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Abstract
In p-adic Hodge theory and the p-adic Langlands program, Banach spaces with Q𝑝-coefficients and p-adic Lie
group actions are central. Studying the subrepresentation of G-locally analytic vectors, 𝑊 la, is useful because 𝑊 la

can be studied via the Lie algebra Lie(𝐺), which simplifies the action of G. Additionally, 𝑊 la often behaves as a
decompletion of W, making it closer to an algebraic or geometric object.

This article introduces a notion of locally analytic vectors for W in a mixed characteristic setting, specifically
for Z𝑝-Tate algebras. This generalization encompasses the classical definition and also specializes to super-Hölder
vectors in characteristic p. Using binomial expansions instead of Taylor series, this new definition bridges locally
analytic vectors in characteristic 0 and characteristic p.

Our main theorem shows that under certain conditions, the map 𝑊 ↦→ 𝑊 la acts as a descent, and the derived
locally analytic vectors R𝑖

la (𝑊) vanish for 𝑖 ≥ 1. This result extends Theorem C of [Por24], providing new tools for
propagating information about locally analytic vectors from characteristic 0 to characteristic p.

We provide three applications: a new proof of Berger-Rozensztajn’s main result using characteristic 0 methods,
the introduction of an integral multivariable ring Ã†,laLT in the Lubin-Tate setting, and a novel interpretation of the
classical Cohen ring AQ𝑝 from the theory of (𝜑, Γ)-modules in terms of locally analytic vectors.
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1. Introduction

In p-adic Hodge theory and in the p-adic Langlands program, one often encounters a Banach space W
with Q𝑝-coefficients endowed with an action of a p-adic Lie group G. It has proven useful to study the
subrepresentation of G-locally analytic vectors 𝑊 la ⊂ 𝑊. One reason for this is that 𝑊 la has an action
of the Lie algebra Lie(𝐺), which is often simpler to study than the action of G. Another reason for this
usefulness is that 𝑊 la sometimes behaves as a decompletion of W which is then closer to being of an
algebraic or geometric nature.

As a classical example we consider Sen theory. Let Qcyc
𝑝 denote the cyclotomic extension ob-

tained by adding all p-power roots of unity to Q𝑝 , K be a finite extension of Q𝑝 , 𝐾cyc = 𝐾Qcyc
𝑝 ,

𝐻𝐾 = Gal(𝐾/𝐾cyc) and 𝐺 = Gal(𝐾cyc/𝐾) which is isomorphic to an open subgroup of Z×𝑝 . We also
let C𝑝 be the completion of Q𝑝 . If X is a smooth proper variety over K, let 𝑉 = H𝑛

ét(𝑋𝐾 , Q𝑝). Then V
is a representation of Gal(𝐾/𝐾), and we set

𝑊 = (C𝑝 ⊗Q𝑝 𝑉)𝐻𝐾.

It can then be shown (see, e.g., Théorème 3.4 of [BC16]) that 𝑊 la is a vector space over 𝐾cyc to which
W descends. Furthermore, the action of Lie(𝐺) � Z𝑝 gives a linear operator, called the Sen operator,
which acts on 𝑊 la. Its eigenvalues belong to Z and as a set are equal to the negatives of the Hodge
numbers {ℎ𝑖, 𝑗 }𝑖+ 𝑗=𝑛 of X.

One issue with the classical definition of G-locally analytic vectors is that it is available only in the
setting of Q𝑝-coefficients, while one would want to consider spaces W with Z𝑝 and F𝑝-coefficients as
well. Nevertheless, it is clear that some phenomenon of this kind exists. For example, a Sen operator
in a mixed characteristic was recently introduced in work of Bhatt-Lurie ([BL22]). It is unclear how to
interpret it in terms of locally analytic vectors. In another direction, Berger and Rozensztajn introduce
in ([BR22], [BR24]) the notion of super-Hölder vectors, which serve as an analogue of locally analytic
vectors in characteristic p.

In this article, we focus on the notion of locally analytic vectors for W with coefficients in a mixed
characteristic setting, namely for Z𝑝-Tate algebras. This notion generalizes the classical notion and
specializes to the super-Hölder vectors notion of Berger and Rozensztajn in the characteristic p setting.
The basic idea is to use binomial expansions rather than Taylor series expansions to define analytic
functions. This idea is well known to the experts, introduced, for example, in [Gul19], [JN19], and
[BR22]. One then defines a locally analytic vector to be an element w of W whose associated orbit map
orb𝑤 : 𝐺 → 𝑊 is locally analytic.

Why use binomial expansions instead of Taylor series expansions? First, we lose nothing by doing
this: in characteristic 0, it is known by the Amice theorem [Ami64] that locally analytic functions are
the same as those with exponentially decreasing binomial expansions. Second, new analytic functions
can be produced in mixed characteristic and characteristic p. This can be motivated by the example
𝑅 = F𝑝 ((𝑋)) with the action of Z𝑝 given by 𝑎(𝑋) = (1 + 𝑋)𝑎 (as considered in [BR22]). We would
like to consider such a function as analytic. Writing 𝑎 ↦→ 𝑎(𝑋) =

∑
𝑛≥0

(𝑎
𝑛

)
𝑋𝑛, we see it has a binomial

expansion in a with the coefficients 𝑋𝑛 tending to 0 exponentially in the topology of F𝑝 ((𝑋)). On
the other hand, it does not have a Taylor series expansion: indeed, in characteristic p, it is easy to see
that Taylor series expansions only give rise to locally constant functions on Z𝑑

𝑝 , since they must factor
through F𝑑

𝑝 .
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One nice feature of this new definition is that it allows to link locally analytic vectors in characteristic
0 and characteristic p. A template for this situation is as follows: we are given a module A with
coefficients in a Z𝑝-Tate algebra so that 𝐴 = 𝐴/𝑝 is also a Z𝑝-Tate algebra, together with an injection
of 𝐴[1/𝑝] into a Q𝑝-algebra B. If A and B are endowed with G-actions, we have maps 𝐴la → 𝐵la

and 𝐴la → 𝐴
la

. Now 𝐵la is a Q𝑝-vector space and thus can be studied via p-adic analysis and the
action of Lie(𝐺). If the map 𝐴la → 𝐴

la
is sufficiently well behaved (e.g., if it is surjective), one can

use the inclusion of 𝐴la ⊂ 𝐵la to study 𝐴
la

and thus study the analytic vectors in a characteristic p
object using p-adic analysis in characteristic 0! A template example for this would be to take 𝐴 =
Z𝑝 [[𝑋

1/𝑝∞]]〈𝑝/𝑋〉[1/𝑋], the ring of functions of a preperfectoid pseudorigid disc, 𝐴 = F𝑝 ((𝑋
1/𝑝∞))

and 𝐵 = Z𝑝 [[𝑋
1/𝑝∞]]〈𝑝/𝑋, 𝑋/𝑝〉[1/𝑋] = Z𝑝 [[𝑋

1/𝑝∞]]〈𝑝/𝑋, 𝑋/𝑝〉[1/𝑝] the ring of functions on a
preperfectoid annulus, with the action of Z𝑝 given by 𝑎(𝑋) = (1 + 𝑋)𝑎 . The key point is that topology
on B is both X-adic and p-adic, so it can be linked to A on the one hand, and studied via p-adic analysis
of 𝐵la on the other. A very similar example will be studied in our first application in §4.

The main goal of this paper is to analyze the extent to which 𝑊 ↦→ 𝑊 la acts as a decompletion.
We suppose W is a finite free module over a Z𝑝-Tate algebra R endowed with a semilinear action of a
compact p-adic Lie group G. The main result of this article is the following.

Theorem 1.1. Suppose that the ring R satisfies the Tate-Sen axioms (TS1)-(TS4) (see §3.2).
Then:

1. The natural map

𝑅 ⊗𝑅la 𝑊 la → 𝑊

is an isomorphism.
2. If moreover the Lie algebra Lie(𝐺) is abelian, the derived locally analytic vectors R𝑖

la(𝑊) of W are
0 for 𝑖 ≥ 1.

This theorem is a generalization of Theorem C of [Por24]. The basic idea of the proof is in essence to
take a “fiber product” of the original method of [Por24] and the mixed characteristic results of [Por22b].
As Theorem C of [Por24] has been applied in several subsequent articles, we hope the current result
will be useful in a similar way.

Note that the vanishing of R1
la (𝑊) is precisely the type of behavior that will allow us to propagate

information regarding locally analytic vectors along reductions. Indeed, if W lives over some mixed
characteristic Z𝑝-Tate algebra such as Z𝑝 [[𝑋]]〈𝑝/𝑋〉[1/𝑋], we also have the F𝑝-Banach space 𝑊 and
an exact sequence

0→ 𝑊
𝑝
−→ 𝑊 → 𝑊 → 0.

After passing to locally analytic vectors, the vanishing of R1
la(𝑊) implies that 𝑊 la → 𝑊

la is surjective.
We give three applications of our results. Our first result is a new proof of the main result of

[BR22]. There, Berger and Rozensztajn show that for the action of 𝐺 = Z×𝑝 on the X-adic completion of
∪𝑛F𝑝 ((𝑋

1/𝑝𝑛 )), taking G-locally analytic vectors undoes the X-adic completion. We show how to de-
duce this using characteristic 0 methods, as sketched above. Our second application is the introduction
of an integral multivariable ring Ã†,laLT in the Lubin-Tate setting, together with an appropriate overconver-
gence result for (𝜑, Γ)-modules. Previously, such a ring was only available rationally with pro-analytic
vectors (as in [Ber16]). Our third and final result is a surprising description of the classical Cohen ring
AQ𝑝 appearing in the theory of (𝜑, Γ)-modules in terms of locally analytic vectors. We show how to
endow the ring ÃQ𝑝 of Witt vectors of Q̂cyc

𝑝 with the structure of a mixed-characteristic Fréchet space,
and its ring of locally analytic vectors is 𝜑−∞(AQ𝑝 ). This reveals an analogy between 𝜑−∞(AQ𝑝 ) and
the ring ∪𝑛Q𝑝 (𝜁𝑝𝑛 ) [[𝑡]] of locally analytic elements in B+dR, and suggests a way to give a lift of the
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field of norms beyond the Lubin-Tate setting, a question studied by several authors and motivated by
Iwasawa theory (see, for instance, [Ber14], [Poy22]).

1.1. Structure of the article

In §2 we give the definitions and basic results regarding locally analytic vectors and functions in mixed
characteristic. In §3 we prove the main result of the article. The reader may desire to skip this section if
they are only interested in using the main result. Finally, in §4 we give three applications of our methods.

1.2. Notations and conventions

1.2.1. Valuations
By a valuation on a ring R, we mean a map val𝑅 : 𝑅 → (−∞,∞] satisfying the following properties for
𝑥, 𝑦 ∈ 𝑅:

(1) val𝑅 (𝑥) = ∞ if and only if 𝑥 = 0 (i.e., R is separated);
(2) val𝑅 (𝑥𝑦) ≥ val𝑅 (𝑥) + val𝑅 (𝑦);
(3) val𝑅 (𝑥 + 𝑦) ≥ min(val𝑅 (𝑥), val𝑅 (𝑦)).

This definition naturally extends to valuations on an R-module M. We set 𝑀+ := 𝑀val𝑀 ≥0. If
𝑓 : 𝑋 → 𝑀 is a function, we set valop

𝑀 ( 𝑓 ) := inf𝑥∈𝑋 val𝑀 ( 𝑓 (𝑥)) for the operator valuation.

1.2.2. Z𝑝-Tate algebras
A Z𝑝-Tate algebra is a Tate ring (see Definition 2.2.5 of [SW20]) which is a Z𝑝-algebra, such that
the map Z𝑝 → 𝑅 is continuous. We can always endow such a ring with a valuation val𝑅 by taking
some topologically nilpotent unit 𝜛 ∈ 𝑅 and letting val𝑅 (𝑥) = inf𝑛{𝜛𝑛𝑥 ∈ 𝑅+} for some open subring
𝑅+ ⊂ 𝑅. However, it sometimes happens that there is a more natural valuation inducing the same
topology which does not arise in this fashion, such as the X-adic valuation on F𝑝 ((𝑋

1/𝑝∞)). In any case,
whenever R is a Z𝑝-Tate algebra endowed with a valuation val𝑅, we shall always assume:

(1) There is a topologically nilpotent unit 𝜛 ∈ 𝑅 such that for any R-module endowed with a valuation
we have val𝑀 (𝜛𝑥) = val𝑅 (𝜛) +val𝑀 (𝑥) for 𝑥 ∈ 𝑀 . In particular, we always have val𝑅 (1) = 0, and

(2) We have the inequality1 val𝑅 (𝑝) > 0.

1.2.3. Miscellaneous
Given 𝑛 ∈ Z𝑑 we write |𝑛|∞ = max1≤𝑖≤𝑑 |𝑛𝑖 | and |𝑛| =

∑
1≤𝑖≤𝑑 |𝑛𝑖 |. For a real number a we denote by


𝑎� the largest integer which is smaller than or equal to a. Finally, for 𝑥 ∈ R𝑑 we let 
𝑥� =
∑𝑑

𝑖=1
𝑥𝑖� .

2. Locally analytic functions and vectors in mixed characteristic

In this section we introduce the spaces of functions and analytic vectors that will appear in this article.

2.1. Locally analytic functions on Z𝑑
𝑝

Let R be a Z𝑝-Tate algebra with valuation val𝑅 inducing its topology (recall our conventions regarding
valuations in §1.2). Let M be an R-module endowed with a compatible valuation val𝑀 .

In particular, when 𝑀 = 𝑅, we have the function from Z𝑑
𝑝 to R given by

𝑥 = (𝑥1, ..., 𝑥𝑑) ↦→

(
𝑥

𝑛

)
:=

(
𝑥1
𝑛1

)
· ... ·

(
𝑥𝑑
𝑛𝑑

)
.

1This condition is not automatic for a Z𝑝-Tate algebra, as can be seen in the example 𝑅 = Z𝑝 [ [𝜛 ] ] 〈𝑝2/𝜛 〉 [1/𝜛 ].

https://doi.org/10.1017/fms.2025.10121 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10121


Forum of Mathematics, Sigma 5

Given a function 𝑓 : Z𝑑
𝑝 → 𝑀 and an element 𝑦 ∈ Z𝑑

𝑝 , we write Δ 𝑦 ( 𝑓 ) : Z𝑑
𝑝 → 𝑀 for the function

given by Δ 𝑦 ( 𝑓 ) (𝑥) = 𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥). The operators Δ 𝑦 and Δ 𝑧 are commuting for 𝑦, 𝑧 ∈ Z𝑑
𝑝 . We set

Δ𝑛
𝑦 ( 𝑓 ) for the n-th application of Δ 𝑦 to f. Given a d-dimensional vector 𝑛, we write Δ𝑛 = Δ𝑛1

1 ◦ ... ◦Δ𝑛𝑑
𝑑 ,

where Δ 𝑘 = Δ1𝑘 for 1𝑘 ∈ Z𝑑
𝑝 being 1 on the k-th copy of Z𝑝 and 0 elsewhere. Setting (−1)𝑚 =

(−1)𝑚1+...+𝑚𝑑 , it can be checked that

Δ𝑛 ( 𝑓 ) (𝑥) =
𝑛∑
𝑖=0
(−1)𝑛+𝑖

(
𝑛

𝑖

)
𝑓 (𝑖 + 𝑥)

and that for 𝑚 ≤ 𝑛 one has Δ𝑚 (
(𝑥
𝑛

)
) =

( 𝑥
𝑛−𝑚

)
.

For this section it will also be important to introduce for 𝑧 ∈ Z𝑑
𝑝 the shift operator sh𝑧 given by

sh𝑧 ( 𝑓 ) (𝑥) = 𝑓 (𝑧 + 𝑥). It commutes with the Δ 𝑦 , and we have the identity

Δ 𝑥+𝑦 ( 𝑓 ) = (sh𝑦 ◦ Δ 𝑥) ( 𝑓 ) + Δ 𝑦 ( 𝑓 ). (1)

Recall §1.2 for the notation valop
𝑀 .

Lemma 2.1. Let 𝑦 ∈ Z𝑑
𝑝 . Then for every 𝑓 : Z𝑑

𝑝 → 𝑀 we have

valop
𝑀 (Δ

𝑛
𝑦 ( 𝑓 )) ≥ min

1≤𝑖≤𝑑
(valop

𝑀 (Δ
�𝑛/𝑑�
𝑖 ( 𝑓 ))).

Proof. Using continuity, we may restrict to the case 𝑦 ∈ Z𝑑
≥0. By writing 𝑦 as a sum of 1𝑘 ’s and applying

the identity (1) inductively, we may write

Δ 𝑦 =
∑
𝑗

𝑎 𝑗sh𝑧
𝑗
Δ 𝑖 𝑗

for some 𝑎 𝑗 ∈ Z, 𝑧
𝑗
∈ Z𝑑 and 1 ≤ 𝑖 𝑗 ≤ 𝑑 (the 𝑖 𝑗 may repeat). Raising this to the n-th power, we

obtain a writing of Δ 𝑦 as a Z-linear combination up to shifts of Δ𝑚’s where for each 𝑚 we have∑
𝑚𝑖 = 𝑛. For each such 𝑚, choose the maximal coordinate 𝑚𝑖 . For every 𝑔 : Z𝑝 → 𝑀 one has

valop
𝑀 (Δ

𝑚 (𝑔)) ≥ valop
𝑀 (Δ

𝑚𝑖
𝑖 (𝑔)); applying this observation to shifts of f and using that 𝑚𝑖 ≥ �𝑛/𝑑�, this

concludes the proof. �

We write C0(Z𝑑
𝑝 , 𝑀) for the continuous functions from Z𝑝 to M. The following version of Mahler’s

theorem shows each continuous function has an expansion in terms of the
(𝑥
𝑛

)
.

Theorem 2.2. The following are equivalent for a function 𝑓 : Z𝑑
𝑝 → 𝑀 .

1. We have 𝑓 ∈ C0(Z𝑑
𝑝 , 𝑀).

2. The function f has an expansion of the form 𝑓 (𝑥) =
∑

𝑛∈Z𝑑
≥0

𝑎𝑛 ( 𝑓 )
(𝑥
𝑛

)
with val𝑀 (𝑎𝑛 ( 𝑓 )) → ∞ as

|𝑛| → ∞.

Furthermore, under these equivalent conditions we have 𝑎𝑛 = Δ𝑛 ( 𝑓 ) (0) and valop
𝑀 ( 𝑓 ) =

inf𝑛∈Z≥0 val𝑀 (𝑎𝑛).

Proof. We follow the proof of Bojanic [Boj74], see also Theorem 1.13 of [BR22].
First, suppose f has an expansion of the form 𝑓 (𝑥) =

∑
𝑎𝑛

(𝑥
𝑛

)
with 𝑎𝑛 → 0. Then f is continuous

since it is the uniform limit of continuous functions. We now explain why do we have in this case the
equality

valop
𝑀 ( 𝑓 ) = inf

𝑛∈Z≥0
val𝑀 (𝑎𝑛).
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Indeed, for each 𝑛, the element 𝑎𝑛 = Δ𝑛 ( 𝑓 ) (0) is a sum of elements in Im( 𝑓 ), which shows
inf𝑥 val𝑀 ( 𝑓 (𝑥)) ≤ inf𝑛 val𝑀 (𝑎𝑛). The inequality in other direction is clear given the existence of the
expansion.

Conversely, suppose f is continuous. We set 𝑎𝑛 = Δ𝑛 ( 𝑓 ) (0). It suffices to show that 𝑎𝑛 → 0; indeed,
with that given, the function f and the one given by 𝑔(𝑥) :=

∑
𝑛 𝑎𝑛

(𝑥
𝑛

)
agree on Z𝑑

≥0, hence are equal.
Since Z𝑑

𝑝 is compact, the function f is uniformly continuous. Fix 𝑠 ≥ 0; then there exists 𝑡 ≥ 0 such
that if val(𝑥 − 𝑦) ≥ 𝑡 then val𝑀 ( 𝑓 (𝑥) − 𝑓 (𝑦)) ≥ 𝑠val(𝑝) + valop

𝑀 ( 𝑓 ). The same statement, with the same
t, holds for any Δ𝑛 ( 𝑓 ). To conclude the proof, it suffices to show that if |𝑛|∞ is larger than 𝑠𝑝𝑡 then
val(𝑎𝑛) ≥ 𝑠val(𝑝) + valop

𝑀 ( 𝑓 ).
Now given a function g we have

Δ 𝑝𝑡1𝑘 (𝑔) (𝑥) = 𝑔(𝑥 + 𝑝𝑡1𝑖) − 𝑔(𝑥) + 𝑝 · 𝑦(𝑥)

for some element 𝑦(𝑥) with val𝑀 (𝑦(𝑥)) ≥ valop
𝑀 (𝑔). Taking g to be a function of the form Δ𝑛 ( 𝑓 ), we

obtain val(𝑔(𝑥 + 𝑝𝑡1𝑖) − 𝑔(𝑥)) ≥ 𝑠val(𝑝) + valop
𝑀 ( 𝑓 ) and so for every 𝑛 and k we have the inequality

valop
𝑀 (Δ

𝑝𝑡1𝑘 (Δ𝑛 ( 𝑓 ))) ≥ min(𝑠val(𝑝) + valop
𝑀 ( 𝑓 ), val(𝑝) + valop

𝑀 (Δ
𝑛 ( 𝑓 ))). (2)

Now if |𝑛|∞ > 𝑠𝑝𝑡 then the k-th coordinate of 𝑛 is larger than 𝑠𝑝𝑡 for some k. Applying (2)
consecutively to

Δ𝑛−𝑠𝑝𝑡1𝑘 ( 𝑓 ),Δ𝑛−(𝑠−1) 𝑝𝑡1𝑘 ( 𝑓 ), ...,Δ𝑛−𝑝𝑡1𝑘 ( 𝑓 )

shows valop
𝑀 (Δ

𝑛 ( 𝑓 )), hence also 𝑎𝑛 ( 𝑓 ), has valuation at least 𝑠val(𝑝) + valop
𝑀 ( 𝑓 ). This finishes the

proof. �

We now give several definitions for analytic functions on Z𝑑
𝑝 and explain the relationships between

them. See also [BR22], [BR24], §3 of [Gul19], and §3.2 of [JN19] for similar definitions.

Proposition 2.3. Let 𝜆, 𝜇 ∈ R. The following are equivalent for a function 𝑓 : Z𝑑
𝑝 → 𝑀 .

1. The inequality val𝑀 (𝑎𝑛 ( 𝑓 )) ≥ 𝑝𝜆 · 𝑝 
log𝑝 ( |𝑛 |∞) � + 𝜇 holds for every 𝑛 ∈ Z𝑑
≥0.

2. The inequality valop
𝑀 (Δ

𝑛
𝑖 ( 𝑓 )) ≥ 𝑝𝜆 · 𝑝 
log𝑝 (𝑛) � + 𝜇 holds for every 1 ≤ 𝑖 ≤ 𝑑 and 𝑛 ∈ Z≥0.

Proof. To show 1 implies 2, we may assume 𝑛 = 𝑝𝑘 . Write 𝑓 (𝑥) =
∑

𝑎𝑛
(𝑥
𝑛

)
(as we may according to

2.2), then

Δ 𝑝𝑘

𝑖 ( 𝑓 ) (𝑥) =
∑

𝑎𝑛Δ
𝑝𝑘

𝑖 (

(
𝑥

𝑛

)
) =

∑
𝑛:𝑛𝑖≥𝑝𝑘

𝑎𝑛

(
𝑥

𝑛 − 1𝑖 𝑝𝑘

)
,

for which each term has val ≥ 𝑝𝜆 · 𝑝𝑘 + 𝜇 by assumption.
Conversely, choose i with 𝑛𝑖 = |𝑛|∞. Let 𝑛′ be 𝑛 with the i-th coordinate removed. Then

𝑎𝑛 ( 𝑓 ) = Δ𝑛 ( 𝑓 ) (0) = (Δ𝑛𝑖
𝑖 (Δ

𝑛′ ( 𝑓 )) (0)).

As Δ𝑛′ ( 𝑓 ) is a Z-linear combination of shifts of f, we obtain that 𝑎𝑛 ( 𝑓 ) is a Z-linear combination of
Δ𝑛𝑖
𝑖 ( 𝑓 ) (𝑡 𝑗 ) for various 𝑡 𝑗 . Each of these has valuation≥ 𝑝 
log𝑝 (𝑛𝑖 ) �+𝜇 = 𝑝 
log𝑝 ( |𝑛 |∞) �+𝜇, as required. �

Definition 2.4.

1. Let Can-𝜆,𝜇 (Z𝑑
𝑝 , 𝑀) be the submodule of functions satisfying any of the equivalent conditions of

Proposition 2.3. By condition 1 and Theorem 2.2, it is contained in C0(Z𝑑
𝑝 , 𝑀).
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2. Let C𝜆-an(Z𝑑
𝑝 , 𝑀) ⊂ C0(Z𝑑

𝑝 , 𝑀) be the submodule of functions f satisfying val𝑀 (𝑎𝑛 ( 𝑓 )) − 𝑝𝜆 |𝑛| →
∞. We endow it with the valuation

val𝜆 ( 𝑓 ) := inf
𝑛
(𝑎𝑛 ( 𝑓 ) − 
𝑝

𝜆𝑛�)

(recall §1.2 for the notation 
𝑝𝜆𝑛�.)

Proposition 2.5. The modules Can-𝜆,𝜇 (Z𝑑
𝑝 , 𝑀) and C𝜆-an(Z𝑑

𝑝 , 𝑀) are stable under the shift operator sh𝑧
for any 𝑧 ∈ Z𝑑

𝑝 .
Furthermore, the action of Z𝑑

𝑝 on C𝜆-an(Z𝑑
𝑝 , 𝑀) given by shifts is continuous and each element of Z𝑑

𝑝

acts as an isometry.

Proof. For Can-𝜆,𝜇 (Z𝑑
𝑝 , 𝑀) the statement follows from Proposition 2.3. We now show the statement

holds for C𝜆-an(Z𝑑
𝑝 , 𝑀). Suppose it were known for shifts by elements of Z𝑑 . Let 𝑧 ∈ Z𝑑

𝑝 and let
𝑓 ∈ C𝜆-an(Z𝑑

𝑝 , 𝑀). As f is uniformly continuous, we can find some m so that val𝑀 ( 𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) > 1
if val(𝑥 − 𝑦) > 𝑚. Choosing 𝑧0 ∈ Z𝑑 with val(𝑧 − 𝑧0) > 𝑚, we see that valop

𝑀 (sh𝑧 ( 𝑓 ) − sh𝑧0
( 𝑓 )) > 1

and sh𝑧0
( 𝑓 ) ∈ C𝜆-an(Z𝑑

𝑝 , 𝑀) which implies sh𝑧 ( 𝑓 ) ∈ C𝜆-an(Z𝑑
𝑝 , 𝑀). This argument also shows the

action of Z𝑑
𝑝 on C𝜆-an(Z𝑑

𝑝 , 𝑀) is continuous (provided we show it exists). We thus reduce to the case
where 𝑧 ∈ Z𝑑 , which allows us to reduce further to the case 𝑧 = 1𝑖 for 1 ≤ 𝑖 ≤ 𝑑. Finally, we have
𝑎𝑛 (sh1𝑖 ( 𝑓 )) = 𝑎𝑛 ( 𝑓 ) + 𝑎𝑛+1𝑖 ( 𝑓 ) which shows sh1𝑖 ( 𝑓 ) ∈ C𝜆-an(Z𝑑

𝑝 , 𝑀).
It remains to show each element of Z𝑑

𝑝 acts as an isometry on C𝜆-an(Z𝑑
𝑝 , 𝑀). We may reduce again

to showing that sh1𝑖 acts as an isometry. To show this, take 𝑓 ∈ C𝜆-an(Z𝑑
𝑝 , 𝑀) and let 𝑛0 be maximal

with val𝜆 ( 𝑓 ) = val𝑀 (𝑎𝑛0
( 𝑓 )) − 
𝑝𝜆𝑛0�). Then val𝑀 (𝑎𝑛0+1𝑖 ( 𝑓 )) > val𝑀 (𝑎𝑛0

( 𝑓 )), and so the formula
𝑎𝑛 (sh1𝑖 ( 𝑓 )) = 𝑎𝑛 ( 𝑓 ) + 𝑎𝑛+1𝑖 ( 𝑓 ) shows val𝜆 (sh1𝑖 ( 𝑓 )) ≤ val𝜆( 𝑓 ). Now by using the uniform continuity
again, we know that for 𝑝𝑘 for k sufficiently large we have val𝜆 (sh𝑝𝑘1𝑖 ( 𝑓 )) = val𝜆 ( 𝑓 ). Hence the
inequalities

val𝜆( 𝑓 ) = val𝜆 (sh𝑝𝑘1𝑖 ( 𝑓 )) ≤ val𝜆 (sh(𝑝𝑘−1)1𝑖 ( 𝑓 )) ≤ ... ≤ val𝜆 (sh1𝑖 ( 𝑓 )) ≤ val𝜆 ( 𝑓 )

are all forced to be equalities, which shows val𝜆 (sh1𝑖 ( 𝑓 )) = val𝜆 ( 𝑓 ), as required. �

Lemma 2.6. Let 𝜆 ∈ R and 𝑐 > 0. Then there exist 𝑙 ≥ 0 such that for every 𝑓 ∈ C𝜆-an (Z𝑑
𝑝 , 𝑀) and for

every 1 ≤ 𝑖 ≤ 𝑑 we have

val𝜆 (Δ 𝑝𝑙1𝑖 ( 𝑓 )) ≥ val𝜆( 𝑓 ) + 𝑐.

Proof. Let 𝑙 ≥ 0 be arbitrary. We have the Vandermonde identity

Δ 𝑝𝑙1𝑖 (

(
𝑥

𝑛

)
) =

𝑛𝑖∑
𝑗=1

(
𝑥

𝑛 − 𝑗1𝑖

) (
𝑝𝑙

𝑗

)
.

Writing 𝑓 (𝑥) =
∑

𝑛 𝑎𝑛
(𝑥
𝑛

)
, the identity above shows that

Δ 𝑝𝑙1𝑖 ( 𝑓 ) =
∑
𝑛

(

∞∑
𝑗=1

𝑎𝑛+ 𝑗1𝑖

(
𝑝𝑙

𝑗

)
)

(
𝑥

𝑛

)
,

and hence

Δ𝑛 (Δ 𝑝𝑙1𝑖 ( 𝑓 ) (0)) =
∞∑
𝑗=1

𝑎𝑛+ 𝑗1𝑖

(
𝑝𝑙

𝑗

)
.
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From this we get the lower bound

val𝑀 (Δ𝑛 (Δ 𝑝𝑙1𝑖 ( 𝑓 ) (0))) ≥ inf
𝑗≥1
(val(𝑎𝑛+ 𝑗1𝑖 ) + val(

(
𝑝𝑙

𝑗

)
)).

On the other hand, by definition we have the inequality

val𝑀 (𝑎𝑛+ 𝑗1𝑖 ) ≥

𝑑∑
𝑖=1

𝑝𝜆 (𝑛𝑖 + 𝑗𝛿𝑖 𝑗 )� + val𝜆 ( 𝑓 ).

Putting this all together, we get

val𝜆 (Δ 𝑝𝑙1𝑖 ( 𝑓 )) = inf
𝑛
(val𝑀 (Δ𝑛 (Δ 𝑝𝑙1𝑖 ( 𝑓 ) (0))) − 
𝑝

𝜆𝑛�)

≥ val𝜆( 𝑓 ) + inf
𝑗≥1
(𝑝𝜆 𝑗 − 1 + val(

(
𝑝𝑙

𝑗

)
)),

and so any choice of l which satisfies inf 𝑗≥1 (𝑝
𝜆 𝑗 − 1 + val(

(𝑝𝑙
𝑗

)
)) > 𝑐 works. �

Corollary 2.7. For every 𝜆 and 𝜆′ there exists an 𝑙 ≥ 0 such that restriction from Z𝑑
𝑝 to 𝑝𝑙Z𝑑

𝑝 maps
C𝜆-an (Z𝑑

𝑝 , 𝑀) into C𝜆′-an(𝑝𝑙Z𝑑
𝑝 , 𝑀).

Proof. Choose any 𝑐 > 𝑝𝜆′ + 1 and 𝑙 ≥ 0 so that the previous lemma applies to c and 𝜆. Let 𝑓 ∈
C𝜆-an (Z𝑑

𝑝 , 𝑀) a function. We wish to show its restriction lies in C𝜆′-an (𝑝𝑙Z𝑑
𝑝 , 𝑀). We may assume f lies

in C𝜆-an(Z𝑑
𝑝 , 𝑀)+. Let Δ𝑚

𝑝𝑙
denote the composition Δ𝑚1

𝑝𝑙11
◦ ... ◦ Δ𝑚𝑑

𝑝𝑙1𝑑
. We need to show that

val(Δ𝑚

𝑝𝑙
( 𝑓 ) (0)) − 𝑝𝜆′ |𝑚 | → ∞.

Applying the previous lemma successively to 𝑓 ∈ C𝜆-an(Z𝑑
𝑝 , 𝑀)+ we get the inequality

val𝜆(Δ
𝑚

𝑝𝑙
( 𝑓 )) ≥ |𝑚 |𝑐.

By the general inequality val𝑀 (𝑔(0)) ≥ val𝜆 (𝑔) we deduce

val𝑀 (Δ
𝑚

𝑝𝑙
( 𝑓 ) (0)) ≥ |𝑚 |𝑐 ≥ 𝑝𝜆′ |𝑚 | + |𝑚 |

which gives the desired lower bound for the val𝑀 (Δ
𝑚

𝑝𝑙
( 𝑓 ) (0)). �

For 𝜆 ≤ 𝜆′ and 𝜇 ≤ 𝜇′we have natural maps C𝜆′-an(Z𝑑
𝑝 , 𝑀) → C𝜆-an (Z𝑑

𝑝 , 𝑀) and Can-𝜆′,𝜇′ (Z𝑑
𝑝 , 𝑀) →

Can-𝜆,𝜇 (Z𝑑
𝑝 , 𝑀). We will often consider filtered colimits along these maps. The following lemma shows

it does not matter much which system we use.

Lemma 2.8. The systems {Can-𝜆,𝜇 (Z𝑑
𝑝 , 𝑀)}𝜆,𝜇 and {C𝜆-an(Z𝑑

𝑝 , 𝑀)}𝜆 are cofinal with respect to each
other. Furthermore, up to cofinality the systems do not depend on the choice of basis of Z𝑑

𝑝 .

Proof. The cofinality of {Can-𝜆,𝜇 (Z𝑑
𝑝 , 𝑀)}𝜆,𝜇 and {C𝜆-an(Z𝑑

𝑝 , 𝑀)}𝜆 follows from the inequality |𝑛|∞ ≤
|𝑛| ≤ |𝑛|∞/𝑑 for 𝑛 ∈ Z𝑑

≥0 by condition 1 of Proposition 2.3. The cofinality with respect to a different
basis follows from Lemma 2.1 and condition 2 of Proposition 2.3. �

Definition 2.9. We let Cla(Z𝑑
𝑝 , 𝑀) be the colimit of any of these cofinal systems. Elements lying in this

module are thought of as locally analytic functions of Z𝑑
𝑝 which are valued in M.
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2.2. Locally analytic vectors

Let M be as in the previous subsection and let G be a compact p-adic Lie group of dimension d which
acts continuously on M by isometries. There exists an open uniform subgroup 𝐺0 ⊂ 𝐺 by Corollary 4.3
of [DDSMS03]. We can choose it to be normal. As 𝐺0 is uniform, there exists an ordered basis 𝑔1, ..., 𝑔𝑑
such that the coordinate map 𝑐 : (𝑥1, ..., 𝑥𝑑) ↦→ 𝑔𝑥1

1 · ... · 𝑔
𝑥𝑑
𝑑 gives a homeomorphism of Z𝑑

𝑝 with 𝐺0.
Set 𝐺𝑖 = 𝐺 𝑝𝑖 = {𝑔𝑝𝑖 : 𝑔 ∈ 𝐺0}. The 𝐺𝑖 are open normal subgroups of 𝐺0 which correspond the 𝑝𝑖Z𝑑

𝑝

under c. We define C0(𝐺0, 𝑀), Can-𝜆,𝜇 (𝐺0, 𝑀), C𝜆-an(𝐺0, 𝑀) and Cla(𝐺0, 𝑀) by pulling back along c
the definitions of Definition 2.4. We are not claiming all of these are independent of the coordinate
system chosen, but we shall see later the independence of the coordinate system for the most interesting
objects considered here.

If 𝑔 ∈ 𝐺0 there exists some maximal i so that 𝑔𝑝−𝑖 ∈ 𝐺0; there then exists some basis of 𝐺0 with
𝑔𝑝−𝑖 = 𝑔1. For this basis, shifting in 𝐺0 by g corresponds to shifting in Z𝑑

𝑝 by 𝑐(𝑔). It then follows from
Proposition 2.5 that 𝐺0 acts on Cla(𝐺0, 𝑀) by the formula 𝑔( 𝑓 ) (𝑥) = 𝑔( 𝑓 (𝑔−1𝑥)).

Definition 2.10. We define locally analytic elements as follows.

1. Set2 𝑀𝐺0 ,𝜆-an = C𝜆-an(𝐺0, 𝑀)𝐺0 and 𝑀𝐺0 ,an-𝜆,𝜇 = Can-𝜆,𝜇 (𝐺0, 𝑀)𝐺0 .
2. Let 𝑀𝐺0-la := Cla(𝐺0, 𝑀)𝐺0 . We have

𝑀𝐺0-la = lim
−−→
𝜆

𝑀𝐺0 ,𝜆-an = lim
−−→
𝜆,𝜇

𝑀𝐺0 ,an-𝜆,𝜇 .

There is a natural injective map 𝑀𝐺0-la ↩→ 𝑀 obtained by mapping 𝑓 : 𝐺0 → 𝑀 to 𝑓 (1). Thus
we will interchangeably regard 𝑀𝐺0-la as the submodule of 𝐺0-locally analytic elements in M. Under
this injection, 𝑀𝐺0-la is actually stable under the entire G-action (not just the 𝐺0-action). Indeed given
𝑚 ∈ 𝑀𝐺0-la, 𝑔 ∈ 𝐺 and 𝑔0 ∈ 𝐺0, we may write 𝑔0𝑔(𝑚) = 𝑔(𝑔−1𝑔0𝑔) (𝑚). Since 𝐺0 is normal,
𝑔0 ↦→ 𝑔−1𝑔0𝑔 is an automorphism of 𝐺0, hence of Z𝑑

𝑝 if we choose for c the Lie algebra coordinates;
this shows that 𝑔0 ↦→ (𝑔

−1𝑔0𝑔) (𝑚) is still an analytic function by Lemma 2.8. Hence the same holds for
𝑔0 ↦→ 𝑔(𝑔−1𝑔0𝑔) (𝑚) as g acts on M as an isometry.

Lemma 2.11. If 𝐺 ′0 ⊂ 𝐺0 are uniform subgroups of G then 𝑀𝐺0-la ⊂ 𝑀𝐺′0-la.

Proof. Let 𝑓 ∈ Can-𝜆,𝜇 (𝐺0, 𝑀). By Lemma 2.1 and condition 2 of Proposition 2.3 we have that f
restricts to Can-𝜆′,𝜇′ (𝐺 ′0, 𝑀) for some 𝜆′, 𝜇′, from which the lemma follows. �

Definition 2.12. The locally analytic elements of M are given by

𝑀 la = lim
−−→
𝐺0

𝑀𝐺0-la,

the colimit taken over uniform normal subgroups 𝐺0 of G.

Remark 2.13. We have made the definition above to get a concept of locally analytic vectors independent
of the choice of 𝐺0, which will suffice for this article. Of course, one already expects 𝑀𝐺0-la to be
independent of the choice of 𝐺0, as is known in the characteristic 0 theory. We plan to address this and
other foundational issues in future work.

Example 2.14.

1. Suppose 𝑅 = Q𝑝 so that M is a Q𝑝-vector space with val𝑀 making it a Banach space. In this case,
𝑀 la coincides with the usual locally analytic vectors (as defined, for example, in [Eme17]). This is a
consequence of the Amice theorem (Chapitre 3 of [Ami64], see also Théorème I.4.7 of [Col10]).

2Even though 𝐺0 does not act on the submodules C𝜆-an (𝐺0 , 𝑀 ) and Can-𝜆,𝜇 (𝐺0 , 𝑀 ) in general, it does act on the larger
space Cla (𝐺0 , 𝑀 ) , so it makes sense to speak of 𝐺0-fixed points.
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In this setting, the 𝐺0-action can be differentiated and one gets an action of the Lie algebra Lie(𝐺),
which is a key extra structure. Unfortunately, this action seems to be unavailable outside this special
case. The reason is that when p is the topologically nilpotent unit, one can link functions of the form(𝑥
𝑛

)
and 𝑥𝑛 by cancelling out the p-part of the denominator of

(𝑥
𝑛

)
(see the proof of Théorème I.4.7 of

[Col10]). But it is unclear (at least to us) how to do something of this flavor more generally.
2. Suppose M is an F𝑝-vector space. In this case, one checks using Proposition 2.3 that 𝑀 la coincides

with the super-Hölder vectors 𝑀sh ⊂ 𝑀 defined in [BR24].
3. Suppose we have a perfectoid field 𝐾∞ in characteristic 0 with an action of Γ � Z𝑝 . Recall that we

can form the tilt 𝐾♭
∞ which is a perfectoid field in characteristic p, and there is a multiplicative map

denoted ♯ from 𝐾♭
∞ to 𝐾∞. For 𝑥 ∈ 𝐾♭,+

∞ it is given by 𝑥♯ = lim𝑛→∞ 𝑦𝑝𝑛

𝑛 where the 𝑦𝑛 are any lifts of
𝑥1/𝑝𝑛 to 𝐾+∞.

Claim. Suppose that 𝑥♯ is Γ-smooth. Then x is locally analytic.
Indeed, without loss of generality, we may assume 𝑥♯ is fixed by 𝛾 and 𝑥 ∈ 𝐾♭,+

∞ . The element 𝛾𝑝

fixes 𝑥1/𝑝 , because the action on the p-th roots of x gives a homomorphism Z𝑝 → 𝑆𝑛 with 𝑛 ≤ 𝑝,
and any such homomorphism has to factor through Z/𝑝. Arguing similarly by induction, we see that
(𝑥1/𝑝𝑚 )♯ is fixed by 𝛾𝑝𝑚 .

Hence, we get

val𝐾 ♭∞ (𝛾
𝑝𝑚 ((𝑥1/𝑝𝑚 )) − (𝑥1/𝑝𝑚 )) = val𝐾∞ ([𝛾

𝑝𝑚 ((𝑥1/𝑝𝑚 )) − (𝑥1/𝑝𝑚 )]♯)

which is

≥ min(val(𝑝), val([𝛾𝑝𝑚 ((𝑥1/𝑝𝑚 )♯) − (𝑥1/𝑝𝑚 )♯])) = val(𝑝).

Hence val(𝛾𝑝𝑚 (𝑥) − 𝑥) ≥ 𝑝𝑚val(𝑝) which shows that x is locally analytic. This concludes the proof
of the claim.

For example, take the cyclotomic extension for 𝐾∞ with Γ being the cyclotomic group. The tilt ẼQ𝑝 is
isomorphic to the X-adic completion of ∪𝑛F𝑝 ((𝑋

1/𝑝𝑛 )). The element 𝑋 ∈ ẼQ𝑝 has 𝑋♯ = 𝜁𝑝 − 1 ∈ 𝐾∞,
and so is locally analytic. This is of course also easy to check directly. Let us point out that the main
theorem of [BR22] gives the much stronger

Ẽla
Q𝑝 = ∪𝑛F𝑝 ((𝑋

1/𝑝𝑛 ))

(Ẽsh in their notation) which shows that taking locally analytic vectors undoes the X-adic completion.
In §4 we shall show how to deduce this result from our main theorem.

In Example 2.14.3 we had a field whose locally analytic vectors were also a field. This happens in
general, as shown in the following.

Lemma 2.15.

(i) The abelian subgroup 𝑅la ⊂ 𝑅 is a subring.
(ii) Let 𝑟 ∈ 𝑅× ∩ 𝑅la. Then 𝑟−1 ∈ 𝑅la.

Proof. This is similar to argument of Lemma 2.5 of [BC16] which we produce here for the convenience
of the reader. We may assume 𝐺 = 𝐺0 is a uniform subgroup and identify it analytically with Z𝑑

𝑝 . Recall
that locally analytic functions are those for which the valuation of 𝑎𝑛 grows at least linearly with |𝑛|.
For (i), note that for 𝑛, 𝑚 ∈ Z𝑑

≥0 we have
(
𝑥

𝑛

)
·

(
𝑥

𝑚

)
=

∑
𝑘≤𝑛+𝑚

𝑐𝑘

(
𝑥

𝑘

)
(3)
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for some 𝑐𝑘 ∈ Z. This proves 𝑅la is a ring. For (ii), write orb𝑟 (𝑥) = 𝑟 +
∑

𝑛≠0 𝑎𝑛
(𝑥
𝑛

)
. We have the identity

orb1/𝑟 (𝑥) =
1
𝑟

∑
𝑗≥0
(−1) 𝑗 (

∑
𝑛≠0

𝑎𝑛

(
𝑥

𝑛

)
/𝑟) 𝑗 ,

which is still locally analytic. �

Proposition 2.16. Suppose that M is free of rank d over R, and suppose 𝑚1, ..., 𝑚𝑑 is an R-basis of M
with 𝑔 ↦→ Mat(𝑔) locally analytic in each coordinate. Then 𝑀 la = ⊕𝑖𝑅la · 𝑚𝑖 .

Proof. Again, we reproduce the argument of 2.3 of [BC16] for the convenience of the reader. Let 𝑎𝑖 𝑗 (𝑔)
be the coordinates of 𝑔 ↦→ Mat(𝑔). Then 𝑔(𝑚𝑖) =

∑
𝑗 𝑎𝑖 𝑗 (𝑔)𝑚 𝑗 , so each 𝑚𝑖 is locally analytic. This

proves the inclusion ⊕𝑖𝑅la · 𝑚𝑖 ⊂ 𝑀 la. Conversely, let 𝑚 ∈ 𝑀 la. Write 𝑚 =
∑

𝑖 𝑟𝑖𝑚𝑖 with 𝑟𝑖 ∈ 𝑅. By
assumption, we may write 𝑔(𝑚) =

∑
𝑖 𝑓𝑖 (𝑔)𝑚𝑖 with each 𝑓𝑖 locally analytic. Applying g to 𝑚 =

∑
𝑖 𝑟𝑖𝑚𝑖 ,

we get the identity 𝑔(𝑟𝑖) =
∑

𝑗 𝑏𝑖 𝑗 (𝑔) 𝑓 𝑗 (𝑔), where 𝑏𝑖 𝑗 (𝑔) are the coordinates of Mat(𝑔)−𝑡 . These are
polynomials in the 𝑎𝑖 𝑗 (𝑔) multiplied by det(𝑔), hence are locally analytic by the previous lemma. �

2.3. Higher locally analytic elements

It will be useful for us to define a derived functor for 𝑀 ↦→ 𝑀 la. As 𝑀 la = lim
−−→𝐺0

Cla(𝐺0, 𝑀)𝐺0 , we may
extend this definition to 𝑖 ≥ 0 by setting

R𝑖
la(𝑀) := lim

−−→
𝐺0

H𝑖 (𝐺0, Cla(𝐺0, 𝑀)).

Here we are considering continuous cocycles, taking the inductive topology on Cla(𝐺0, 𝑀) induced
from that of its submodules C𝜆-an(𝐺0, 𝑀).

We shall call these groups the higher locally analytic elements of M. If

0→ 𝑀1 → 𝑀2 → 𝑀3 → 0

is a short exact sequence of submodules in the appropriate category then we claim that we have a long
exact sequence

0→ 𝑀 la
1 → 𝑀 la

2 → 𝑀 la
3 → R1

la(𝑀1) → R1
la(𝑀2) → R1

la (𝑀3) → ...

This requires some explanation. Using the open mapping theorem in this setting (Theorem 2.2.8 of
[KL11]) we conclude that all the mappings are strict. From here the argument for exactness is the same
as Lemma 2.2.2 of [Pan22].

3. Decompletion

In this section we shall prove decompletion results for G-modules M as in §2 under more assumptions.
Subsection §3.1 will state the results while the rest of the subsections will be devoted to their proof.

3.1. Statement of the results

The setup is as follows. Let (Λ̃, Λ̃+) be a pair of topological rings with Λ̃+ ⊂ Λ̃ and 𝜛 an element
of Λ̃+. We assume Λ̃ is a Tate algebra over Z𝑝 with Λ̃+ a ring of definition, and 𝜛 a topologically
nilpotent unit. We assume Λ̃+ is 𝜛-adically complete, and endow Λ̃ with a valuation valΛ̃ making it so
that Λ̃+ = Λ̃val≥0 and valΛ̃ (𝜛𝑥) = valΛ̃(𝜛) + valΛ̃ (𝑥). Finally, we assume that we are given a compact
p-adic Lie group G acting on Λ̃ by isometries. We let M be a finite free module over Λ̃, endowed with a

https://doi.org/10.1017/fms.2025.10121 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10121


12 G. Porat

𝜛-adic topology and a semilinear G-action. We may choose a G-stable Λ̃+-lattice 𝑀+ ⊂ 𝑀 so that the
topology on M is induced from the 𝜛-adic valuation val𝑀 making 𝑀+ the open unit ball (this valuation
is implicitly needed to make sense of R𝑖

la(𝑀) in what follows).
The main result of this section is the following result which generalizes Theorem C of [Por24].

Theorem 3.1. Suppose that the pair (Λ̃, Λ̃+) satisfies the Tate-Sen axioms (TS1)-(TS4) (see §3.2). Then

1. The natural map

Λ̃ ⊗Λ̃la 𝑀 la → 𝑀

is an isomorphism.
2. If moreover the Lie algebra Lie(𝐺) is abelian, we have R𝑖

la(𝑀) = 0 for 𝑖 ≥ 1.

Corollary 3.2. Let M be as above, and assume further that 𝐺 � Z𝑝 . Then there exist natural isomor-
phisms

H𝑖 (𝐺, 𝑀 la) � H𝑖 (𝐺, 𝑀)

for 𝑖 ≥ 0.

Proof. As Γ � Z𝑝 we know that H𝑖 (𝐺, 𝑀) = H𝑖 (𝐺, 𝑀 la) = 0 for 𝑖 ≥ 2 (see V, 2.2.3.3 of [Laz65]),
while the equality for 𝑖 = 0 is obvious. So the only nontrivial case is 𝑖 = 1. Choosing 𝛾 for a generator
of G, we have an exact sequence

0→ 𝑀/H0 (𝐺, 𝑀)
𝛾−1
−−−→ 𝑀 → H1 (𝐺, 𝑀) → 0.

Taking locally analytic vectors (regarding H0(𝐺, 𝑀) and H1(𝐺, 𝑀) as having a trivial G-action) we
obtain an exact sequence

0→ (𝑀/H0 (𝐺, 𝑀))la
𝛾−1
−−−→ 𝑀 la → H1 (𝐺, 𝑀) → R1

la(𝑀/H
0 (𝐺, 𝑀)).

First, we claim R1
la(𝑀/H

0 (𝐺, 𝑀)) = 0. This is because there is an exact sequence

R1
la(𝑀) → R1

la (𝑀/H
0 (𝐺, 𝑀)) → R2

la(H
0 (𝐺, 𝑀))

and both of its outer terms vanish (the R1
la term because of the theorem, the R2

la term because Γ � Z𝑝).
On the other hand, we claim that (𝑀/H0 (𝐺, 𝑀))la = 𝑀 la/H0 (𝐺, 𝑀). This reduces to showing

R1
la (H

0(𝐺, 𝑀)) = 0; for this vanishing we need to show that 𝛾−1 acts surjectively on Cla(Γ, H0 (𝐺, 𝑀)).
Now if

∑
𝑛 𝑎𝑛

(𝑥
𝑛

)
∈ Cla(Γ, H0 (𝐺, 𝑀))with the coordinate x corresponding to 𝛾, then (𝛾−1) (

∑
𝑛 𝑎𝑛

(𝑥
𝑛

)
) =∑

𝑛 𝑎𝑛
( 𝑥
𝑛−1

)
, from which the surjectivity is clearly seen.

Putting the two claims together, we obtain an exact sequence

0→ 𝑀 la/H0 (𝐺, 𝑀)
𝛾−1
−−−→ 𝑀 la → H1(𝐺, 𝑀) → 0

which shows H0 (𝐺, 𝑀) is the cokernel of 𝑀 la 𝛾−1
−−−→ 𝑀 la, that is to say naturally isomorphic to

H1 (𝐺, 𝑀 la), as required. �

We end this subsection with a few natural conjectures.

Conjecture 3.3. The statement of Theorem 3.1 holds for any compact p-adic Lie group G (with no
assumption on Lie(𝐺)).

The following is an analogy of Theorem 1.5 of [RJRC22].
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Conjecture 3.4. There exists a spectral sequence

𝐸
𝑖, 𝑗
2 = H𝑖 (𝐺, R 𝑗

la (𝑀)) ⇒ H𝑖+ 𝑗 (𝐺, 𝑀).

Finally, we have a conjecture regarding cohomology which follows from the previous two conjectures.

Conjecture 3.5. Suppose Λ̃ satisfies the Tate-Sen axioms (TS1)-(TS4) (see §3.2 below), and that G is a
compact p-adic Lie group. Then there exist natural isomorphisms

H𝑖 (𝐺, 𝑀 la) � H𝑖 (𝐺, 𝑀)

for 𝑖 ≥ 0.

3.2. The Tate-Sen method

In this section we recall the Tate-Sen method introduced in [BC08] as well as some extensions of it
introduced in [Por22b] and [Por24].

Let Λ̃ and G be as in §3.1. We let 𝐺0 be an open and normal uniform subgroup of G (such a subgroup
always exists by Corollary 4.3 of [DDSMS03]). We suppose 𝐺0 is endowed with a continuous character
𝜒 : 𝐺0 → Z×𝑝 with open image and let 𝐻0 = ker 𝜒. If 𝑔 ∈ 𝐺0, let 𝑛(𝑔) = val𝑝 (𝜒(𝑔) − 1) ∈ Z. For 𝐺 ′0 an
open subgroup of 𝐺0, set 𝐻 ′ = 𝐺 ′0 ∩ 𝐻0. Let 𝐺𝐻 ′ be the normalizer of 𝐻 ′ in 𝐺0. Note 𝐺𝐻 ′ is open in
𝐺0 since 𝐺 ′0 ⊂ 𝐺𝐻 ′ . Finally let Γ̃𝐻 ′ = 𝐺𝐻 ′/𝐻

′ and write 𝐶𝐻 ′ for the center of Γ̃𝐻 ′ . By Lemma 3.1.1
of [BC08] the group 𝐶𝐻 ′ is open in Γ̃𝐻 ′ . Let 𝑛1(𝐻

′) be the smallest positive integer such that 𝜒(𝐶𝐻 ′ )

contains 1 + 𝑝𝑛Z𝑝 .
The Tate-Sen axioms are the following:
(TS1) There exists 𝑐1 > 0 such that for each pair 𝐻1 ⊂ 𝐻2 of open subgroups of 𝐻0 there exists

𝛼 ∈ Λ̃𝐻1 such that val(𝛼) > −𝑐1 and
∑

𝜏∈𝐻2/𝐻1 𝜏(𝛼) = 1.
(TS2) There exists 𝑐2 > 0 and for each open subgroup H of 𝐻0 an integer 𝑛(𝐻), as well as an

increasing sequence (Λ𝐻,𝑛)𝑛≥𝑛(𝐻 ) of closed subalgebras of Λ̃𝐻 , each containing 𝜛±1, and Λ𝐻,𝑛-linear
maps 𝑅𝐻,𝑛 : Λ̃𝐻 → Λ𝐻,𝑛 such that

(1) If 𝐻1 ⊂ 𝐻2 then Λ𝐻2 ,𝑛 ⊂ Λ𝐻1 ,𝑛 and 𝑅𝐻1 ,𝑛 |Λ̃𝐻2 = 𝑅𝐻2 ,𝑛.
(2) 𝑅𝐻,𝑛 (𝑥) = 𝑥 if 𝑥 ∈ Λ𝐻,𝑛.
(3) 𝑔(Λ𝐻,𝑛) = Λ𝑔𝐻𝑔−1 ,𝑛 and 𝑔(𝑅𝐻,𝑛 (𝑥)) = 𝑅𝑔𝐻𝑔−1 (𝑔𝑥) if 𝑔 ∈ 𝐺0.
(4) If 𝑛 ≥ 𝑛(𝐻) and if 𝑥 ∈ Λ̃𝐻 then val(𝑅𝐻,𝑛 (𝑥)) ≥ val(𝑥) − 𝑐2.
(5) If 𝑥 ∈ Λ̃𝐻 then lim𝑛→∞(𝑅𝐻,𝑛 (𝑥)).

(TS3) There exists 𝑐3 > 0 and, for each open subgroup 𝐺 ′ of 𝐺0 an integer 𝑛(𝐺 ′) ≥ 𝑛1 (𝐻
′)

where 𝐻 ′ = 𝐺 ′ ∩ 𝐻0, such that if 𝑛(𝛾) ≤ 𝑛 ≤ 𝑛(𝐺 ′) for 𝛾 ∈ Γ̃𝐻 ′ then 𝛾 − 1 is invertible on
𝑋𝐻 ′,𝑛 = (1 − 𝑅𝐻 ′,𝑛) (Λ̃𝐻 ′ ) and val((𝛾 − 1)−1(𝑥)) ≥ val(𝑥) − 𝑐3.

(TS4) For any sufficiently small open 𝐺 ′ ⊂ 𝐺0 and 𝑛 ≥ 𝑛(𝐺 ′), there exists a positive real number
𝑡 = 𝑡 (𝐺 ′, 𝑛) > 0 such that if 𝛾 ∈ 𝐺 ′ and 𝑥 ∈ Λ𝐻 ′,𝑛 then val((𝛾 − 1) (𝑥)) ≥ val(𝑥) + 𝑡.

Note that with the exception of (TS4), this is exactly the setting of §4.1 of [Por22b], except that we
do not assume 𝜒 is defined on the entire group. Also, we have slightly switched notation: our 𝐻 ′, 𝐺 ′ are
denoted there by 𝐻, 𝐺. We apologize for the possible confusion. We now recall some definitions and
results from §4.4 of loc. cit. which are in turn a small variant of the content appearing in §3 of [BC08].

We have the following two additive tensor categories, where 𝐺 ′ is an open subgroup of 𝐺0:

(1) Mod𝐺0

Λ̃+
(𝐺 ′), the category of finite free Λ̃+-semilinear representations of 𝐺0 such that for some basis

val(Mat(𝛾) − 1) > 𝑐1 + 2𝑐2 + 2𝑐3 for 𝛾 ∈ 𝐺 ′.
(2) Mod𝐺0

Λ+
𝐻′,𝑛

(𝐺 ′), the category of finite free Λ+𝐻 ′,𝑛-semilinear representations of 𝐺0 that are fixed
by 𝐻 ′ = 𝐺 ′ ∩ 𝐻0 and which have a 𝑐3-fixed basis for the 𝐺 ′ action, that is, for some basis
val(Mat(𝛾) − 𝐼) > 𝑐3 for 𝛾 ∈ 𝐺 ′.
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Definition 3.6. Let 𝑀+ ∈ Mod𝐺0

Λ̃+
(𝐺 ′). We let 𝐷+𝐻 ′,𝑛 (𝑀

+) be the union of all finitely generated Λ+𝐻 ′,𝑛-
submodules of 𝑀+ which are stable by 𝐺0, fixed by 𝐻 ′ and which are generated by a 𝑐3-fixed set of
generators. We let 𝐷𝐻 ′,𝑛 (𝑀) = 𝐷+𝐻 ′,𝑛 (𝑀

+) [1/𝜛].

The following is Proposition 4.9 of [Por22b]. It uses only the axioms (TS1)-(TS3).

Proposition 3.7. Let 𝑛 ≥ 𝑛(𝐺 ′). The association 𝑀+ ↦→ 𝐷+𝐻 ′,𝑛 (𝑀
+) gives an equivalence of categories

from Mod𝐺0
Λ+
𝐻′,𝑛

(𝐺 ′) to Mod𝐺0
Λ+
𝐻′,𝑛

(𝐺 ′). The inverse functor is given by 𝐷+ ↦→ Λ̃+ ⊗Λ+
𝐻′,𝑛

𝐷+.

A few words on this proposition are in order. This kind of Tate-Sen decompletion result has a long
history going back to Tate’s paper on p-divisible groups (see §3 of [Tat67] for the first ancestor of these
ideas). Roughly speaking, this equivalence should be viewed as a form of descent from representations
where the action of 𝛾−1 is sufficiently contracting to analytic representations. It has also been understood
to have connection with p-adic Simpson theory, see, for example, Theorem 3.4 of [Wan23]. We should
note that when p is topologically nilpotent in Λ̃, that is, in characteristic zero, it appears implicitly in §3
of [BC08], see also §5C of [Por24] where it was spelled out. In [Por22b] it was generalized to allow for
Z𝑝-Tate algebra coefficients.

Lemma 3.8. Let 𝑁+, 𝑀+ ∈ Mod𝐺0

Λ̃+
(𝐺 ′). Then 𝑁+ ⊗Λ̃+ 𝑀+ lies in Mod𝐺0

Λ̃+
(𝐺 ′) and 𝐷+𝐻 ′,𝑛 (𝑀

+) ⊗Λ+
𝐻′,𝑛

𝐷+𝐻 ′,𝑛 (𝑀
+) = 𝐷+𝐻 ′,𝑛 (𝑀

+ ⊗Λ̃+ 𝑁+).

Proof. Suppose {𝑒𝑖}1≤𝑖≤𝑛 and { 𝑓 𝑗 }1≤ 𝑗≤𝑚 are respective bases of 𝑁+ and 𝑀+ such that val(Mat{𝑒𝑖 } (𝛾)−
1), val(Mat{ 𝑓𝑗 } (𝛾) − 1) > 𝑐1 + 2𝑐2 + 2𝑐3 for 𝛾 ∈ 𝐺 ′. Using the identity

(𝛾 − 1) (𝑒𝑖 ⊗ 𝑓 𝑗 ) − 𝑒𝑖 ⊗ 𝑓 𝑗 = (𝛾 − 1) (𝑒𝑖) ⊗ 𝛾( 𝑓 𝑗 ) + 𝑒𝑖 ⊗ (𝛾 − 1) ( 𝑓 𝑗 ),

we see that {𝑒𝑖 ⊗ 𝑓 𝑗 }1≤𝑖≤𝑛,1≤ 𝑗≤𝑚 is a basis of 𝑁+ ⊗Λ̃+ 𝑀+ with

val(Mat(𝛾) − 1) > 𝑐1 + 2𝑐2 + 2𝑐3.

Hence, 𝑁+ ⊗Λ̃+ 𝑀+ lies in Mod𝐺0

Λ̃+
(𝐺 ′). Next, we show that

𝐷+𝐻 ′,𝑛 (𝑀
+) ⊗Λ+

𝐻′,𝑛
𝐷+𝐻 ′,𝑛 (𝑀

+) = 𝐷+𝐻 ′,𝑛 (𝑀
+ ⊗Λ̃+ 𝑁+).

Both the left- and right-hand side are objects of Mod𝐺0
Λ+
𝐻′,𝑛

(𝐺 ′), so by virtue of Proposition 3.7 it is

enough to show they are equal after tensoring with Λ̃+. To show this, we compute

Λ̃+ ⊗Λ+
𝐻′,𝑛
(𝐷+𝐻 ′,𝑛 (𝑀

+) ⊗Λ+
𝐻′,𝑛

𝐷+𝐻 ′,𝑛 (𝑀
+)) = 𝑀+ ⊗Λ+

𝐻′,𝑛
𝐷+𝐻 ′,𝑛 (𝑀

+)

= 𝑀+ ⊗Λ̃+ (Λ̃
+ ⊗Λ+

𝐻′,𝑛
𝐷+𝐻 ′,𝑛 (𝑀

+))

= 𝑀+ ⊗Λ̃+ 𝑁+

= Λ̃+ ⊗Λ+
𝐻′,𝑛

𝐷+𝐻 ′,𝑛 (𝑀
+ ⊗Λ̃+ 𝑁+).

This completes the proof. �

We have the following result which allows us to control the action of 𝛾 − 1 on 𝐷𝐻 ′,𝑛 (𝑀).

Proposition 3.9. If (TS4) holds then there exists some element 𝑠 = 𝑠(𝐺 ′, 𝑛) > 0, independent of M, so
that for 𝛾 ∈ 𝐺 ′ and 𝑥 ∈ 𝐷𝐻 ′,𝑛 (𝑀) we have val((𝛾 − 1) (𝑥)) ≥ val(𝑥) + 𝑠.

Proof. We know that 𝐷+𝐻 ′,𝑛 (𝑀)
+ has a basis of 𝑐3-fixed elements. Using the identity

(𝛾 − 1) (𝑎𝑏) = (𝛾 − 1) (𝑎)𝑏 + 𝛾(𝑎) (𝛾 − 1) (𝑏)
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we see that (𝛾 − 1) (𝐷+𝐻 ′,𝑛 (𝑀)
+) ⊂ 𝜛𝑠𝐷+𝐻 ′,𝑛 (𝑀)

+ for 𝑠 = min(𝑐3, 𝑡) where 𝑡 = 𝑡 (𝐺 ′, 𝑛) is as in (TS4).
If 𝑥 ∈ 𝜛𝑛 · 𝐷+𝐻 ′,𝑛 (𝑀)

+ then writing 𝑥 = 𝜛𝑛𝑦 and using the same identity as before we conclude that
(𝛾 − 1) (𝑥) ∈ 𝜛𝑛+𝑠 · 𝐷+𝐻 ′,𝑛 (𝑀)

+. This concludes the proof. �

Corollary 3.10. If (TS4) holds then 𝐷𝐻 ′,𝑛 (𝑀) ⊂ 𝑀𝐺′-la.

Proof. Use the expansion 𝛾𝑥 (𝑚) =
∑

𝑛≥0 (𝛾 − 1)𝑛 (𝑚)
(𝑥
𝑛

)
for 𝑥 ∈ Z𝑝 . �

We are now in a position to prove the first part of our main theorem.

Proof of part 1 of Theorem 3.1. For 𝐺 ′ small enough and n large enough the descent to 𝐷𝐻 ′,𝑛 applies
(this can always be achieved because of continuity). We need to show that the natural map

Λ̃ ⊗Λla 𝑀 la → 𝑀

is an isomorphism. We shall that show this map is an isomorphism for 𝐺 ′ small enough when 𝑀 la

is replaced with 𝑀𝐺′-la, which suffices (the transition maps along different 𝐺 ′’s are then forced to be
isomorphisms). By Corollary 3.10 we have 𝐷𝐻 ′,𝑛 ⊂ 𝑀𝐺′-la and we know M descends to 𝐷𝐻 ′,𝑛, so the
Λ𝐻 ′,𝑛-basis of 𝐷𝐻 ′,𝑛 gives a Λ̃-basis of M consisting of 𝐺 ′-locally analytic elements. By Proposition
2.16 we have 𝑀𝐺′-la = Λ̃𝐺′-la ⊗Λ𝐻′,𝑛 𝐷𝐻 ′,𝑛 and so the natural isomorphism Λ̃ ⊗Λ𝐻′,𝑛 𝐷𝐻 ′,𝑛

�
−→ 𝑀 is

identified with the map Λ̃ ⊗Λ𝐺′-la 𝑀𝐺′-la → 𝑀 , which concludes the proof. �

3.3. Descending analytic functions

From now on we suppose (TS1)-(TS4) hold and that Lie(𝐺) is abelian. It follows that 𝐺0 is abelian
also. By Proposition 2.5 we have that C𝜆-an(𝐺0, 𝑀) is a 𝐺0-module for every 𝜆 ∈ R. Recall (Definition
2.4) that C𝜆-an(𝐺0, 𝑀) is endowed with the valuation

val𝜆 ( 𝑓 ) = inf
𝑛
(val(𝑎𝑛 ( 𝑓 )) − 
𝑝

𝜆𝑛�).

We set

𝑀𝑛,𝜆 = { 𝑓 ∈ C𝜆-an (𝐺0, 𝑀) : Δ𝑛 ( 𝑓 ) = 0}

with its induced valuation. We now note a few properties of the Λ̃-modules 𝑀𝑛,𝜆. First, each 𝑀𝑛,𝜆

is preserved under the 𝐺0-action because Δ𝑛 is 𝐺0-equivariant, and so is actually a 𝐺0-semilinear
submodule of C𝜆-an(𝐺0, 𝑀). We have 𝑀𝑛,𝜆 ⊂ 𝑀𝑛′,𝜆 when 𝑛 ≤ 𝑛′. The limit lim

−−→𝑛
𝑀𝑛,𝜆 ⊂ C𝜆-an(𝐺0, 𝑀),

indexed over 𝑛 ∈ Z𝑑
≥0, is dense in C𝜆-an (𝐺0, 𝑀). Let 𝑚1, ..., 𝑚rank(𝑀 ) be a Λ̃+ basis of 𝑀+, which we

choose once and for all. One sees that 𝑀𝑛,𝜆 is finite free over Λ̃ with a basis given by the functions
𝑥 ↦→ 𝑚𝑖𝜛


𝑝𝜆𝑘 �
(𝑥
𝑘

)
for 𝑘 ≤ 𝑛 and 1 ≤ 𝑖 ≤ rank(𝑀). Finally we note this implies 𝑀𝑛,𝜆 ·𝑀𝑛′,𝜆 ⊂ 𝑀𝑛+𝑛′,𝜆

when 𝑀 = Λ̃.

Definition 3.11.

1. A subgroup 𝐺0 is called c-small if val(𝑔 − 1) (𝜛) > 𝑐 and if val(𝑔 − 1) (𝑚𝑖) ≥ 𝑐 for each basis
element 𝑚𝑖 .

2. An element 𝜆 ∈ R is called c-small if 𝜆 > log𝑝 (𝑐 + 1).
3. We say a pair (𝐺0, 𝜆) is c-small if both 𝐺0 and 𝜆 are c-small.

Warning 3.12. The functoriality of c-smallness does not coincide with that of (𝐺0, 𝜆) ↦→ C𝜆-an(𝐺0, 𝑀).
Namely, if the pair (𝐺0, 𝜆) maps to the pair (𝐺 ′0, 𝜆′) in the direct limit defining the R𝑖

la then it is not true
in general that (𝐺 ′0, 𝜆′) is still c-small. This is because (𝐺0, 𝜆) maps to (𝐺 ′0, 𝜆′) when 𝐺 ′0 ⊂ 𝐺0 and
𝜆′ ≤ 𝜆, but the c-smallness of (𝐺 ′0, 𝜆′) is only guaranteed when 𝜆′ ≥ 𝜆.
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Lemma 3.13. Let 𝑐 > 0, 𝜆 ∈ R and 𝐺0 a subgroup.

1. If 𝐺0 is c-small then there exists some 𝑙 ≥ 0 depending on 𝜆 and c such that for every 𝑔 ∈ 𝐺𝑙 and for
every 𝑛 one has val(Mat(𝑔) − 𝐼) ≥ 𝑐 for 𝑀𝑛,𝜆 (taking the Λ̃-basis described above).

2. If (𝐺0, 𝜆) is c-small, one can take 𝑙 = 0 in 1.

Proof. Each basis element of each 𝑀𝑛,𝜆 is of the form 𝑚𝑖𝜛

𝑝𝜆𝑘 �

(𝑥
𝑘

)
for some 𝑚𝑖 for 1 ≤ 𝑖 ≤ rank(𝑀)

and 𝑘 ≤ 𝑛. Using the identity

(𝑔 − 1) (𝑎𝑏𝑐) = (𝑔 − 1) (𝑎)𝑏𝑐 + 𝑎(𝑔 − 1) (𝑏)𝑔(𝑐) + 𝑔(𝑎)𝑔(𝑏) (𝑔 − 1) (𝑐),

one reduces to showing each of the valuations of (𝑔−1) (𝑚𝑖), (𝑔−1) (𝜛 
𝑝𝜆𝑘 � ) and (𝑔−1) (
(𝑥
𝑘

)
) are > 𝑐.

First, the valuation of the (𝑔 − 1) (𝑚𝑖) is > 𝑐 by the c-smallness of 𝐺0. Second, the valuation
of the term (𝑔 − 1) (𝜛 
𝑝𝜆𝑘 � ) is ≥ val((𝑔 − 1) (𝜛)) > 𝑐 by virtue of the identity (𝑔 − 1) (𝜛𝑛) =
(𝑔 − 1) (𝜛𝑛−1)𝑔(𝜛) + (𝑔 − 1) (𝜛)𝜛.

Finally, we need to estimate (𝑔 − 1) (
(𝑥
𝑘

)
). First, by using the identity

(𝑔ℎ − 1) (𝑎) = 𝑔((ℎ − 1) (𝑎)) + (𝑔 − 1) (𝑎),

we may reduce to the case where g is a basis element, and hence its action is given by sh𝑝𝑙1𝑖 for some
1 ≤ 𝑖 ≤ 𝑑. We then have the Vandermonde identity

(sh𝑝𝑙1𝑖 − 1) (
(
𝑥

𝑘

)
) =

𝑘𝑖∑
𝑗=1

(
𝑥

𝑘 − 𝑗1𝑖

) (
𝑝𝑙

𝑗

)
.

We have val𝜆 (
(𝑥
𝑘

)
) = −
𝑝𝜆𝑘� and val𝜆(

( 𝑥
𝑘− 𝑗1𝑖

)
= −
𝑝𝜆 (𝑘 − 𝑗1𝑖)�, so it suffices to show

−
𝑝𝜆 (𝑘 − 𝑗1𝑖)� + val(
(
𝑝𝑙

𝑗

)
) > −
𝑝𝜆𝑘� + 𝑐

for every 𝑗 ≤ 𝑘𝑖 . This inequality follows in turn from the simpler inequality


𝑝𝜆 𝑗� + val(
(
𝑝𝑙

𝑗

)
) > 𝑐.

If (𝐺0, 𝜆) is c-small then 𝑝𝜆 > 𝑐 + 1 and the inequality holds for all 𝑗 ≥ 1 and 𝑙 = 0. Otherwise, it is
clear one can choose l large enough so that the inequality holds for all 𝑗 ≥ 1. �

Now choose any 𝑐 > 𝑐1 + 2𝑐2 + 2𝑐3, and suppose (𝐺0, 𝜆) is c-small. From the lemma, each 𝑀+𝑖,𝜆

lies in the category Mod𝐺0

Λ̃+
(𝐺0). By the Tate-Sen method we have Λ+𝐻0 ,𝑛

-modules 𝐷+𝐻0 ,𝑛
(𝑀+𝑖,𝜆) lying

in Mod𝐺0
Λ+𝐻0 ,𝑛

(𝐺0) for 𝑛 ≥ 𝑛0 (𝑀, 𝜆). The 𝐷+𝐻0 ,𝑛
(𝑀+𝑖,𝜆) form a direct system, and we set

𝐷𝜆,+
𝐻0 ,𝑛
(𝑀+) = lim

−−→
𝑖

𝐷+𝐻0 ,𝑛
(𝑀+𝑖,𝜆) (4)

and 𝐷𝜆
𝐻0 ,𝑛
(𝑀) = 𝐷𝜆,+

𝐻0 ,𝑛
(𝑀+) [1/𝜛] .

The natural isomorphisms

Λ̃+ ⊗Λ+𝐻0 ,𝑛
𝐷+𝐻0 ,𝑛

(𝑀+𝑖,𝜆)
�
−→ 𝑀+𝑖,𝜆
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glue to an isomorphism

Λ̃+ ⊗Λ+𝐻0 ,𝑛
𝐷𝜆,+

𝐻0 ,𝑛
(𝑀+)

�
−→ C𝜆-an(𝐺0, 𝑀)+ (5)

exhibiting C𝜆-an(𝐺0, 𝑀)+ as a descent of 𝐷𝜆,+
𝐻0 ,𝑛
(𝑀+).

If we only assume that 𝐺0 is c-small (but no assumptions on 𝜆) then we still get a descent, but now
each 𝑀+𝑖,𝜆 only lies in Mod𝐺𝑙

Λ̃+
(𝐺0) for some 𝑙 ≥ 0. In this case, we only get a descent to a module

𝐷+𝐻𝑙 ,𝑛 (𝑀
+
𝑖,𝜆) lying in Mod𝐺𝑙Λ+𝐻𝑙 ,𝑛

(𝐺0) and an isomorphism

Λ̃+ ⊗Λ+𝐻𝑙 ,𝑛
𝐷𝜆,+

𝐻𝑙 ,𝑛
(𝑀+)

�
−→ C𝜆-an(𝐺0, 𝑀)+.

In the c-small case the module 𝐷𝜆,+
𝐻0 ,𝑛
(𝑀) admits an alternative description.

Proposition 3.14. Let (𝐺0, 𝜆) be a c-small pair and suppose we have chosen coordinates of 𝐺0 such that
𝐺0 � Γ0×𝐻0 with Γ0 corresponding to the 1st coordinate and 𝐻0 corresponds to the other coordinates.

Then there is a natural isomorphism

𝐷𝜆,+
𝐻0 ,𝑛
(𝑀)

�
−→ 𝐷𝜆,+

𝐻0 ,𝑛
(C𝜆-an (𝐻0, 𝑀)+)⊗̂Λ+𝐻0 ,𝑛

C𝜆-an(Γ0,Λ𝐻0 ,𝑛)
+.

Proof. Given 𝑘 ∈ Z𝑑
≥0 let 𝑘Γ0

denote the first coordinate of 𝑘 (corresponding to Γ0) and let 𝑘𝐻0
denote

𝑘 without the first coordinate (corresponding to 𝐻0). The description of the Λ̃+-basis of 𝑀+𝑘,𝜆 shows
that there is an isomorphism

𝑀+𝑘,𝜆 � 𝑀+ ⊗Λ̃+ C
𝜆-an(𝐻0, Λ̃+)Δ

𝑘𝐻0 =0 ⊗Λ̃+ C
𝜆-an (Γ0, Λ̃+)Δ

𝑘Γ0 =0,

which can be rewritten as

𝑀+𝑘,𝜆 � C𝜆-an(𝐻0, 𝑀+)Δ
𝑘𝐻0 =0 ⊗Λ̃+ C

𝜆-an(Γ0, Λ̃+)Δ
𝑘Γ0 =0.

Now one observes that C𝜆-an(Γ0, Λ̃+)Δ
𝑘Γ0 =0 has a basis given by 𝜛 
𝑝

𝜆𝑚�
( 𝑥
𝑚

)
for 0 ≤ 𝑚 < 𝑘Γ0

. It is c-
fixed for the Γ0-action because (𝐺0, 𝜆) is c-small (this is the same argument appearing in Lemma 3.13).
Hence by Proposition 4.10 of [Por22b] there is a natural isomorphism

𝐷+𝐻0 ,𝑛
(C𝜆-an (Γ0, Λ̃+)Δ

𝑘Γ0 =0) � C𝜆-an(Γ0,Λ+𝐻0 ,𝑛
)Δ

𝑘Γ0 =0.

We then conclude by applying Lemma 3.8, taking the limit over 𝑘 and taking the completion. �

3.4. Cohomology of c-small pairs

Choose any 𝑐 > 𝑐1 + 2𝑐2 + 2𝑐3 and fix a c-small pair (𝐺0, 𝜆). In this subsection we shall simplify the
𝐺0-cohomology of C𝜆-an(𝐺0, 𝑀).

For every 𝜆 and 𝑛 ≥ 𝑛0(𝑀, 𝜆) we have modules 𝐷𝜆,+
𝐻0 ,𝑛
(𝑀+) defined as in (4). In what follows,

whenever we compute inside a cohomology group depending on 𝜆 and involving n, we are going to
implicitly assume 𝑛 ≥ 𝑛0 (𝑀, 𝜆) so that 𝐷𝜆,+

𝐻0 ,𝑛
(𝑀+) is defined. We set Γ0 = 𝐺0/𝐻0, which is isomorphic

to Z𝑝 (for sufficiently small 𝐺0).

Proposition 3.15. For 𝑖 ≥ 0 we have natural isomorphisms

H𝑖 (𝐺0, C𝜆-an(𝐺0, 𝑀)) � H𝑖 (Γ0, C𝜆-an(𝐺0, 𝑀)𝐻0 ) � H𝑖 (Γ0, Λ̃𝐻0 ⊗Λ𝐻0 ,𝑛
𝐷𝜆

𝐻0 ,𝑛
(𝑀)).
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Proof. Inverting 𝜛 in the isomorphism (5), we have natural isomorphisms

Λ̃ ⊗Λ𝐻0 ,𝑛
𝐷𝜆

𝐻0 ,𝑛
(𝑀) � C𝜆-an(𝐺0, 𝑀).

By Proposition 5.8 of [Por24], the cohomology H𝑖 (𝐻0, C𝜆-an(𝐺0, 𝑀)) is zero for 𝑖 ≥ 1. Note that in that
setting one assumes that the valuation is p-adic, but the same proof works for a 𝜛-adic valuation defined
by an arbitrary topologically nilpotent unit 𝜛. We conclude the proof by applying the Hochschild-Serre
spectral sequence (see [Ked16, Lemma 3.3] for a version which applies in our setting). �

Recall that we have maps 𝑅𝐻0 ,𝑛 : Λ̃𝐻0 → Λ𝐻0 ,𝑛 which are projections. Setting 𝑋𝐻0 ,𝑛 = ker 𝑅𝐻0 ,𝑛, we
obtain a decomposition Λ̃𝐻0 � 𝑋𝐻0 ,𝑛 ⊕ Λ𝐻0 ,𝑛. This allows us to write a Γ0-equivariant decomposition

Λ̃𝐻0 ⊗Λ𝐻0 ,𝑛
𝐷𝜆

𝐻0 ,𝑛
(𝑀) � 𝑋𝐻0 ,𝑛 ⊗Λ𝐻0 ,𝑛

𝐷𝜆
𝐻0 ,𝑛
(𝑀) ⊕ 𝐷𝜆

𝐻0 ,𝑛
(𝑀)

and hence for 𝑖 ≥ 1

H𝑖 (Γ0, Λ̃𝐻0 ⊗Λ𝐻0 ,𝑛
𝐷𝜆

𝐻0 ,𝑛
(𝑀)) � H𝑖 (Γ, 𝑋𝐻0 ,𝑛 ⊗Λ𝐻0 ,𝑛

𝐷𝜆
𝐻0 ,𝑛
) ⊕ H𝑖 (Γ, 𝐷𝜆

𝐻0 ,𝑛
(𝑀)).

In particular, for 𝑖 ≥ 2 the cohomology is zero because Γ0 � Z𝑝 .

Proposition 3.16. We have H1 (Γ0, 𝑋𝐻0 ,𝑛 ⊗Λ𝐻0 ,𝑛
𝐷𝜆

𝐻0 ,𝑛
) = 0.

Proof. In the above decomposition of the Γ0-cohomology of

Λ̃𝐻0 ⊗Λ𝐻0 ,𝑛
𝐷𝜆

𝐻0 ,𝑛
(𝑀) � C𝜆-an(𝐺0, 𝑀)𝐻0

the left-hand side does not depend on n. Hence, the same holds for the right-hand side. Therefore, it
suffices to show that

lim
−−→
𝑛

H1(Γ0, 𝑋𝐻0 ,𝑛 ⊗Λ𝐻0 ,𝑛
𝐷𝜆

𝐻0 ,𝑛
) = 0.

Write 𝛾 for a generator of Γ0. It suffices to show that every

𝑎 ⊗ 𝑏 ∈ 𝑋𝐻0 ,𝑛 ⊗Λ𝐻0 ,𝑛
𝐷𝜆

𝐻0 ,𝑛
(𝑀)

is in the image of 𝛾 − 1 for some 𝑋𝐻0 ,𝑛′ ⊗Λ𝐻0 ,𝑛′
𝐷𝜆

𝐻0 ,𝑛′
(𝑀), with 𝑛′ depending only on n.

By Proposition 3.9, we know that there exists some 𝑠 > 0 such that

(𝛾 − 1) (𝐷𝜆,+
𝐻0 ,𝑛
(𝑀+)) ⊂ 𝜛𝑠 · 𝐷𝜆,+

𝐻0 ,𝑛
(𝑀+).

For some power 𝛾′ of 𝛾 we therefore have

(𝛾′ − 1) (𝐷𝜆,+
𝐻0 ,𝑛
(𝑀+)) ⊂ 𝜛2𝑐2 · 𝐷𝜆,+

𝐻0 ,𝑛
(𝑀+).

Take 𝑛′ ≥ 𝑛 so that 𝑛(𝛾′) ≤ 𝑛′. For such 𝑛′, we know that val(𝛾′ − 1) (𝑥) ≥ val(𝑥) − 𝑐2 for 𝑥 ∈ 𝑋𝐻0 ,𝑛′ .
Let 𝛼 be such that (𝛾′−1 − 1) (𝛼) = 𝑎. Consider the series

𝑦 =
∞∑
𝑖=0
(𝛾′−1 − 1)−𝑖 (𝛼) ⊗ (𝛾′ − 1)𝑖 (𝑏).

The series converges because val(𝛾′−1 − 1)−1(𝑥) ≥ val(𝑥) − 𝑐3 while val((𝛾′ − 1) (𝑥)) ≥ val(𝑥) + 2𝑐3
by our choice of 𝑛′. A direct computation shows that (𝛾′ −1) (𝑦) = 𝑎 ⊗ 𝑏. As 𝛾′ −1 is divisible by 𝛾 −1,
this proves 𝑎 ⊗ 𝑏 is in the image of 𝛾 − 1, as required. �

Putting this all together, we get
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Theorem 3.17. Let 𝑐 > 𝑐1+2𝑐2+2𝑐3 and let (𝐺0, 𝜆) be a c-small pair. Then H𝑖 (𝐺0, C𝜆-an(𝐺0, 𝑀)) = 0
for 𝑖 ≥ 2, and

H1(𝐺0, C𝜆-an(𝐺0, 𝑀)) � H1 (Γ0, 𝐷𝜆
𝐻0 ,𝑛
(𝑀)).

3.5. Vanishing of higher locally analytic vectors

Recall that

R𝑖
la(𝑀) = lim

−−→
𝐺0 ,𝜆

H𝑖 (𝐺0, C𝜆-an(𝐺0, 𝑀)).

In this subsection we shall complete the proof of Theorem 3.1 by showing that R𝑖
la(𝑀) = 0 for 𝑖 ≥ 1.

Proof. As always, we fix some 𝑐 > 𝑐1 + 2𝑐2 + 2𝑐3. We claim that c-small pairs (𝐺0, 𝜆) are cofinal in
the above direct limit. This is a consequence of Corollary 2.7 together with the observation that if 𝐺0
is c-small, so is 𝐺𝑙 . In particular, we have seen that H𝑖 (𝐺0, C𝜆-an(𝐺0, 𝑀) = 0 for 𝑖 ≥ 2 and c-small
pairs (𝐺0, 𝜆), so it automatically follows that R𝑖

la(𝑀) = 0 for 𝑖 ≥ 2. The nontrivial part is showing
the vanishing of R1

la(𝑀). Using the cofinality of c-small pairs, this is a consequence of the following
proposition. �

Proposition 3.18. Let (𝐺0, 𝜆) be a c-small pair and let 𝑓 ∈ H1 (𝐺0, C𝜆-an(𝐺0, 𝑀)). Then there exist
some 𝑙 ≥ 0 and some 𝜆′ ≤ 𝜆 so that f is mapped to 0 in H1 (𝐺𝑙 , C𝜆

′-an (𝐺𝑙 , 𝑀)).

Proof. Recall that in 3.17 we have shown an isomorphism for 𝑛 ≥ 𝑛(𝑀, 𝜆)

H1(𝐺0, C𝜆-an(𝐺0, 𝑀)) � H1 (Γ0, 𝐷𝐻0 ,𝑛 (𝑀)),

and so 𝑓 ∈ H1(Γ0, 𝐷𝐻0 ,𝑛 (𝑀)). Using H1 (Γ0, 𝐷𝐻0 ,𝑛 (𝑀)) � 𝐷𝐻0 ,𝑛 (𝑀)/(𝛾 − 1), we may think of f as
an element of 𝐷𝐻0 ,𝑛 (𝑀). Let 𝑠 = 𝑠(𝐺0, 𝑛) be the constant appearing in Proposition 3.9, and choose 𝜆′

small enough that 𝑝𝜆′ < 𝑠. Choose 𝑙 ≥ 0 large enough so that 1 of Lemma 3.13 applies. We are going
to show that f is mapped to 0 in H1 (𝐺𝑙 , C𝜆

′-an(𝐺𝑙 , 𝑀)).
By Proposition 3.14 we may write f as function (in the variable of Γ0)

𝑓 (𝑥) =
∑
𝑛≥0

𝑚𝑛

(
𝑥

𝑛

)

where 𝑚𝑛 ∈ 𝐷𝜆
𝐻0 ,𝑛
(C𝜆-an(𝐻0, 𝑀)) and val𝜆 (𝑚𝑛) − 
𝑝

𝜆𝑛� → ∞.
Consider now the function given by

𝐹 (𝑥) =
∑
𝑘≥0
(−1)𝑘

∑
𝑛≥0
(𝛾 − 1)𝑘 (𝛾−𝑘 (𝑚𝑛))

(
𝑥

𝑛 + 𝑘 + 1

)
.

Recalling that 𝛾 acts on
( 𝑥
𝑛+𝑘+1

)
by shifts, one easily checks that (𝛾 − 1) (𝐹) = 𝑓 . The problem is that

this sum is not guaranteed to converge in 𝐷𝜆
𝐻0 ,𝑛
(𝑀). Indeed, what we have is

val𝜆 ((𝛾 − 1)𝑘 (𝑚𝑛)) ≥ 𝑠𝑘 + val𝜆 (𝑚𝑛)

and

val𝜆 (
(

𝑥

𝑛 + 𝑘 + 1

)
) = −
𝑝𝜆 (𝑛 + 𝑘 + 1)�
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so we get the estimate

val𝜆 ((𝛾 − 1)𝑘 (𝛾−𝑘 (𝑚𝑛))

(
𝑥

𝑛 + 𝑘 + 1

)
) ≥ 𝑘 (𝑠 − 𝑝𝜆) + (val𝜆 (𝑚𝑛) − 
𝑝

𝜆𝑛�) +𝑂 (1).

This estimate would be good enough (i.e., tend to ∞ as 𝑘, 𝑛 → ∞) if we had 𝑠 > 𝑝𝜆. Unfortunately,
there is no reason why this would be the case.

There is a trick which fixes this problem: the estimate is good enough when 𝜆 is replaced with 𝜆′,
because 𝑠 > 𝑝𝜆′ . In other words, by the same estimate we see that under the natural map

𝐷𝜆
𝐻0 ,𝑛
(𝑀) → 𝐷𝜆′

𝐻𝑙 ,𝑛
(𝑀)

the sum does converge (using val𝜆′ ≥ val𝜆). This means that the image of f in 𝐷𝜆′

𝐻𝑙 ,𝑛
(𝑀) lies in the

image of 𝛾 − 1. Thus, decomposing as in 3.15 and the subsequent paragraph to get an isomorphism of
H1 (𝐺0, C𝜆′-an(𝐺0, 𝑀)) with

H1(𝐺0/𝐻𝑙 , 𝑋𝐻𝑙 ,𝑛 ⊗Λ𝐻𝑙 ,𝑛 𝐷𝜆′

𝐻𝑙 ,𝑛
(𝑀)) ⊕ H1(𝐺0/𝐻𝑙 , 𝐷𝜆′

𝐻𝑙 ,𝑛
(𝑀)),

we obtain that under the natural map

H1(𝐺0, C𝜆-an(𝐺0, 𝑀)) → H1(𝐺0, C𝜆′-an (𝐺0, 𝑀))

the element f lands in

ker(H1(𝐺0/𝐻𝑙 , 𝐷𝜆′

𝐻𝑙 ,𝑛
(𝑀)) → H1 (Γ0, 𝐷𝜆′

𝐻𝑙 ,𝑛
(𝑀))).

By the inflation restriction sequence, this is the same as H1(𝐻0/𝐻𝑙 , 𝐷𝜆′

𝐻𝑙 ,𝑛
(𝑀)Γ0). Thus composing

with the restriction map to H1(𝐺𝑙 , C𝜆
′-an(𝐺0, 𝑀)) (and hence also with the further composition to

H1 (𝐺𝑙 , C𝜆
′-an (𝐺𝑙 , 𝑀))) we see that f is mapped to zero, as required! �

Remark 3.19. The proof shows that vanishing of R𝑖
la(𝑀) for 𝑖 ≥ 1 is true in the strong sense, namely,

for each pair (𝐺0, 𝜆) in the direct limit

𝑅𝑖
la(𝑀) = lim

−−→
𝐺0 ,𝜆

H𝑖 (𝐺0, C𝜆-an(𝐺0, 𝑀))

there exists some other pair (𝐺 ′0, 𝜆′) so that the entire map

H𝑖 (𝐺0, C𝜆-an(𝐺0, 𝑀)) → H𝑖 (𝐺 ′0, C𝜆′-an(𝐺 ′0, 𝑀))

is zero.

4. Applications

In this section we shall give three applications of our methods. For this we shall need to introduce a few
objects which are standard in p-adic Hodge theory. For more details, we refer the reader to [Col08] or
§2.1 of [Por22b]. Let C𝑝 be the completion of the algebraic closure of Q𝑝 . Let C♭

𝑝 be its tilt with ring
of integers C♭,+

𝑝 . Let Ainf be the Witt vectors of C♭,+
𝑝 . Let 𝜀 = (𝜁𝑝 , 𝜁2

𝑝 , ...) be a sequence of compatible
p-power roots of unity and let 𝜛 = 𝜀 − 1 ∈ C♭,+ so that [𝜛] ∈ Ainf. The ring Ã(0,𝑟 ],◦ is defined
to be the p-adic completion of Ainf 〈𝑝/[𝜛]

1/𝑟 〉. The completion is p-adic, but we take the [𝜛]-adic
topology. We define Ã(0,𝑟 ] as Ã(0,𝑟 ],◦ [1/[𝜛]] with the [𝜛]-adic topology. We define also the ring
Ã[𝑠,𝑟 ] := Ainf 〈[𝜛]

1/𝑠/𝑝, 𝑝/[𝜛]1/𝑟 〉, with the completion and topology being p-adic or [𝜛]-adic (they
are the same) and B̃[𝑠,𝑟 ] := Ã[𝑠,𝑟 ] [1/𝑝] = Ã[𝑠,𝑟 ] [1/[𝜛]] . Each ring R just introduced has a continuous
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action of Gal(Q𝑝/Q𝑝). Let K be a finite extension of Q𝑝 . Let Qcyc
𝑝 = Q𝑝 (𝜁𝑝∞), 𝐾cyc = 𝐾Qcyc

𝑝 and
𝐻𝐾 = Gal(Q𝑝/𝐾

cyc). We set 𝑅𝐾 := 𝑅𝐻𝐾 so that 𝑅𝐾 has an action of Gal(Q𝑝/𝐾)/𝐻𝐾 � Gal(𝐾cyc/𝐾).
This latter group we call Γ𝐾 and it is isomorphic to an open subgroup of Z×𝑝 via the cyclotomic character.
With this notation we have Ẽ𝐾 := Ã(0,𝑟 ]𝐾 /𝑝 (it does not depend on r). This field was mentioned in
Example 2.14.3 when 𝐾 = Q𝑝 . The field ẼQ𝑝 can be equivalently defined as the X-adic completion of
∪𝑛F𝑝 ((𝑋

1/𝑝𝑛 )). The action of ΓQ𝑝 = Z×𝑝 is given as follows: an element a acts on 𝑓 (𝑋) ∈ ẼQ𝑝 by the
formula (𝑎 · 𝑓 ) (𝑋) = 𝑓 ((1+ 𝑋)𝑎 −1). We also have “deperfected” rings defined as follows. We let AQ𝑝
be the p-adic completion of Z𝑝 [[𝑇]] [1/𝑇]. It is naturally embedded into Ã = 𝑊 (C♭

𝑝) by mapping T
to the element [𝜀] − 1 ∈ Ainf which lifts 𝜛. We have AQ𝑝/𝑝 � F𝑝 ((𝑋)) ⊂ ẼQ𝑝 . To each K one can
associate the field of norms E𝐾 ⊂ Ẽ𝐾 so that EQ𝑝 = F𝑝 ((𝑋)), and there is a standard way to define
rings A𝐾 containing AQ𝑝 so that A𝐾 /𝑝 � E𝐾 (see §6 of [Col08]). The ring Ã(0,𝑟 ],◦ embeds into Ã and
one sets A(0,𝑟 ],◦𝐾 = A(0,𝑟 ],◦ ∩A𝐾 . We then let A(0,𝑟 ]𝐾 = A(0,𝑟 ],◦𝐾 [1/𝑇]. We let A[𝑠,𝑟 ]Q𝑝 be the completion of

the image of A(0,𝑟 ]𝐾 in Ã(0,𝑟 ]𝐾 . Finally, we set B(0,𝑟 ]𝐾 = A(0,𝑟 ]𝐾 [1/𝑝] and B[𝑠,𝑟 ]𝐾 = A[𝑠,𝑟 ]𝐾 [1/𝑝]. In addition
to the Γ𝐾 -action above, these rings are endowed with a Γ𝐾 -equivariant Frobenius operator 𝜑 which
maps rings defined via an interval I to rings on the interval 𝑝−1𝐼. We let also 𝐾LT denote a Lubin-Tate
extension of K, 𝐻LT = Gal(Q𝑝/𝐾

LT) and ΓLT = Gal(Q𝑝/𝐾)/𝐻LT.

Proposition 4.1. The Tate-Sen axioms (TS1)-(TS4) of §3.2 are satisfied in the following cases:

1. When Λ̃ = Ã(0,𝑟 ]Q𝑝 , Λ̃+ = Ã(0,𝑟 ],◦Q𝑝 and Λ𝑛 = 𝜑−𝑛 (A(0, 𝑝
−𝑛𝑟 ]

Q𝑝 ) for 1/𝑟 ∈ Z[1/𝑝]≥0 with 𝑟 < 1 (we omit
subscripts H in Λ𝐻,𝑛 because 𝐻0 = 1 in this case).

2. When Λ̃ = Ã(0,𝑟 ],𝐻𝐿𝑇 , Λ̃+ = Ã(0,𝑟 ],◦ ∩ Λ̃ and Λ𝐻𝐿 ,𝑛 = 𝜑−𝑛 (A(0, 𝑝
−𝑛𝑟 ]

𝐿 ) for 1/𝑟 ∈ Z[1/𝑝]≥0 with
𝑟 < 1.

Proof. Case 1: the axioms (TS1)-(TS3) are verified in §5.1 of [Por22b]. It suffices to show that for any
𝑎 ∈ 1 + 𝑝Z𝑝 ⊂ ΓQ𝑝 and 𝑘 ∈ Z we have

val((𝑎 − 1) (𝜑−𝑛 (𝑇 𝑘 )) ≥ val(𝜑−𝑛 (𝑇 𝑘 )) + 𝑐

for some positive constant c. Indeed, one computes (using the formula 𝑎(𝑇) = (1 + 𝑇)𝑎 − 1)) that

(𝑎 − 1) (𝜑−𝑛 (𝑇 𝑘 )) = 𝜑−𝑛 (𝑇 𝑘 ) · 𝜑−𝑛 ((𝑎 +
∑
𝑚≥1

(
𝑎

𝑚 + 1

)
𝑇)𝑘 − 1).

As 𝑎 ≡𝑝 1 it follows that

val(𝜑−𝑛 ((𝑎 +
∑
𝑚≥1

(
𝑎

𝑚 + 1

)
𝑇)𝑘 − 1)) ≥ min(val(𝑝), val(𝜑−𝑛 (𝑇))) > 0

as required.
Case 2: Again (TS2) and (TS3) are checked in [Por22b]. (TS1) is shown in Lemma 10.1 of [Col08].

For (TS4), we argue as follows. The ring Λ𝐻𝐿 ,𝑛 is endowed with the action of some finite index subgroup
of ΓQ𝑝 . It is finite free over Λ𝑛 so one may choose a Λ𝑛-basis 𝑒1, ..., 𝑒𝑑 . By possibly choosing an even
smaller subgroup Γ′ of ΓQ𝑝 one can arrange that Γ′ ⊂ 1 + 𝑝Z𝑝 and that the action of 𝛾′ − 1 of a
generator 𝛾′ of Γ′ has val((𝛾′ − 1) (𝑒𝑖) > 𝑐 for some constant c. Now if 𝛾 is a generator 1 + 𝑝Z𝑝 then
we already know valop

Λ𝑛
(𝛾 − 1) ≥ 𝑐′ for some 𝑐′ > 0. Since 𝛾 − 1 divides 𝛾′ − 1 we see (TS4) holds with

𝑡 = min(𝑐, 𝑐′). �

4.1. Computation of locally analytic elements in ẼQ𝑝

Recall the main result of [BR22]:
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Theorem 4.2. We have Ẽla
Q𝑝 = ∪𝑛F𝑝 ((𝑋

1/𝑝𝑛 )).

We shall now explain how to derive this result by reducing rather formally to a previously known
result of Berger in characteristic 0 which is proven with aid of p-adic analysis. Though as a whole the
proof of [BR22] is simpler than ours, the method we present here illustrates our hope of using this new
technique of linking analytic vectors in characteristic 0 and characteristic p in other contexts as well.

Lemma 4.3. We have Ã(0,𝑟 ]Q𝑝 ∩ 𝜑−𝑛 (B[𝑝
−𝑛𝑠, 𝑝−𝑛𝑟 ]

Q𝑝 ) = 𝜑−𝑛 (A(0, 𝑝
−𝑛𝑟 ]

Q𝑝 ).

Proof. The inclusion of the right-hand side in the left-hand side is clear. Conversely, suppose x lies on the
right-hand side. By applying 𝜑𝑛, we may reduce to the case 𝑛 = 0. So we have 𝑥 ∈ Ã(0,𝑟 ]Q𝑝 ∩B[𝑠,𝑟 ]Q𝑝 , whence

x lies in the larger ring B̃(0,𝑟 ]Q𝑝 ∩B[𝑠,𝑟 ]Q𝑝 = B(0,𝑟 ]Q𝑝 . Thus we reduce to showing B(0,𝑟 ]Q𝑝 /A
(0,𝑟 ]
Q𝑝 → B̃(0,𝑟 ]Q𝑝 /Ã

(0,𝑟 ]
Q𝑝

is injective. This reduces further to showing Ã(0,𝑟 ]/A(0,𝑟 ]Q𝑝 is p-torsionfree. In fact it suffices to show

Ã(0,𝑟 ],◦/A(0,𝑟 ],◦Q𝑝 is p-torsionfree, because Ã(0,𝑟 ]/A(0,𝑟 ]Q𝑝 is its [𝜛]-adic localization.

Next, recall that A(0,𝑟 ],◦Q𝑝 = Ã(0,𝑟 ],◦ ∩ ÃQ𝑝 , so Ã(0,𝑟 ]/A(0,𝑟 ]Q𝑝 injects into Ã/AQ𝑝 . This will be p-
torsionfree provided that AQ𝑝 ⊗ F𝑝 → Ã ⊗ F𝑝 is injective. But this is easy: it is simply the map
F𝑝 ((𝑋)) → C♭

𝑝 . �

Recall Theorem 4.4 of [Ber16].

Theorem 4.4. We have B̃[𝑠,𝑟 ],laQ𝑝 = ∪𝑛𝜑−𝑛 (B[𝑝
−𝑛𝑠, 𝑝−𝑛𝑟 ]

Q𝑝 ).

We have the following corollary which is the mixed characteristic version of Theorem 4.2 and
Theorem 4.4.

Corollary 4.5. We have Ã(0,𝑟 ],laQ𝑝 = ∪𝑛𝜑−𝑛 (A(0, 𝑝
−𝑛𝑟 ]

Q𝑝 ).

Proof. Indeed, choosing some arbitrary s, we have

Ã(0,𝑟 ],laQ𝑝 ⊂ Ã(0,𝑟 ]Q𝑝 ∩ B̃[𝑠,𝑟 ],laQ𝑝 = Ã(0,𝑟 ]Q𝑝 ∩ (∪𝑛𝜑−𝑛 (B[𝑝
−𝑛𝑠, 𝑝−𝑛𝑟 ]

Q𝑝 )).

So by Lemma 4.3, the ring Ã(0,𝑟 ],laQ𝑝 is contained in ∪𝑛𝜑−𝑛 (A(0, 𝑝
−𝑛𝑟 ]

Q𝑝 ). Conversely, any element in

∪𝑛𝜑−𝑛 (A(0, 𝑝
−𝑛𝑟 ]

Q𝑝 ) is locally analytic by Corollary 3.10. �

From this we can deduce a new proof of Theorem 4.2, which after this setup becomes a one liner.
Take some 0 < 𝑟 < 1 with 1/𝑟 ∈ Z[1/𝑝] and consider the short exact sequence

0→ Ã(0,𝑟 ]Q𝑝 → Ã(0,𝑟 ]Q𝑝 → ẼQ𝑝 → 0.

By Theorem 3.1 and Proposition 4.1 we have R1
la(Ã

(0,𝑟 ],la) = 0, so Ẽla
Q𝑝 = Ã(0,𝑟 ],la/𝑝. Passing to

locally analytic vectors, we get

Ẽla
Q𝑝 = ∪𝑛𝜑−𝑛 (A(0, 𝑝

−𝑛𝑟 ]
Q𝑝 )/𝑝 = ∪𝑛F𝑝 ((𝑋

1/𝑝𝑛 )).

Remark 4.6. One can also argue in reverse and deduce Corollary 4.5 from Theorem 4.2. It is not clear
to us if one can push this further to deduce Theorem 4.4.

4.2. Descent of Lubin-Tate (𝜑, Γ)-modules to locally analytic vectors

Recall that according to Lubin-Tate theory the Lubin-Tate character gives an isomorphism ΓLT
�
−→ O×𝐾 .

The norm of the Lubin-Tate character is an unramified twist of the cyclotomic character, which shows
that 𝐾LT contains a twist 𝐾cyc,𝜂 of the cyclotomic extension 𝐾cyc by an unramified character 𝜂.
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In the theory p-adic Galois representations and the p-adic Langlands program (𝜑, Γ)-modules have
played a central role. In particular, the overconvergence theorem of Cherbonnier-Colmez ([CC98]) has
been a crucial component in providing a link between the Banach and the analytic sides of the Galois
side for GL2(Q𝑝). When Q𝑝 is replaced with a finite extension K, the situation with overconvergence
is more complicated, as we shall now explain.

In this context one considers a big Robba ring B̃†rig,LT and a “deperfected” Robba ring B†rig,LT which
is a ring of power series in one variable converging in an annulus (see [Ber16], where these rings are
denoted B̃†rig,𝐾 and B†rig,𝐾 , respectively). Both of these rings are endowed with a Frobenius operator 𝜑
and an action of ΓLT. By the main result of Fourquaux-Xie ([FX14]) it is known that when 𝐾 ≠ Q𝑝

there exist (𝜑, ΓLT)-modules over B̃†rig,LT which are not overconvergent, that is, do not descend to B†rig,LT.
The main theorem of [Ber16] gives a sufficient condition for this to happen, namely, K-analyticity.
However, in §8 of [Ber16] it is also shown that an arbitrary (𝜑, ΓLT)-module over B̃†rig,LT descends to
the multivariable ring B̃†,pa

rig,LT of pro-analytic vectors.
The ring B̃†,pa

rig,𝐾 is a Q𝑝-algebra and as such it is a characteristic 0 object. On the other hand, when
𝐾 = Q𝑝 , Cherbonnier-Colmez shows there is a descent to an integral ring A†Q𝑝 where p is not invertible.
We will now give an integral version of this descent when 𝐾 ≠ Q𝑝 .

Let ÃLT = Ã𝐻LT and Ã†LT = lim
−−→𝑟

A(0,𝑟 ]LT where A(0,𝑟 ]LT := A(0,𝑟 ],𝐻LT . The idea is that the ring Ã†,laLT is
an appropriate integral analogue of B̃†,pa

rig,𝐾 .

Theorem 4.7. Every (𝜑, Γ)-module over Ã†LT descends uniquely to a (𝜑, Γ)-module over Ã†,laLT .

Proof. When 𝐾cyc ⊂ 𝐾LT this follows from part 2 of Proposition 4.1 and part 1 of Theorem 3.1. In
general, one can descend along an unramified twist (see §8 [Ber16] for a similar argument). �

Remark 4.8. Corollary 4.5 shows that when 𝐾 = Q𝑝 we recover the usual integral descent of
Cherbonnier-Colmez.

4.3. Pro-analytic and locally analytic vectors in ÃQ𝑝

In this subsection we work out an analogy between B+dR,Q𝑝 of 𝐻Q𝑝 fixed-points of B+dR and the ring ÃQ𝑝 .

Let {𝑀𝑛}𝑛 be an inverse system of finite free modules over corresponding Z𝑝-Tate algebras {𝑅𝑛}𝑛
endowed with the action of a compact p-adic Lie group G. For the inverse limit 𝑀 = lim

←−−𝑛
𝑀𝑛 we define

the pro-analytic vectors

𝑀pa = lim
←−−
𝑛

𝑀 la
𝑛 = lim
←−−
𝑛

lim
−−→
𝐺0 ,𝜆

𝑀𝐺0 ,𝜆-an
𝑛

and the locally analytic vectors

𝑀 la = lim
−−→
𝐺0 ,𝜆

lim
←−−
𝑛

𝑀𝐺0 ,𝜆-an
𝑛 .

Clearly there is a natural map 𝑀 la → 𝑀pa. Furthermore, it can be shown that when 𝑅 = lim
←−−𝑛

𝑅𝑛 itself
is a Z𝑝-Tate algebra then 𝑀pa = 𝑀 la and that the new definition of locally analytic vectors agrees with
the old one of §2. For example, when the 𝑀𝑛 are G-Banach spaces, the module M is a G-Fréchet space
and we recover the definitions appearing in [BC16] and [Ber16].

The ring B+dR,Q𝑝 has the structure of a ΓQ𝑝 -Fréchet space. Indeed, letting t denote Fontaine’s element,
one has

B+dR,Q𝑝 = lim
←−−
𝑛

B+dR,Q𝑝/𝑡
𝑛.
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It turns out there is a very nice description of the pro-analytic and locally analytic elements in B+dR,Q𝑝
(Proposition 2.6 of [Por22a]).
Theorem 4.9. We have B+,ladR,Q𝑝 = ∪𝑛Q𝑝 (𝜁𝑝𝑛 ) [[𝑡]] and B+,pa

dR,Q𝑝 = Qcyc
𝑝 [[𝑡]].

In a direct analogy with this we can consider the ring ÃQ𝑝 as the inverse limit

ÃQ𝑝 = lim
←−−
𝑛

ÃQ𝑝/𝑝
𝑛,

with each ÃQ𝑝/𝑝
𝑛 being a Z𝑝-Tate algebra (with topologically nilpotent unit T). For example, we have

ÃQ𝑝/𝑝
𝑛 = ẼQ𝑝 .

The third application of our main theorem is then the following result.
Theorem 4.10. We have Ãla

Q𝑝 = 𝜑−∞(AQ𝑝 ) and Ãpa
Q𝑝 = lim

←−−𝑛
𝜑−∞(AQp)/𝑝

𝑛.

Remark 4.11. The ring Ãpa
Q𝑝 can also be thought of as the subring of elements in ÃQ𝑝 that for every 𝑛 ≥ 1

are congruent to an element of 𝜑−∞(AQp) modulo 𝑝𝑛. This shows that the containment Ãla
Q𝑝 ⊂ Ãpa

Q𝑝 is
strict. For example, the power series

∑
𝑛≥0 𝑝𝑛𝜑−𝑛 (1 + 𝑇) belongs to Ãpa

Q𝑝 but not to Ãla
Q𝑝 .

Remark 4.12. It has been desirable to have a theory of (𝜑, Γ) modules when Γ = Gal(𝐾/𝐾)/𝐻 is not
Lubin-Tate. However, in such cases it seems difficult to find a suitable lift of the field of norms, that is,
a replacement for the ring A𝐾 . A lift that is a power series ring inside Ã𝐻 is known not to exist under
certain assumptions ([Ber14], [Poy22]). When Γ is abelian, Theorem 4.10 suggests to consider Ã𝐻,la or
Ã𝐻,pa as a suitable lift instead. Unpublished computations of ours suggest that in general Ã𝐻,pa surjects
onto Ẽ𝐻,la and so gives a valid lift.

We now proceed to proving Theorem 4.10. The description of Ãpa
Q𝑝 follows directly from the following

lemma.
Lemma 4.13. Let 0 < 𝑟 < 1. We have

(ÃQ𝑝/𝑝
𝑛)la = (∪𝑚𝜑−𝑚(A(0, 𝑝

−𝑚𝑟 ]
Q𝑝 ))/𝑝𝑛 = 𝜑−∞(AQ𝑝 )/𝑝

𝑛.

Proof. We have

Ã(0,𝑟 ]Q𝑝 /𝑝
𝑛 = ÃQ𝑝/𝑝

𝑛

by devissage to the case 𝑛 = 1 (where both are equal to ẼQ𝑝 ). By Theorem 3.1 we have
R1

la (𝑝
𝑛−1Ã(0,𝑟 ]Q𝑝 /𝑝

𝑛) = 0. Hence by devissage we deduce

(Ã(0,𝑟 ]Q𝑝 /𝑝
𝑛)la = (∪𝑚𝜑−𝑚(A(0, 𝑝

−𝑚𝑟 ]
Q𝑝 ))/𝑝𝑛

(the case 𝑛 = 1 being Theorem 4.2). Finally, we need to explain why

(∪𝑚𝜑−𝑚(A(0, 𝑝
−𝑚𝑟 ]

Q𝑝 ))/𝑝𝑛 = 𝜑−∞(AQ𝑝 )/𝑝
𝑛,

but this is once again true by devissage. �

We now turn to studying Ãla
Q𝑝 .

Lemma 4.14.
1. Given Γ ⊂ ΓQ𝑝 open, 𝜆 ∈ R and 𝑟 < 1 there exists an 𝑚 ≥ 0 such that

(Ã(0,𝑟 ]Q𝑝 )
Γ,𝜆-an ⊂ 𝜑−𝑚(A(0,𝑟 𝑝

−𝑚 ]

Q𝑝 ).
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2. Given 𝑚 ≥ 0 and 𝑟 < 1 there exists Γ ⊂ ΓQ𝑝 open and 𝜆 ∈ R such that

𝜑−𝑚 (A(0,𝑟 𝑝
−𝑚 ]

Q𝑝 ) ⊂ (Ã(0,𝑟 ]Q𝑝 )
Γ,𝜆-an.

Proof. Part 1 follows from Theorem 4.4 of [Ber16] and Lemma 4.3. Part 2 follows from Corollary 3.10.
�

Proposition 4.15.

1. For Γ ⊂ ΓQ𝑝 open and 𝜆 ∈ R there exists some 𝑚 ≥ 0 so that for all 𝑛 ≥ 1 there is an inclusion

(Ã(0,𝑟 ]Q𝑝 /𝑝
𝑛)Γ,𝜆-an ⊂ 𝜑−𝑚(A(0,𝑟 𝑝

−𝑚 ]

Q𝑝 )/𝑝𝑛.

2. Given 𝑚 ≥ 0 there exists Γ ⊂ ΓQ𝑝 open and 𝜆 ∈ R so that for all 𝑛 ≥ 0 there is an inclusion

𝜑−𝑚(A(0,𝑟 𝑝
−𝑚 ]

Q𝑝 )/𝑝𝑛 ⊂ (Ã(0,𝑟 ]Q𝑝 /𝑝
𝑛)Γ,𝜆-an.

Proof. We start by proving part 2. There is a surjection

𝜑−𝑚(A(0,𝑟 𝑝
−𝑚 ]

Q𝑝 ) � 𝜑−𝑚(A(0,𝑟 𝑝
−𝑚 ]

Q𝑝 )/𝑝𝑛.

Hence by part 2 of the previous lemma and functoriality, there exists some pair Γ, 𝜆, independent of n,
such that every element of 𝜑−𝑚(A(0,𝑟 𝑝

−𝑚 ]

Q𝑝 )/𝑝𝑛 lies in (Ã(0,𝑟 ]Q𝑝 /𝑝
𝑛)Γ,𝜆-an. The proof of part 1 is similar

but we need another trick, because we do not know that (Ã(0,𝑟 ]Q𝑝 )
Γ,𝜆-an surjects onto (Ã(0,𝑟 ]Q𝑝 /𝑝

𝑛)Γ,𝜆-an.

Rather, we note that by Remark 3.19, the entirety of R1
Γ,𝜆 (Ã

(0,𝑟 ]
Q𝑝 ) maps to zero in some R1

Γ′,𝜆′ (Ã
(0,𝑟 ]
Q𝑝 ).

This implies that given a pair (Γ, 𝜆) there exists some other pair (Γ′, 𝜆′) so that for all 𝑛 ≥ 1 we have
that elements of (Ã(0,𝑟 ]Q𝑝 /𝑝

𝑛)Γ,𝜆-an lift to (Ã(0,𝑟 ]Q𝑝 )
Γ′,𝜆′-an. We can now argue as before by applying part

1 of the previous lemma (for the pair Γ′, 𝜆′). �

Corollary 4.16. We have Ãla
Q𝑝 = 𝜑−∞(AQ𝑝 ).

Proof. The proposition shows that the direct systems

{lim
←−−
𝑛

(A(0,𝑟 ]Q𝑝 /𝑝
𝑛)Γ,𝜆-an}Γ,𝜆

and

{lim
←−−
𝑛

𝜑−𝑚(A(0,𝑟 𝑝
−𝑚 ]

Q𝑝 )/𝑝𝑛}𝑚

are cofinal. So the corresponding direct limits ranging over Γ, 𝜆 and over m are naturally isomorphic.
These give Ala

Q𝑝 and 𝜑−∞(AQ𝑝 ), respectively, and hence we establish the desired equality. �
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