdo an(f) (%) with valpys (ap(f)) — oo as

In| — oo.
Furthermore, under these equivalent conditions we have a, = A"(f)(0) and Valig( f) =
infez., valpys (an).

Proof. We follow the proof of Bojanic [Boj74], see also Theorem 1.13 of [BR22].

First, suppose f has an expansion of the form f(x) = an( ) with a, — 0. Then f is continuous
since it is the uniform limit of continuous functions. We now explain why do we have in this case the
equality

val?\g(f)z inf valy (an).
neZsg
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Indeed, for each n, the element a, = AZ(f)(0) is a sum of elements in Im(f), which shows
inf valps (f(x)) < inf, valp (a,). The inequality in other direction is clear given the existence of the
expansion.

Conversely, suppose f is continuous. We set a, = A%(f)(0). It suffices to show that a, — 0; indeed,
with that given, the function f and the one given by g(x) := X, a,l(fl ) agree on Zio’ hence are equal.

Since Z;’, is compact, the function f is uniformly continuous. Fix s > 0; then there exists r > 0 such
that if val(x —y) > 7 then valp, (f(x) — f(y)) = sval(p) + valig (f). The same statement, with the same
t, holds for any AZ(f). To conclude the proof, it suffices to show that if |n|. is larger than sp’ then
val(a,) > sval(p) + Valig (f).

Now given a function g we have

AP () (@) = g(x+p' 1) ~ 8 () +p - y(@)

for some element y(x) with valps (y(x)) > Valiz (g). Taking g to be a function of the form AZ(f), we
obtain val(g(x + p'1;) — g(x)) > sval(p) + Valiz (f) and so for every n and k we have the inequality

Valj)‘f,’ (Aprlk (A%(f))) = min(sval(p) + valj)\g (f),val(p) + Valj"f} (AZ(f))). 2)

Now if |n|e > sp’ then the k-th coordinate of n is larger than sp’ for some k. Applying (2)
consecutively to

AR=sP' 1k (f). AR=(s=Dp 1k (s AP 1k (f)

shows Valig (A%(f)), hence also a,(f), has valuation at least sval(p) + Valig (f). This finishes the
proof. O

We now give several definitions for analytic functions on Zg and explain the relationships between
them. See also [BR22], [BR24], §3 of [Gul19], and §3.2 of [JN19] for similar definitions.

Proposition 2.3. Let A, u € R. The following are equivalent for a function f : Zg - M.

1. The inequality valp (an(f)) > p*- pltiogs(nl)) 44y holds for every n e Z‘;O.
2. The inequality valy, (A7 (f)) > p*- plogs I 41 holds for every 1 < i < d and n € Zs.

Proof. To show 1 implies 2, we may assume n = p*. Write f(x) = Y, aﬂ(%) (as we may according to
2.2), then B

for which each term has val > p* - pX + u by assumption.
Conversely, choose i with n; = |n|e. Let n” be n with the i-th coordinate removed. Then

an(f) = A(£)(0) = (AT (A% (£))(0)).

As A (f) is a Z-linear combination of shifts of f, we obtain that an(f) is a Z-linear combination of
AT (f) (1) for various ¢ ;. Each of these has valuation > p Log, (ni) 11y = pllogy (Inl)] )y ag required. O

Definition 2.4.

1. Let ¥4+ (Z%, M) be the submodule of functions satisfying any of the equivalent conditions of
Proposition 2.3. By condition 1 and Theorem 2.2, it is contained in C*(Z<, M).
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2. Let C’l'a“(Z‘lf, M) c C°%(Z%, M) be the submodule of functions f satisfying valy, (an(f)) - plin| —
o0, We endow it with the valuation

vala(f) = inf(ay(f) = Lp*n))

(recall §1.2 for the notation | p*n].)

Proposition 2.5. The modules C*™*H (Zg, M) and C’l'a“(Zz, M) are stable under the shift operator sh;
forany z € ZZ.

Furthermore, the action of ZZ on C’l'a“(Z;’,, M) given by shifts is continuous and each element of ZZ
acts as an isometry.
Proof. For C*4H(Z% M) the statement follows from Proposition 2.3. We now show the statement
holds for C**(Z<, M). Suppose it were known for shifts by elements of Z<. Let z € Z% and let
f e Ct™(Z<, M). As f is uniformly continuous, we can find some m so that valp, (f(x +y) — f(x) > 1
if val(x — X) > m. Choosing z,, € Z4 with val(z — z)) > m, we see that Val(]’\g (shz(f) —_shéo(f)) > 1
and sh;, )( f) € C**™(Z<, M) which implies sh (f) € cta(Z4, M). This argument also shows the
action of Zg on C’l'an(Zg, M) is continuous (provided we show it exists). We thus reduce to the case
where z € Z4, which allows us to reduce further to the case z=1;for 1 <i < d. Finally, we have
an(shy; (f)) = an(f) + ans1, (f) which shows shy, (f) € ctan(zd M.

It remains to show each element of Zg acts as an isometry on C’l'a“(Zjl,, M). We may reduce again
to showing that sh;, acts as an isometry. To show this, take f € ctan(z4 M) and let n,, be maximal

with val, (f) = valpy (an, (f)) — Lp/lgoj). Then valps (any+1,(f)) > valy (ay,(f)), and so the formula
an(shy; () = an(f) + aps1, (f) shows valy(shy, (f)) < valy(f). Now by using the uniform continuity

again, we know that for p* for k sufficiently large we have val(shpky, (f)) = vala(f). Hence the
inequalities

valy(f) = vali(sh,u, () < vala(shope_iy1, (/) < ..  vala(shy, () < vala(f)
are all forced to be equalities, which shows val,(shy, (f)) = val,(f), as required. O

Lemma 2.6. Let A € R and ¢ > 0. Then there exist | > 0 such that for every f € C**(Z4, M) and for
every 1 <i < dwe have

valy(A ey, (f)) 2 vala(f) +c.

Proof. Let! > 0 be arbitrary. We have the Vandermonde identity

A"”"((i)) ) 2‘ (n —)_Cﬂi)(l;l)'

j=

Writing f(x) = X, ax (3,), the identity above shows that

Ay, (f) = Zé Anjli (Ijl))(i)
nj=1 B

and hence

o !
A%(A L1, ()(0)) = Z Gneils (l; )

=
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From this we get the lower bound

l
valyg (A%(A,r1,(/)(0))) 2 inf (val(age;n,) + val((’;. ))).

On the other hand, by definition we have the inequality
d
valpys (aneji;) 2 ZLP’I(’% +j;;)] +vala(f).
i=1

Putting this all together, we get

vala(A i, (f)) = inf(valag (A%(A 11, (£)(0)) - Lp'n))
= vala(f)+ inf ()~ 14 val((’;.l)»,
Jjz

and so any choice of / which satisfies inf;>1(p?j — 1 + val((’}l))) > ¢ works. O

Corollary 2.7. For every A and A’ there exists an | > 0 such that restriction from Z;’, to plZ,‘ﬁ maps
C’I"‘"(Zg, M) into C¥-" (plZ;l, M).

Proof. Choose any ¢ > p* + 1 and [ > 0 so that the previous lemma applies to ¢ and 1. Let f €

Ctan(Z4, M) a function. We wish to show its restriction lies in C*"(p'Z4, M). We may assume f lies
in C*(Z4, M)*. Let Af, denote the composition A’;“,'l 0..0 AZ,"ld. We need to show that
i, ,

val(AZL(£)(0)) = p*m| — .
Applying the previous lemma successively to f € C’“‘“(Zf,, M)* we get the inequality
valy (A% (f)) = |mle.
By the general inequality valy, (g(0)) > val,(g) we deduce

ValM(Af,(f)(O)) > |mlc > p¥|m| + |m]|
which gives the desired lower bound for the valy, (Af, ()(0)). O

ForA < A’ and u < u’ we have natural maps Cﬂl'an(Z;’,, M) — Cr™(Z4, M) and C*™V-H (24, M) —
C¥-4r(Z4, M). We will often consider filtered colimits along these maps. The following lemma shows
it does not matter much which system we use.

Lemma 2.8. The systems {Ca“"l’”(Zg, M)}a. and {C’“‘“(ZZ, M)}, are cofinal with respect to each
other. Furthermore, up to cofinality the systems do not depend on the choice of basis of Zf,.

Proof. The cofinality of {C*"#(Z3, M)}, and {C**"(Z<, M)}, follows from the inequality |n|e. <
|n| < |n|w/d forn € Zio by condition 1 of Proposition 2.3. The cofinality with respect to a different
basis follows from Lemma 2.1 and condition 2 of Proposition 2.3. O

Definition 2.9. We let C'*(Z¢, M) be the colimit of any of these cofinal systems. Elements lying in this
module are thought of as locally analytic functions of Zi which are valued in M.
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2.2. Locally analytic vectors

Let M be as in the previous subsection and let G be a compact p-adic Lie group of dimension d which
acts continuously on M by isometries. There exists an open uniform subgroup Gy ¢ G by Corollary 4.3
of [DDSMSO03]. We can choose it to be normal. As G is uniform, there exists an ordered basis g1, ..., g4
such that the coordinate map ¢ : (xy, ...,xg) — gf e gzd gives a homeomorphism of Z;’, with Gy.
Set G; = GP' = {gP" : g € Gy}. The G, are open normal subgroups of Gy which correspond the p’ Z;,’
under c. We define C°(Gg, M), C*™H(Gy, M),Ct*(Go, M) and C'(Gg, M) by pulling back along ¢
the definitions of Definition 2.4. We are not claiming all of these are independent of the coordinate
system chosen, but we shall see later the independence of the coordinate system for the most interesting
objects considered here. »

If g € Gy there exists some maximal i so that gp_l € Gy; there then exists some basis of Gy with
gP™" = g1. For this basis, shifting in G by g corresponds to shifting in ZZ by c¢(g). It then follows from

Proposition 2.5 that G acts on C'*(Gg, M) by the formula g(f)(x) = g(f(g"'x)).
Definition 2.10. We define locally analytic elements as follows.

1. Set> MCotan — ctan( G prYGo and pC0-a-bi = can-bp (G M)Co,
2. Let MC012 .= Cla(Gy, M)C0. We have

MG()-]a — llm MG(),/l-an — hm MG(),an-/l,,u‘
—> —_—>
A Au

There is a natural injective map M %2 < M obtained by mapping f : Gy — M to f(1). Thus
we will interchangeably regard M©012 as the submodule of Gg-locally analytic elements in M. Under
this injection, M ©01 is actually stable under the entire G-action (not just the Go-action). Indeed given
m e MO ¢ ¢ G and g9 € Gg, we may write gog(m) = g(g 'gog)(m). Since G is normal,
g0 — g 'gog is an automorphism of G, hence of Zi if we choose for ¢ the Lie algebra coordinates;
this shows that go — (g~ 'gog)(m) is still an analytic function by Lemma 2.8. Hence the same holds for
g0 — g(g7'gog)(m) as g acts on M as an isometry.

Lemma 2.11. If G|, € G are uniform subgroups of G then MGola ¢ ppGola

Proof. Let f € C*™4H(Gy, M). By Lemma 2.1 and condition 2 of Proposition 2.3 we have that f
restricts to C2 - (G}, M) for some A, y’, from which the lemma follows. O

Definition 2.12. The locally analytic elements of M are given by
M"™ = lim M0l
—
Gy
the colimit taken over uniform normal subgroups G of G.

Remark 2.13. We have made the definition above to get a concept of locally analytic vectors independent
of the choice of G, which will suffice for this article. Of course, one already expects M50 to be
independent of the choice of Gy, as is known in the characteristic 0 theory. We plan to address this and
other foundational issues in future work.

Example 2.14.

1. Suppose R = Q,, so that M is a Q,-vector space with valy, making it a Banach space. In this case,
M™ coincides with the usual locally analytic vectors (as defined, for example, in [Eme17]). This is a
consequence of the Amice theorem (Chapitre 3 of [Ami64], see also Théoréme 1.4.7 of [Col10]).

2Even though G does not act on the submodules CY(Go, M) and C*™H (Gy, M) in general, it does act on the larger
space C'2(Gy, M), so it makes sense to speak of Go-fixed points.
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In this setting, the G-action can be differentiated and one gets an action of the Lie algebra Lie(G),
which is a key extra structure. Unfortunately, this action seems to be unavailable outside this special
case. The reason is that when p is the topologically nilpotent unit, one can link functions of the form
(%) and x™ by cancelling out the p-part of the denominator of (7) (see the proof of Théoreme 1.4.7 of
[Col10]). But it is unclear (at least to us) how to do something of this flavor more generally.

2. Suppose M is an F,-vector space. In this case, one checks using Proposition 2.3 that M 12 coincides
with the super-Holder vectors M sh = M defined in [BR24].

3. Suppose we have a perfectoid field K. in characteristic 0 with an action of I' = Z p- Recall that we
can form the tilt E';o which is a perfectoid field in characteristic p, and there is a multiplicative map
denoted § from I?Eo to Keo. Forx € I?E; it is given by x# = limy, e yﬁn where the y,, are any lifts of
x/P" 10 K2,

Claim. Suppose that x# is T-smooth. Then x is locally analytic.

Indeed, without loss of generality, we may assume x is fixed by y and x € I?Ef. The element y?
fixes x!/P, because the action on the p-th roots of x gives a homomorphism Z, — S, withn < p,
and any such homomorphism has to factor through Z/p. Arguing similarly by induction, we see that
(x'/P"™)# is fixed by yP".

Hence, we get

valgy (7" ((1P")) = (x11P")) = valg_([y"" ((x"/P™)) = (x/P")]F)
which is
> min(val(p), val([y”" ((x'/P™)#) — (x/P")#])) = val(p).

Hence val(y?" (x) — x) > p™val(p) which shows that x is locally analytic. This concludes the proof
of the claim. _

For example, take the cyclotomic extension for Ko with T being the cyclotomic group. The tilt Eq,, is
isomorphic to the X-adic completion of Uan((Xl/p")). The element X € EQp has X# = {p—1¢€Ke,
and so is locally analytic. This is of course also easy to check directly. Let us point out that the main
theorem of [BR22] gives the much stronger

E§ = UnF,((x'P")
(Es" in their notation) which shows that taking locally analytic vectors undoes the X-adic completion.
In §4 we shall show how to deduce this result from our main theorem.

In Example 2.14.3 we had a field whose locally analytic vectors were also a field. This happens in
general, as shown in the following.

Lemma 2.15.

(i) The abelian subgroup R™ C R is a subring.
(ii) Letr € R* N R, Thenr~! € R,

Proof. This is similar to argument of Lemma 2.5 of [BC16] which we produce here for the convenience
of the reader. We may assume G = Gy is a uniform subgroup and identify it analytically with ZZ. Recall
that locally analytic functions are those for which the valuation of a,, grows at least linearly with |n|.
For (i), note that for n,m € Zio we have

(i) ' (f,) = X Ck(i) 3)

k<n+m
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for some ¢y € Z. This proves R is aring. For (ii), write orb, (x) = r + 2in0 an( ). We have the identity

oty () = 7 Y (DY a2

Jj=0 n#0
which is still locally analytic. O

Proposition 2.16. Suppose that M is free of rank d over R, and suppose my, ..., mq is an R-basis of M
with g — Mat(g) locally analytic in each coordinate. Then M'* = ®;R' - m;.

Proof. Again, we reproduce the argument of 2.3 of [BC16] for the convenience of the reader. Let a;;(g)
be the coordinates of g — Mat(g). Then g(m;) = 3 ; a;j(g)mj, so each m; is locally analytic. This
proves the inclusion ®;R' - m; ¢ M'. Conversely, let m € M. Write m = ¥, r;m; with r; € R. By
assumption, we may write g(m) = Y; f;(g)m; with each f; locally analytic. Applying g tom = }; rym;,
we get the identity g(r;) = X; bij(g)fj(g), where b;;(g) are the coordinates of Mat(g)™". These are
polynomials in the a;;(g) multiplied by det(g), hence are locally analytic by the previous lemma. O

2.3. Higher locally analytic elements

It will be useful for us to define a derived functor for M — M'2. As M' = h_r)nG C'*(Gy, M)©°, we may
0
extend this definition to i > 0 by setting

R}, (M) := limH'(Go, C*(Go, M)).
Gy

Here we are considering continuous cocycles, taking the inductive topology on C'*(Gg, M) induced
from that of its submodules C**" (G, M).
We shall call these groups the higher locally analytic elements of M. If

O—)Ml—)M2—>M3—>O

is a short exact sequence of submodules in the appropriate category then we claim that we have a long
exact sequence

0— M - My — MY — R\ (M) - R|,(My) = R\, (M3) — ...

This requires some explanation. Using the open mapping theorem in this setting (Theorem 2.2.8 of
[KL11]) we conclude that all the mappings are strict. From here the argument for exactness is the same
as Lemma 2.2.2 of [Pan22].

3. Decompletion

In this section we shall prove decompletion results for G-modules M as in §2 under more assumptions.
Subsection §3.1 will state the results while the rest of the subsections will be devoted to their proof.

3.1. Statement of the results

The setup is as follows. Let (A A+) be a pair of topological rings with A* € A and @ an element
of A*. We assume A is a Tate algebra over Z, with At a ring of definition, and @ a topologically

nilpotent unit. We assume At is @- adically complete, and endow A with a valuation valy making it so
that A* = A20 and val; 1 (@wx) = valz (@) + val3 (x). Finally, we assume that we are given a compact
p-adic Lie group G acting on A by isometries. We let M be a finite free module over A, endowed with a
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w-adic topology and a semilinear G-action. We may choose a G-stable A*-lattice M* C M so that the
topology on M is induced from the w-adic valuation valy; making M* the open unit ball (this valuation
is implicitly needed to make sense of R{a(M ) in what follows).

The main result of this section is the following result which generalizes Theorem C of [Por24].

Theorem 3.1. Suppose that the pair (K, K+) satisfies the Tate-Sen axioms (TS1)-(TS4) (see §3.2). Then
1. The natural map
Aer. M* > M
is an isomorphism. _
2. If moreover the Lie algebra Lie(G) is abelian, we have R| (M) = 0 fori > 1.

Corollary 3.2. Let M be as above, and assume further that G = Z,. Then there exist natural isomor-
phisms

H (G, M"™) = H' (G, M)

Jori > 0.

Proof. As T = Z,, we know that H' (G, M) = HI (G, M) = 0 fori > 2 (see V, 2.2.3.3 of [Laz65]),
while the equality for i = 0 is obvious. So the only nontrivial case is i = 1. Choosing y for a generator
of G, we have an exact sequence

0 — M/H(G, M) =5 M — H' (G, M) — 0.

Taking locally analytic vectors (regarding H*(G, M) and H! (G, M) as having a trivial G-action) we
obtain an exact sequence

y-1 1

0— (M/H(G,M))"* — M"™ - H'(G,M) — R},(M/H* (G, M)).

First, we claim Rlla(M JH°(G, M)) = 0. This is because there is an exact sequence
R} (M) — R}, (M/H°(G,M)) — R}, (H*(G, M))

and both of its outer terms vanish (the Rlla1 term because of the theorem, the Rlza1 term because I' = Z,,).
On the other hand, we claim that (M /H%(G, M))* = M'/H°(G, M). This reduces to showing
R! (H(G, M)) = 0; for this vanishing we need to show that y — 1 acts surjectively on C**(I', H'(G, M)).
Now if 3, a, (%) € C**(I", H*(G, M)) with the coordinate x corresponding to y, then (y—1) (%, an(})) =
Ynan(,",), from which the surjectivity is clearly seen.
Putting the two claims together, we obtain an exact sequence

-1
0 — M9/HY(G, M) 2= M™ — HY(G, M) — 0
-1
which shows H°(G, M) is the cokernel of M'® Z— M, that is to say naturally isomorphic to
H!(G, M), as required. o
We end this subsection with a few natural conjectures.

Conjecture 3.3. The statement of Theorem 3.1 holds for any compact p-adic Lie group G (with no
assumption on Lie(G)).

The following is an analogy of Theorem 1.5 of [RJRC22].
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Conjecture 3.4. There exists a spectral sequence
EY) =H(G,R],(M)) = H™"/ (G, M).
Finally, we have a conjecture regarding cohomology which follows from the previous two conjectures.

Conjecture 3.5. Suppose A satisfies the Tate-Sen axioms (TS1)-(TS4) (see §3.2 below), and that G is a
compact p-adic Lie group. Then there exist natural isomorphisms

H (G, M"™) = H! (G, M)

Jori > 0.

3.2. The Tate-Sen method

In this section we recall the Tate-Sen method introduced in [BC0O8] as well as some extensions of it
introduced in [Por22b] and [Por24].

Let A and G be asin §3.1. We let G be an open and normal uniform subgroup of G (such a subgroup
always exists by Corollary 4.3 of [DDSMS03]). We suppose G is endowed with a continuous character
X : Go — Z7 with open image and let Hy = ker y. If g € Go, letn(g) = val, (x(g) — 1) € Z. For G{ an
open subgroup of Gy, set H' = G|, N Hy. Let Gy be the normalizer of H' in Go. Note G- is open in
Gy since G’0 ¢ Gg-. Finally let Ty = Gy /H' and write Cy for the center of Ty By Lemma 3.1.1

of [BCO8] the group Cp- is open in . Let ny (H’) be the smallest positive integer such that y(Cp-)
contains 1+ p"Z,.

The Tate-Sen axioms are the following:

(TS1) There exists ¢; > 0 such that for each pair H; C H, of open subgroups of Hy there exists
a € A" such that val(@) > —cj and Y7 e, g, T(@) = 1.

(TS2) There exists c; > 0 and for each open subgroup H of Hy an integer n(H), as well as an
increasing sequence (Ay n)n>n(H) Of closed subalgebras of AH | each containing w*!, and Ap p-linear

maps Ry n : AP - Am » such that

(1) If H; c H; then AHz,n ( AHl,n and RH17n|7\H2 = RHz,n-

(2) Rgn(x)=xifx € Ag .

(3) 8(AH.n) = Agrg , and g(Rp 1 (x)) = Rypyq-1(gx) if g € Go.
(4) Ifn > n(H) and if x € A¥ then val(Ry n(x)) > val(x) — c».
(5) If x € AH then lim, 00 (RE 1 (X)).

(TS3) There exists ¢3 > 0 and, for each open subgroup G’ of Gy an integer n(G’) = n(H’)
where H' = G’ N Hy, such that if n(y) < n < n(G’) for y € [y then y — 1 is invertible on
X' = (1= Ry ) (AH") and val((y — 1)1 (x)) = val(x) — c3.

(TS4) For any sufficiently small open G’ € Gy and n > n(G’), there exists a positive real number
t =t(G’,n) > Osuch thatif y € G’ and x € Ag’, then val((y — 1)(x)) > val(x) + 1.

Note that with the exception of (TS4), this is exactly the setting of §4.1 of [Por22b], except that we
do not assume y is defined on the entire group. Also, we have slightly switched notation: our H’, G’ are
denoted there by H, G. We apologize for the possible confusion. We now recall some definitions and
results from §4.4 of loc. cit. which are in turn a small variant of the content appearing in §3 of [BCOS].

We have the following two additive tensor categories, where G’ is an open subgroup of G:

1) Mod%’ (G"), the category of finite free A*-semilinear representations of G such that for some basis
val(Mat(y) — 1) > ¢y +2¢3 +2c3 fory € G'.
2) Modf? (G’), the category of finite free A}, -semilinear representations of Gy that are fixed
H'.n ’

by H’ =G'n Hy and which have a c3-fixed basis for the G’ action, that is, for some basis
val(Mat(y) —I) > c3 fory € G’.
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Definition 3.6. Let M* € Mod%’ (G’). We let D7,, , (M™) be the union of all finitely generated Aj,, , -

submodules of M* which are stable by Gy, fixed by H’ and which are generated by a c3-fixed set of
generators. We let Dy ,(M) = D}, ,(M*)[1/@].

The following is Proposition 4.9 of [Por22b]. It uses only the axioms (TS1)-(TS3).
Proposition 3.7. Let n > n(G’). The association M* +— D;'_I,’ . (M*) gives an equivalence of categories

from ModfiJ (G to ModfiJ (G”). The inverse functor is given by D* At IS D*.
H’.,n H’.,n n

A few words on this proposition are in order. This kind of Tate-Sen decompletion result has a long
history going back to Tate’s paper on p-divisible groups (see §3 of [Tat67] for the first ancestor of these
ideas). Roughly speaking, this equivalence should be viewed as a form of descent from representations
where the action of y—1 is sufficiently contracting to analytic representations. It has also been understood
to have connection with p-adic Simpson theor~y, see, for example, Theorem 3.4 of [Wan23]. We should
note that when p is topologically nilpotent in A, that is, in characteristic zero, it appears implicitly in §3
of [BCO8], see also §5C of [Por24] where it was spelled out. In [Por22b] it was generalized to allow for
Z ,-Tate algebra coeflicients.

Lemma 3.8. Let N*, M* € Mod?"(G"). Then N* @z, M* lies in Mod?"(G') and DY, ,(M") &,
DY, (M*) =D}, (M*"®;, N*). '

Proof. Suppose {e;}1<i<n and { fj }1<;<m are respective bases of N* and M* such that val(Mat ., (y) -
1), val(Matz(y) — 1) > ¢1 +2c2 + 2c3 for y € G'. Using the identity

(y=-D(ei® fj)—ei® fj=(y—D(e:) ®y(fj) +ei ® (y = )(f)),
we see that {e; ® f}}1<i<n,1<j<m is a basis of N* @5, M* with

_____

val(Mat(y) — 1) > ¢ +2¢3 + 2c¢3.
Hence, N* ®3, M* lies in Mod%’(G’). Next, we show that
Dy w(M™) ®y;, D (M) =Dy, (M* @5, N¥).

Both the left- and right-hand side are objects of MOd/(\;*s, ) (G"), so by virtue of Proposition 3.7 it is
enough to show they are equal after tensoring with A*. Toq;how this, we compute
A @n:, (Djp (MY @xs, Dip, (M) = M* @y Dy, (M")
= M* @z, (A" @ . Dl n (M)
=M"®;. N*
= A" @1, Dip (M @5, NY).
This completes the proof. O
We have the following result which allows us to control the action of y — 1 on Dy ,(M).

Proposition 3.9. If (TS4) holds then there exists some element s = s(G’,n) > 0, independent of M, so
that for y € G’ and x € Dy (M) we have val((y — 1)(x)) > val(x) + .

Proof. We know that D7},,  (M)* has a basis of c3-fixed elements. Using the identity

(y = D(ab) = (y = D)(a)b +y(a)(y — 1)(b)

https://doi.org/10.1017/fms.2025.10121 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10121

Forum of Mathematics, Sigma 15

we see that (y — 1)(D7,, ,(M)*) c @*D3,, ,(M)* for s = min(c3,t) where t = t(G’, n) is as in (TS4).
If x € @" - D}, ,(M)* then writing x = @"y and using the same identity as before we conclude that
(y - D(x) € @"** - D}, ,(M)*. This concludes the proof. O

Corollary 3.10. If (TS4) holds then Dy ,(M) ¢ MY,
Proof. Use the expansion y*(m) = Y,,50(y = 1)"(m)(}) forx € Z,,. ]
We are now in a position to prove the first part of our main theorem.

Proof of part 1 of Theorem 3.1. For G’ small enough and n large enough the descent to D g ,, applies
(this can always be achieved because of continuity). We need to show that the natural map

X@Ala ]‘41a - M

is an isomorphism. We shall that show this map is an isomorphism for G’ small enough when M'?
is replaced with MY 12, which suffices (the transition maps along different G”’s are then forced to be
isomorphisms). By Corollary 3.10 we have Dy, ¢ M G"la and we know M descends to D H’.n» SO the
Ap p-basis of Dy, gives a A-basis of M consisting of G’-locally analytic elements. By Proposition
2.16 we have MG-1a = AG™la OAyr Dy, and so the natural isomorphism A @Ay, DH' 1 5 M is
identified with the map A® AGHa M G"la _, M, which concludes the proof. O

3.3. Descending analytic functions

From now on we suppose (TS1)-(TS4) hold and that Lie(G) is abelian. It follows that G is abelian
also. By Proposition 2.5 we have that C*3 (G, M) is a Go-module for every A € R. Recall (Definition
2.4) that C** (G, M) is endowed with the valuation

vala(f) = inf(val(an(f)) - Lp'nl).
We set

M2 = {f € CY*™(Go, M) : A™(f) = 0}
with its induced valuation. We now note a few properties of the A-modules M,, 5. First, each M, »
is preserved under the Gy-action because AZ is Go-equivariant, and so is actually a Gy-semilinear
submodule of C**(G, M). We have M,, 4 C M,y y whenn < n’. The limitli_r)n M, C C*™(Go, M),
n n I

indexed over n € Zio’ is dense in C**(Go, M). Let my, ..., Meank(M) be a A* basis of M*, which we

choose once and for all. One sees that M, , is finite free over A with a basis given by the functions
x > mw Pkl (3) for k < nand I <i < rank(M). Finally we note this implies My 2 - My.2 © Mpsp.2
when M = A.

Definition 3.11.

1. A subgroup Gy is called c-small if val(g — 1)(w) > ¢ and if val(g — 1)(m;) > c for each basis
element m;.

2. Anelement 4 € Ris called c-small if 2 > log,(c +1).

3. We say a pair (G, 1) is c-small if both G and A are c-small.

Warning 3.12. The functoriality of c-smallness does not coincide with that of (G, 1) + C*¥ (G, M).
Namely, if the pair (Go, A1) maps to the pair (G, A’) in the direct limit defining the R{a then it is not true
in general that (G, A’) is still c-small. This is because (Go, 4) maps to (G, A’) when G; C Go and
A’ < A4, but the c-smallness of (G|, A’) is only guaranteed when 1’ > A.
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Lemma 3.13. Let ¢ > 0, A € Rand Gy a subgroup.

L. If Gg is c-small then there exists some | > 0 depending on A and c such that for every g € G; and for
every n one has val(Mat(g) — I) > ¢ for My, (taking the A-basis described above).
2. If (Gg, A) is c-small, one can take | =0 in 1.

Proof. Each basis element of each M,,  is of the form m; wlr! kJ( ) for some m; for 1 < i < rank(M)
and k < n. Using the identity

(& = D(abc) = (g = D(a)bc +a(g - 1)(b)g(c) + g(a)g(b)(g - 1)(c),

one reduces to showing each of the valuations of (g —1)(m;), (g — 1)(wLpAkJ) and (g - 1)(( ) are > c.
First, the valuation of the (g — 1)(m;) is > ¢ by the c-smallness of Gy. Second, the valuation
of the term (g — 1)(w“’ﬂﬂ) is > val((g — 1)(w)) > c¢ by virtue of the identity (g — 1)(@") =

(g-D(@" Hg(@)+ (g - 1) (w)w.
Finally, we need to estimate (g — 1)((;)). First, by using the identity

(gh=1(a) =g((h=1)(a)) + (g - D(a),

we may reduce to the case where g is a basis element, and hence its action is given by sh,,;;, for some
1 <i < d. We then have the Vandermonde identity

ki l
x\\ _ = )P
(shyiy, — 1)((k)) - jz:; (&—]11)(] )

We have val((7)) = - p*k| and Val,l((k_ijl_) = —|p*(k - j1;)], so it suffices to show

1
~Lpt (k- Jl)J+Va1(( ))> ~Lp'kl +¢

for every j < k;. This inequality follows in turn from the simpler inequality

i
|_p jl +va1(( )) > c.

If (Gg, A) is c-small then p? > ¢ + 1 and the inequality holds for all j > 1 and I = 0. Otherwise, it is
clear one can choose [ large enough so that the inequality holds for all j > 1. O

Now choose any ¢ > ¢j + 2¢p + 2c¢3, and suppose (Gg, A) is c-small. From the lemma, each M.+

lies in the category Mod%’ (Go). By the Tate-Sen method we have Aj; | -modules Dy, (M D) lylng
in Modfi:lovn (Go) for n > no(M, 2). The D7, (M+/1) form a direct system and we set

(M%) = hrnDHO 2 (M) “4)

i

H() n

and D}, (M) = D" (M*)[1/w].
The natural isomorphisms

AY IV Dy 2 (M) N M,
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glue to an isomorphism

K+ ®/\;’O' D/l,+ (M+) = C/l_an(GO,M)+ (5)

n Ho.n

exhibiting C* (G, M)* as a descent of Df_]’:n(M‘“).
If we only assume that Gy is c-small (but no assumptions on 1) then we still get a descent, but now
each M}, only lies in Mod/%’ (Go) for some [ > 0. In this case, we only get a descent to a module

D;“_Il’n (M;/l) lying in MOd/(\;qu, ) (Go) and an isomorphism

- N )
A" @p;, D, (M) = CY(Go, M)".
In the c-small case the module D’Ig:n (M) admits an alternative description.

Proposition 3.14. Let (G, A) be a c-small pair and suppose we have chosen coordinates of G such that
Go = 'y x Hy with Ty corresponding to the Ist coordinate and Hy corresponds to the other coordinates.
Then there is a natural isomorphism

Dg:,n (M) - Dg(:—,n (C/l-lln (HO’ M)+)§A;Io,nc/l-an(r0’ AHOan)+'

Proof. Given k € Zio let k- denote the first coordinate of k (corresponding to I'g) and let k ;  denote

k without the first coordinate (corresponding to Hy). The description of the A*-basis of M, shows
that there is an isomorphism a

~ kp, _, ~ kry _,
Mg,/l ~ M+ ®7\+ C/l-an(Ho’A+)A 0=0 ®X+ C/l—an(l—h, A+)A 0 —()’
which can be rewritten as

k . ~ . Ak _
Mg,/l ~ C/l—an(HO’M+)A Ho =0 85, C/l-dn(FO’A+)A Fo_o'

. k
Now one observes that CA(Ip, A*)A™"=0 has a basis given by @7l () for 0 < m < kp, . Itis c-
fixed for the I'y-action because (G, 1) is c-small (this is the same argument appearing in Lemma 3.13).
Hence by Proposition 4.10 of [Por22b] there is a natural isomorphism

) ~ Ky ) .
D}:Io,n(c/l an(FO’A+)A ’ 0) = C* (T, A-'I:I(),n)A 0=0,

We then conclude by applying Lemma 3.8, taking the limit over k£ and taking the completion. O

3.4. Cohomology of c-small pairs

Choose any ¢ > cj + 2¢; + 2¢3 and fix a c-small pair (Gg, 1). In this subsection we shall simplify the
Go-cohomology of C* (G, M).

For every A and n > ng(M, 1) we have modules D;L’(tn(Mﬂ defined as in (4). In what follows,
whenever we compute inside a cohomology group depending on A and involving n, we are going to
implicitly assume n > no(M, 2) so that D’;{’:’n (M) is defined. We set Ty = Go/Hy, which is isomorphic
to Z,, (for sufficiently small Go).

Proposition 3.15. For i > 0 we have natural isomorphisms

H' (Go. CT"(Go, M)) = H (T, CY"(Go, M)™) = H!(Tg, A™o &y, , DYy (M),
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Proof. Inverting @ in the isomorphism (5), we have natural isomorphisms
A8y, Dy (M) = CH(Go, M).

By Proposition 5.8 of [Por24], the cohomology H! (Hy, C** (G, M)) is zero fori > 1. Note that in that
setting one assumes that the valuation is p-adic, but the same proof works for a w-adic valuation defined
by an arbitrary topologically nilpotent unit @. We conclude the proof by applying the Hochschild-Serre
spectral sequence (see [Ked16, Lemma 3.3] for a version which applies in our setting). O

Recall that we have maps Ry, : AHo 5 A Hy,» Which are projections. Setting Xp, , = ker Ry, we
obtain a decomposition A#> = Xy , ® Ag,.,. This allows us to write a [')-equivariant decomposition

KHO ®/\Ho,n D/Ilfo,n(M) = XH()," ®AH0," D?‘Io,n(M) ® D/;I(),H(M)
and hence fori > 1
H' (o, A™ @y, Dy, (M) = H (T, Xpiy.n @4y, Dy, ) @ H(T, Dy, (M)).
In particular, for i > 2 the cohomology is zero because I'y = Z,,.
Proposition 3.16. We have H' (Ty, Xg, ®Apry D;‘io’n) =0.
Proof. In the above decomposition of the I'y-cohomology of
Ao OAmy.n D;lfo,n(M) = Cﬂ_an(GO’ M)HO

the left-hand side does not depend on n. Hence, the same holds for the right-hand side. Therefore, it
suffices to show that

. 1 A
lim H' (Co, Xbto,n ®Agy e Dity.n) = O-

n

Write y for a generator of I'y. It suffices to show that every
a®b € Xpiyn Oy, Dy n(M)

is in the image of y — 1 for some Xg, »/ Ay D’}IO w (M), with n” depending only on n.
By Proposition 3.9, we know that there exists some s > 0 such that

(y - DD (M) c&* - D" (MY).
For some power y’ of v we therefore have

(' = D)D" (M) € &° - D™ (M*).

Take n’ > n so that n(y’) < n’. For such n’, we know that val(y’ — 1)(x) > val(x) — ¢; forx € Xp, -
Let @ be such that (y~! — 1)(a) = a. Consider the series

[e9)

y=2" =@ e (' - 1) (b).

i=0

The series converges because val(y’~! — 1)~!(x) > val(x) — ¢3 while val((y” — 1)(x)) > val(x) +2c3
by our choice of n’. A direct computation shows that (y’ —1)(y) = a®b. Asy’ — 1 is divisible by y — 1,
this proves a ® b is in the image of y — 1, as required. O

Putting this all together, we get
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Theorem 3.17. Let ¢ > ¢|+2c¢3+2c3 and let (Gg, A) be a c-small pair. Then H (G o, C**(Gy, M)) = 0
fori > 2, and

H'(Go,C""(Go, M)) = H' Ty, Dy, ,(M)).

3.5. Vanishing of higher locally analytic vectors
Recall that

R}, (M) = lim H'(Go, C**(Go, M)).
Go, A

In this subsection we shall complete the proof of Theorem 3.1 by showing that Rfa(M )=0fori > 1.

Proof. As always, we fix some ¢ > ¢1 + 2¢p + 2¢3. We claim that c-small pairs (G, 1) are cofinal in
the above direct limit. This is a consequence of Corollary 2.7 together with the observation that if G
is c-small, so is G;. In particular, we have seen that Hi(GO,C’l'an(Gg, M) =0 fori > 2 and c-small
pairs (Gg, 1), so it automatically follows that Rfa(M ) = 0 for i > 2. The nontrivial part is showing

the vanishing of Rlla(M ). Using the cofinality of c-small pairs, this is a consequence of the following
proposition. o

Proposition 3.18. Let (G, A) be a c-small pair and let f € H' (Go,C**(Go, M)). Then there exist
some | > 0 and some A’ < A so that f is mapped to 0 in H (G, CV"(G;, M)).

Proof. Recall that in 3.17 we have shown an isomorphism for n > n(M, 1)
H'(Go.C*™(Go, M)) = H' (T, Dpgyn (M),

and so f € H(Ty, Dpy,.n(M)). Using H(Ty, Dyy.n(M)) = Dpyn(M)/(y — 1), we may think of f as
an element of Dp, ,(M). Let s = s(Gy, n) be the constant appearing in Proposition 3.9, and choose 1’
small enough that p?’ < 5. Choose [ > 0 large enough so that 1 of Lemma 3.13 applies. We are going
to show that f is mapped to 0 in H' (G;, C* (G, M)).

By Proposition 3.14 we may write f as function (in the variable of Ty)

f) = Zm(ﬁ)

n>0

where m,, € D’}_I0 L (CT™(Hy, M)) and valy(m,) — | p*n] — e.
Consider now the function given by

F(x)=Z<—1>"Z(y—1>k<y-k<mn>)( ” )

+k+1
k>0 n>0 n+k

Recalling that y acts on (n +i +1) by shifts, one easily checks that (y — 1)(F) = f. The problem is that
this sum is not guaranteed to converge in D’}JO ,(M). Indeed, what we have is

vali((y = 1) (mp)) = sk +vala(my,)

and

vam( )= —LpAn+ k4 1)

X
n+k+1
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so we get the estimate

valy((y = DF(y7™* (mn>>(n )) > k(s — p) + (valy(my) — | p*n]) + O(1).

X
+k+1

This estimate would be good enough (i.e., tend to co as k,n — o) if we had s > p!. Unfortunately,
there is no reason why this would be the case.

There is a trick which fixes this problem: the estimate is good enough when A is replaced with A’,
because s > p?. In other words, by the same estimate we see that under the natural map

HO (M) — Dﬁll’n(M)

the sum does converge (using valy > val,). This means that the image of f in D’Igl . (M) lies in the
image of y — 1. Thus, decomposing as in 3.15 and the subsequent paragraph to get an isomorphism of
H! (G, CY (G, M)) with

H'(Go/Hy, Xpy.n ®ng, . Dy, (M) ® H' (Go/H,, D}y, (M),
we obtain that under the natural map
H'(Go,C*™(Go, M)) — H' (Go, C*"(Go, M)
the element f lands in
ker(H'(Go/Hy. Dy, ,(M)) — H'(To, Dy, ,(M))).

By the inflation restriction sequence, this is the same as H! (Hy/H;, D’};l (M )10). Thus composing
with the restriction map to H'(G;,CY (G, M)) (and hence also with the further composition to
HY(G;,CY* (G, M))) we see that f is mapped to zero, as required! O

Remark 3.19. The proof shows that vanishing of Rfa(M ) for i > 1 is true in the strong sense, namely,
for each pair (G, 1) in the direct limit

R}, (M) = lim H'(Go, C**"(Go, M)
Gy,

there exists some other pair (G, A”) so that the entire map
H'(Go.,C*™"(Go, M)) — H'(Gg, €™ (G, M)

is zero.

4. Applications

In this section we shall give three applications of our methods. For this we shall need to introduce a few
objects which are standard in p-adic Hodge theory. For more details, we refer the reader to [Col08] or
§2.1 of [Por22b]. Let C,, be the completion of the algebraic closure of Q,,. Let C[I’, be its tilt with ring
of integers C?)J' Let Aj,r be the Witt vectors of Cb’+ Lete = ({p, Zf,, ...) be a sequence of compatible
p-power roots of unity and let @ = ¢ - 1 € Cb * so that [@] € Ayr. The ring A©Orle jg defined
to be the p-adic comRIetlon of ﬁmf<p /[@]'/"). The completion is p-adic, but we take the [@]-adic
Egpology We define A1 as A(%71-°[1/[w]] with the [w]-adic topology. We define also the ring
Al = Ape([w] 1/‘/p p/[w] I/ry . with the completion and topology being p-adic or [w]-adic (they
are the same) and Bs:r] .= Alsr] [1/p] = Als.r] [1/[@]]. Eachring R just introduced has a continuous
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action of Gal(Qp /Qp). Let K be a finite extension of Q. Let QcyC Q,(Lpx), KV = KQCyc and
Hg = Gal(Qp/Kcyc). We set Rk := RP¥ so that Rg has an action ofGal(Gp/K)/HK = Gal(K9°/K).
This latter group we call I'x and it is isomorphic to an open subgroup of Z; via the cyclotomic character.
With this notation we have Ex := K;?’r] /p (it does not depend on r). This field was mentioned in
Example 2.14.3 when K = Q,,. The field Eq,, can be equivalently defined as the X-adic completion of

Uan((Xl/pn)). The action of I'q, = Z7, is given as follows: an element a acts on f(X) € EQp by the
formula (a- f)(X) = f((1+X)“—1). We also have “deperfected” rings defined as follows. We let Aq,,

be the p-adic completion of Z,[[T]][1/T]. It is naturally embedded into A= W(Ct,ﬁ) by mapping T
to the element [g] — 1 € Ayt whiclﬂlvlifts @. We have Aq, /p = Fp((X)) C ]TZQP. To each K one can
associate the field of norms Ex C Ex so that Eq, = F,((X)), and there is a standard way to define
rings Ak containing AQp sothat Ax /p = Ek (see §6 of [COIOS]) The ring A©O-rle embeds into A and
one sets Ag)’r]’o = AOrlen A g We then let Ag)’r] A(0 "BO[1/T]. We let A[S "I be the completion of
the image of A;?’r] in K;?’r]. Finally, we set ng’r] = A;? "111/p] and BE = K "111/p]. In addition
to the 'k -action above, these rings are endowed with a I'x-equivariant Frobenius operator ¢ which

maps rings defined via an interval / to rings on the interval p~'I. We let also KT denote a Lubin-Tate
extension of K, Hyr = Gal(Q,,/K'") and 't = Gal(Q,,/K)/Hyr.

Proposition 4.1. The Tate-Sen axioms (TS1)-(TS4) of §3.2 are satisfied in the following cases:
1. When A = A(Or At = A(O rle and A, _"(A(0 P r])for 1/r € Z[1/p]lso with r < 1 (we omit
subscrlpts H in AH n because Hy = 1 in this case )

2. When A = AO7LHr A+ = AOrle n'A gpd Ag, o = go‘"(A(LO’p_nr])for 1/r € Z[1/p]so with
r <1l

Proof. Case 1: the axioms (TS1)-(TS3) are verified in §5.1 of [Por22b]. It suffices to show that for any
a€l+pZ, cTlq, and k € Z we have
val((a — 1)(¢™™(T*)) = val(¢™(T*)) + ¢

for some positive constant ¢. Indeed, one computes (using the formula a(7) = (1 +T)¢ — 1)) that
— D) (™™ (T5) = g™(T) - " k-1,
(a=1)(e™(T") =T ¢ ((a+mz>l(m+1 k-1
As a =, 1 it follows that
val(¢™"((a + Z ( “ )T)k — 1)) = min(val(p), val(¢""(T))) > 0
\m+ 1

as required.

Case 2: Again (TS2) and (TS3) are checked in [Por22b]. (TS1) is shown in Lemma 10.1 of [Col08].
For (TS4), we argue as follows. The ring A g, _, is endowed with the action of some finite index subgroup
of T'q,,. It is finite free over A, so one may choose a A,-basis ey, ..., e4. By possibly choosing an even
smaller subgroup I'” of I, one can arrange that I'" C 1 + pZ,, and that the action of y" — 1 of a
generator y’ of I'” has val((y’ — 1)(e;) > c for some constant c. Now if 7y is a generator 1 + pZ, then
we already know valf\z (y=1) = ¢’ for some ¢’ > 0. Since y — 1 divides y’ — 1 we see (TS4) holds with
t = min(c, ¢’). O

4.1. Computation of locally analytic elements in EQP

Recall the main result of [BR22]:
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Theorem 4.2. We have Egp = U,F,((X'/P")).

We shall now explain how to derive this result by reducing rather formally to a previously known
result of Berger in characteristic O which is proven with aid of p-adic analysis. Though as a whole the
proof of [BR22] is simpler than ours, the method we present here illustrates our hope of using this new
technique of linking analytic vectors in characteristic O and characteristic p in other contexts as well.

Lemma 4.3. We have Kg)’r] Ne™ (B([zpins’pinr]) =" (Ag)’pinr]).
P r P

Proof. The inclusion of the right-hand side in the left-hand side is clear. Conversely, suppose x lies on the

right-hand side. By applying ¢, we may reduce to the case n = 0. So we have x € A(O " mB[‘ ] , whence
5 (0,r] _ p(0,r] (0 r] (0 r] (O r] (0 r]
x lies in the larger ring BQp OBQP BQ] . Thus we reduce to showing B / A — B, /A Q,

is injective. This reduces further to showing A O] /Ag) s p—tors10nfree. In fact it sufﬁces to show
P
A(O’r]’(’/A((zo’r]’o is p-torsionfree, because A (- /Ag)’rJ is its [@]-adic localization.
P P
Next, recall that Ag):]") = AOrle n Aq,. s0 A(O”]/Ag)l’f] injects into A/Aq,. This will be p-
torsionfree provided that Ag, ® F, — A ® F), is injective. But this is easy: it is simply the map

F,((X)) - Cb. O
Recall Theorem 4.4 of [Berl6].
Theorem 4.4. We have By """ = U -"(B“’ s:prly
P
We have the following corollary which is the mixed characteristic version of Theorem 4.2 and
Theorem 4.4.

Corollary 4.5. We have Kg’;r],la _ U,,(,D‘"(Ag);”_"r])‘

Proof. Indeed, choosing some arbitrary s, we have

AQ M c AQT BT = AT A (U B P

].1a

So by Lemma 4.3, the ring Kg) "1 45 contained in U, ™" (Aé0 P71y Conversely, any element in
4 P

Up™ (Aé0 *P”"r1) is locally analytic by Corollary 3.10. O
P

From this we can deduce a new proof of Theorem 4.2, which after this setup becomes a one liner.
Take some 0 < r < 1 with 1/r € Z[1/p] and consider the short exact sequence

O (N
0—>AQP —>AQP — Eq, — 0.
By Theorem 3.1 and Proposition 4.1 we have Rlla(K(O”]’la) =0, so Elé‘p = K(O”]’la/p. Passing to

locally analytic vectors, we get

—_— _ O’ —nr n

EG, = Une "(Ag" "D p = UuE, ((X1/P7)).
Remark 4.6. One can also argue in reverse and deduce Corollary 4.5 from Theorem 4.2. It is not clear
to us if one can push this further to deduce Theorem 4.4.
4.2. Descent of Lubin-Tate (¢, 1")-modules to locally analytic vectors

Recall that according to Lubin-Tate theory the Lubin-Tate character gives an isomorphism I'tt — O%.
The norm of the Lubin-Tate character is an unramified twist of the cyclotomic character, which shows
that Ky contains a twist K7 of the cyclotomic extension K¥° by an unramified character 7.
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In the theory p-adic Galois representations and the p-adic Langlands program (¢, I')-modules have
played a central role. In particular, the overconvergence theorem of Cherbonnier-Colmez ([CC98]) has
been a crucial component in providing a link between the Banach and the analytic sides of the Galois
side for GL,(Q,). When Q,, is replaced with a finite extension K, the situation with overconvergence
is more complicated, as we shall now explain.

In this context one considers a big Robba ring B r and a “deperfected” Robba ring BJr r Which
is aring o of power senes in one variable converglng 1n an annulus (see [Ber16], where these rlngs are
denoted B oK and B! g K respectively). Both of these rings are endowed with a Frobenius operator ¢
and an actlon of I'tt. By the main result of Fourquaux-Xie ([FX14]) it is known that when K # Q,,
there exist (¢, [ 7)-modules over B T which are not overconvergent, that is, do not descend to Brl T
The main theorem of [Berl6] g1ves a sufficient condition for this to happen, namely, K—analytlclty
However, in §8 of [Berl6] it is also shown that an arbitrary (¢, I 7)-module over B descends to

the multivariable ring BIi ; L of pro-analytic vectors.
The ring BZ{gPaK is a Qp-algebra and as such it is a characteristic 0 object. On the other hand, when
K = Q,,, Cherbonnier-Colmez shows there is a descent to an integral ring AI} where p is not invertible.
4
We will now give an integral version of this descent when K # Q,,.

Let Apr = AP and KT = lim A(O’r] where Ag’r] := A0 LHr The jdea is that the ring AT’]a

1,Pd

an appropriate integral analogue of B oK

Theorem 4.7. Every (¢, ')-module over ALT descends uniquely to a (¢, ")-module over XIT‘TM

Proof. When K¢ c KT this follows from part 2 of Proposition 4.1 and part 1 of Theorem 3.1. In
general, one can descend along an unramified twist (see §8 [Ber16] for a similar argument). O

Remark 4.8. Corollary 4.5 shows that when K = Q, we recover the usual integral descent of
Cherbonnier-Colmez.

4.3. Pro-analytic and locally analytic vectors in KQp

In this subsection we work out an analogy between B, Q, of Hq,, fixed-points of B}, and the ring KQ -

Let {M,,}, be an inverse system of finite free modules over corresponding Z,-Tate algebras {R, },
endowed with the action of a compact p-adic Lie group G. For the inverse limit M = {Lnn M,, we define
the pro-analytic vectors

= lllia = lim lim Moo-4an

—c
n n Gy,

and the locally analytic vectors

M —11m 11mMG°’lan
Goxl n

Clearly there is a natural map M'® — MP?. Furthermore, it can be shown that when R = l(ln R, itself
n

is a Z,-Tate algebra then M?* = M 12 and that the new definition of locally analytic vectors agrees with
the old one of §2. For example, when the M,, are G-Banach spaces, the module M is a G-Fréchet space
and we recover the definitions appearing in [BC16] and [Ber16].

The ring B* has the structure of a I'q,, -Fréchet space. Indeed, letting # denote Fontaine’s element,
one has

dR.Q,
+ T +
Bir.q, = 1imBir g, /1"

n
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+

It turns out there is a very nice description of the pro-analytic and locally analytic elements in B &R.Q,

(Proposition 2.6 of [Por22a]).

Theorem 4.9. We have ngpr = UnQ, (&pn)[[£]] and nggp = QY[ [1]].

In a direct analogy with this we can consider the ring KQ;} as the inverse limit

Ao, = {iLnKQ,,/P",

n

with each KQp /p" being a Z,-Tate algebra (with topologically nilpotent unit 7). For example, we have

XQ]) /pn = E(217'
The third application of our main theorem is then the following result.

Ala _ -~ Aba _ . -0 n
Theorem 4.10. We have AQp =¢™"(Aq,) and AQp = l(gln © (A, /P".
Remark 4.11. Thering Kan can also be thought of as the subring of elements in KQP that foreveryn > 1
P —_—~ —_—~
are congruent to an element of ¢~ (Aq,) modulo p”. This shows that the containment Ag c AP s
r

— — Ql)
strict. For example, the power series ).,,5o p"¢ " (1 + T) belongs to A}(); but not to Alé .
= P P

Remark 4.12. It has been desirable to have a theory of (¢, I') modules when I' = Gal(K /K)/H is not
Lubin-Tate. However, in such cases it seems difficult to find a suitable 1i~ft of the field of norms, that is,
a replacement for the ring A . A lift that is a power series ring inside A¥ is known not to exist under
certain assumptions ([Ber14], [Poy22]). When I is abelian, Theorem 4.10 suggests to consider Af1a op
AH-P2 a5 a suitable lift instead. Unpublished computations of ours suggest that in general A P4 surjects
onto E¥ -1 and so gives a valid lift.

We now proceed to proving Theorem 4.10. The description of KI(J; follows directly from the following
P
lemma.

Lemma 4.13. Let 0 < r < 1. We have
e - 0,p™™ —00
(Aq, /P = (Unp ™ (AQ" "N p" = ¢7(Ag,)/p".
Proof. We have
—~0.r —
Ao " = Aq, /p"
by devissage to the case n = 1 (where both are equal to EQP). By Theorem 3.1 we have
R}a(p"-lﬁg”’] /p™) = 0. Hence by devissage we deduce
P
A (0,r - 0,p~"r
A " = Ume ™ (AGT D) "
(the case n = 1 being Theorem 4.2). Finally, we need to explain why
— 0,p™"™r —c0
Une ™ (AG "D /P" = 0™ (Ag,) /",
but this is once again true by devissage. O
We now turn to studying Klé )
P
Lemma 4.14.
1. GivenT C FQp open, A € Randr < 1 there exists an m > 0 such that

A (0.7]\T,A-an —m A (0,rp™™]
AL ¢ g (AL,
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2. Givenm 2 0 and r < 1 there exists I' C I'q,, open and A € R such that
—m A (0,rp™] A (0,7 ]\T",-an
e (AGT ) c RGThe,
Proof. Part 1 follows from Theorem 4.4 of [Ber16] and Lemma 4.3. Part 2 follows from Corollary 3.10.
O
Proposition 4.15.

1. ForI" c I'g,, open and A € R there exists some m > 0 so that for all n > 1 there is an inclusion
no ; - 0,rp™
(A(()Pr]/pn)l“,/l an. — © m(AéP"P ])/pn.
2. Givenm = 0 there exists I' C I'q,, open and A € R so that for all n > 0 there is an inclusion
- 0,rp~™ =0, A
e (A " D p c (ARG pm T,
Proof. We start by proving part 2. There is a surjection
- 0,rp™ - 0,rp™
e (A ") > oA .

Hence by part 2 of the previous lemmaiand functoriality, there exists some pair I', 4, independent of n,
such that every element of gp””(Ag)’rp 1y/p" Lies in (Ag)’r]/p")r*’l‘a". The proof of part 1 is similar
r r

but we need another trick, because we do not know that (Kg) J])F,/l—an surjects onto (Kg) o] /p™)TAan,
P r

Rather, we note that by Remark 3.19, the entirety of Rf. A(Xgl”r]) maps to zero in some R}, ,, (K(()Ol’yr]).
This implies that given a pair (I', 1) there exists some other pair (I'/,2") so that for all n > 1 we have
that elements of (Kg];rj /p™)T-Aan lift to (K(()Ol ;r])r "-an We can now argue as before by applying part
1 of the previous lemma (for the pair I, 1”). ]

Corollary 4.16. We have Kgp = ¢™"(Aq,)-

Proof. The proposition shows that the direct systems
{lim(Ag" /")
n

and

{lime ™ (AQ"" ") /p"

n

are cofinal. So the corresponding direct limits ranging over I', A and over m are naturally isomorphic.
These give A'é and ™% (Aq,, ), respectively, and hence we establish the desired equality. O
r
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