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Understanding flow and transport of bacteria in porous media is crucial to
technologies such as bioremediation, biomineralization and enhanced oil recovery.
While physicochemical bacteria filtration is well documented, recent studies showed
that bacterial motility plays a key role in the transport process. Flow and transport
experiments performed in microfluidic chips containing randomly placed obstacles
confirmed that the distributions of non-motile bacteria stays compact, whereas for the
motile strains, the distributions are characterized by both significant retention as well
as fast downstream motion. For motile bacteria, the detailed microscopic study of
individual bacteria trajectories reveals two salient features: (i) the emergence of an active
retention process triggered by motility, (ii) enhancement of dispersion due to the exchange
between fast flow channels and low flow regions in the vicinity of the solid grains.
We propose a physical model based on a continuous time random walk approach. This
approach accounts for bacteria dispersion via variable pore-scale flow velocities through
a Markov model for equidistant particle speeds. Motility of bacteria is modelled by a
two-rate trapping process that accounts for the motion towards and active trapping at the
obstacles. This approach captures the forward tails observed for the distribution of bacteria
displacements, and quantifies an enhanced hydrodynamic dispersion effect that originates
in the combined effect of pore-scale flow variability and bacterial motility. The model
reproduces the experimental observations, and predicts bacteria dispersion and transport
at the macroscale.
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1. Introduction

Bacteria are the cause of many diseases and some of them, such as cholera, are spread by
contaminated water. In the 19th century, this problem led to the development of drinking
water systems that are separated from wastewater and motivated Darcy to formulate
the basic equations describing the flow of a fluid in a porous medium (Darcy 1856).
Since then, bacteria transport and filtration through porous media has remained a field
of intense research. However, many practical challenges remain, regarding the ability of
macroscopic models to provide a reliable and quantitative picture of the dispersion of
bacteria transported by flow in porous media. For instance, Hornberger, Mills & Herman
(1992) published a study comparing the bacterial effluent curves with those of a classical
filtration model including fluid convection and sorption–desorption kinetics. The model
allows for a good adjustment of the long time tail of the bacteria concentration curves
whereas the model gives disappointing predictions for the breakthrough curves at short
times. Subsequent studies have sought to identify the influence of flow or physico-chemical
conditions on the model parameters. Although little consideration was given to bacterial
motility, it turns out that this parameter could be crucial for a better understanding
of dispersion and retention processes (McCaulou, Bales & McCarthy 1994; Hendry,
Lawrence & Maloszewski 1999; Camesano & Logan 1998; Jiang et al. 2005; Walker,
Redman & Elimelech 2005; Liu, Ford & Smith 2011; Stumpp et al. 2011; Zhang et al.
2021). Recent studies support the idea that the swimming capacity of the bacteria allows
them to explore more of the porosity (Becker et al. 2003; Liu et al. 2011). For instance,
by performing flow experiments with motile and non-motile bacteria in a fracture, Becker
et al. (2003) recovered at the outlet approximately 3 % of the non-motile bacteria and only
0.6 % of similar but motile bacteria. The mass loss of motile bacteria was explained by
the fact that motility eases the diffusion into stagnant fluid, resulting in a greater residence
time in the porosity and close to grain surfaces. As a consequence, motile bacteria are more
likely to be filtered. This conclusion seems, however, inconsistent and in contradiction to
earlier observations of Hornberger et al. (1992) and Camesano & Logan (1998) reporting
less adhesion to soil grains at low fluid velocity.

Microfluidic technology offers a unique experimental method to directly visualize the
behaviour of bacteria inside pores. Even when using simple geometries such as channels
with rectangular cross-sections, researchers observed non-trivial behaviour of bacteria
in a flow such as upstream motions (Kaya & Koser 2012), backflow along corners
(Figueroa-Morales et al. 2015) eventually leading to large scale ‘super-contamination’
(Figueroa-Morales et al. 2020a), transverse motions due to chirality-induced rheotaxis
(Marcos et al. 2012; Jing et al. 2020) and oscillations along the surfaces (Mathijssen
et al. 2019). Those observations revealed that the dependence of bacteria orientations on
fluid shear adds new elements that further complicate the transport description. Some
studies also point out that this dependence might affect the macroscopic transport of
motile bacteria suspensions. This was revealed by the experimental study of Rusconi,
Guasto & Stocker (2014). In this work, the bacterial concentration profile across the width
of a microfluidic channel was recorded as a function of flow velocity. When flow was
increased and concomitantly the shear rate, they observed a depletion of the central part
of the profile that they attributed to a transverse flux of bacteria from low shear to high
shear regions located near the surfaces (Rusconi et al. 2014). Motility was also observed
to lead to bacteria accumulation at the rear of a constriction (Altshuler et al. 2013) or
downstream of circular obstacles (Miño et al. 2018; Secchi et al. 2020; Lee et al. 2021).
Addition of pillars to microfluidic rectangular channels offers the possibility to design
a bi-dimensional heterogeneous porous system suited to exploring the influence of flow
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heterogeneities and pore structures on the transport and retention of bacteria (Creppy
et al. 2019; Dehkharghani et al. 2019; Scheidweiler et al. 2020; Secchi et al. 2020; de
Anna et al. 2020). This approach allows for tracking of individual bacteria trajectories
and the measurement of statistical quantities, leading to significant progresses towards
the understanding and modelling of bacteria transport and dispersion at a macroscopic
scale. They all point out that motility has two major impacts, it increases the residence
time close to the grains and in regions of low velocity and favours adhesion (Scheidweiler
et al. 2020). The increase of probability of being close to the grains was recently observed
in periodic porous media (Dehkharghani et al. 2019). The effect on the macroscopic
longitudinal dispersion was then investigated numerically using Langevin simulations.
This study revealed a strong enhancement of the dispersion coefficient, particularly when
the flow is aligned along the crystallographic axis of the porous medium. In this case, the
dispersion coefficient is found to increase like the flow velocity to the power 4 instead of
a power 2, as classically obtained for Taylor dispersion. Those examples also show that
an accurate macroscopic transport model based on the pore-scale observations suited to
predicting the fate of motile bacteria transported in a porous flow is still missing.

Current approaches to quantify the impact of motility on bacteria dispersion use the
generalized Taylor dispersion approach developed by Brenner & Edwards (1993), which
is based on volume averaging of the pore-scale Fokker–Planck equation that describes
the distribution of bacteria position and orientation (Alonso-Matilla, Chakrabarti &
Saintillan 2019). This approach lumps the combined effect of pore-scale flow variability
and motility into an asymptotic hydrodynamic dispersion coefficient. Therefore, it has the
same limitations as macrodispersion theory in that it is not able to account for non-Fickian
transport features such as forward tails in the distribution of bacteria displacements and
nonlinear evolution of the displacement variance. The data-driven approach of Liang et al.
(2018) mimics the run and tumble motion of the bacteria by a mesoscopic stochastic
model that represents the motile velocity as a Markov process characterized by an
empirical transition matrix, but does not provide an upscaled model equation for bacteria
dispersion.

In this paper, our aim is to develop a physics-based mesoscale model for bacteria motion,
and derive the upscaled transport equations, by explicitly representing pore-scale flow
variability and motility, and their combined impact on bacteria dispersion. In order to
understand and quantify the role of motility, we used the experimental data obtained by
Creppy et al. (2019). Because these experiments were performed at various flow rates and
with motile and non-motile bacteria, this data set offers the possibility of investigating
the effect of the flow velocity on bacterial motion. We use a continuous time random
walk (CTRW) approach (Morales et al. 2017; Dentz, Icardi & Hidalgo 2018) to model the
advective displacements of bacteria along streamlines at variable flow velocities, while
the impact of motility is represented as a two-rate trapping process. A similar travel
time-based approach was used by de Josselin de Jong (1958) and Saffman (1959) to
quantify hydrodynamic dispersion coefficients in porous media.

The paper is organized as follows. Section 2 reports on the experimental data for
the displacement and velocity statistics of motile and non-motile bacteria. Section
3.1 analyses transport of non-motile bacteria, which can be considered as passive
particles. Thus, we use a CTRW approach, which is suited to quantifying the impact of
hydrodynamic variability on dispersion. This approach forms the basis for the derivation of
a CTRW-based model for the transport of motile bacteria in § 3.2, which accounts for both
hydrodynamic transport and motility. A central element here is to consider and quantify
the motility-based motion of bacteria toward the solid as an effective trapping mechanism.
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2. Experimental data

We use the extensive data set of Creppy et al. (2019) for the displacements of non-motile
and motile bacteria in a model porous medium consisting of vertical cylindrical pillars
placed randomly in a Hele-Shaw cell of height h = 100 µm, also termed grains in the
following. The pillar diameters were chosen randomly from a discrete distribution (20,
30, 40 and 50 µm) with mean �0 = 35 µm, which is approximately 1/3 of the cell
height. The grains filled the space with a volume fraction of 33 %. This idealized model
porous medium shares some characteristics with natural media in channel height and grain
size (Bear 1972). A fluorescent Escherichia coli RP437 strain is used to facilitate optical
tracking. Details on the microfluidic experiments are given in Creppy et al. (2019). The raw
trajectory data were reanalysed for this study. We consider data from seven experiments
that are characterized by the mean streamwise velocities of the non-motile bacteria, which
are um = 18, 43, 66, 98, 113, 139 and 197 µm s−1. In each experiment the motions of
both motile and non-motile bacteria are considered. In the following, we refer to the
experiments as 18, 43, 66 etc. according to the respective mean velocity. We choose
the average grain diameter and the average absolute value of the particle velocity along
the flow direction um to define the characteristic advection time τv = �0/um.

2.1. Displacement moments and propagators
Particle trajectories x(t) = [x(t),y(t)] of different lengths and duration are recorded, along
which velocities are sampled, and from which the displacement moments and propagators
are determined. Figure 1 illustrates trajectories of non-motile and motile bacteria from
the microfluidic experiments. We focus on displacements along the mean flow direction,
which is aligned with the x-direction of the coordinate system. Particle displacements are
calculated by

�x(tn) = x(t0 + tn)− x(t0), (2.1)

where x(t0) is the starting position of the trajectory at time t0 and tn = n�t are subsequent
sampling times. The time increment �t is given by the inverse frame rate of the camera.
The displacement moments are determined by averaging over all particle trajectories

mj(tn) = 1
Nt

Nt∑
k=1

�xk(tn) j, (2.2)

where Nt denotes the number of tracks, and subscript k denotes the kth trajectory. The
displacement variance is defined in terms of the first and second displacement moments
by

σ 2(tn) = m2(tn)− m1(tn)2. (2.3)

The propagator or displacement distribution is defined by

p(x,tn) = 1
Nt

Nt∑
k=1

I[x < �xk(tn) ≤ x +�x]
�x

, (2.4)

where I(·) is the indicator function, which is 1 if the argument is true and 0 otherwise
and �x is the size of the sampling bin. Note that the number of tracks decreases with
track length and sampling time tn, see the discussion in Appendix A. Table 1 provides a
summary of the notation used in this paper.
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Figure 1. Trajectories of motile bacteria at mean velocities (a,b) um = 98 µm s−1 and (c,d) um = 43 µm s−1.
The shaded area indicates the zoom in the right panel. The colour code corresponds to the local fluid velocities
with respect to the mean. Velocity data were obtained by tracking passive particles in the flow.

2.2. Velocity statistics
Particle velocities u(t) = [ux(t),uy(t)] are obtained from the particle displacements
between subsequent images

ux(t) = x(t +�t)− x(t)
�t

, uy(t) = y(t +�t)− y(t)
�t

. (2.5a,b)

The particle speed is defined by v(t) =
√

ux(t)2 + uy(t)2. The mean particle velocity in
the following is denoted by 〈u(t)〉 = (um, 0). The mean speed is denoted by 〈v(t)〉 = vm.
Averages are taken over all tracks and sampling times. The speed probability density
functions (PDFs) are obtained by sampling over all trajectories and sampling times.

Figure 2 shows the PDFs of particle speeds for the non-motile and motile bacteria,
denoted by pnm(v) and pm(v), respectively, rescaled by the mean speed vm of the
non-motile bacteria. Non-motile bacteria can be considered passive tracer particles. Thus,
the speed distributions of non-motile bacteria serve as a proxy for the Eulerian flow speed
distribution, that is, pnm(v) ≡ pe(v) which is supported by the fact that the rescaled data
collapse on the same curve. The non-dimensional speed data are well represented by the
gamma distribution

pe(v) =
(
vα

vm

)α−1
α exp(−vα/vm)

vmΓ (α)
, (2.6)
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�0 grain size
�c characteristic persistence length of particle speeds
�′c coarse-graining length
v0 magnitude of the swimming velocity of the bacteria
u velocity of non-motile bacteria
v = |u|, speed of non-motile bacteria
vm = 〈v〉, average speed
um = 〈ux〉, average streamwise velocity
τv = �0/um, advection time
χ = vm/um, tortuosity
τc characteristic trapping time
γ trapping rate

Dnm dispersion coefficient of the non-motile bacteria
Dm dispersion coefficient of the motile bacteria
ρ fraction of bacteria at the grains
β partition coefficient
R retardation factor associated with the convection at the macroscopic

scale of the motile bacteria

Table 1. Notation.
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Figure 2. Speed distributions for (a) non-motile and (b) motile bacteria for different flow rates rescaled by
the mean vm of the respective non-motile speed distributions. The solid black lines in both panels denote the
analytical approximation by the gamma distribution (2.6) of the speed distribution for the non-motile bacteria
for α = 2.25. The legend indicates the experiments, which are identified by the mean streamwise velocity of
non-motile bacteria in µm s−1.

for α = 2.25. Speed distributions in porous media are often characterized by exponential
or stretched exponential decay for v > vm and power-law behaviours at low flow speeds.
Similar speed distributions have been reported in experimental particle tracking data
(Holzner et al. 2015; Alim et al. 2017; Morales et al. 2017; Carrel et al. 2018; Souzy
et al. 2020) and from numerical simulations of pore-scale flow (Siena et al. 2014; Matyka,
Golembiewski & Koza 2016; De Anna et al. 2017; Aramideh, Vlachos & Ardekani 2018;
Dentz et al. 2018).

Panel (b) of figure 2 shows the speed PDFs for the motile bacteria rescaled by the mean
speed of the respective non-motile bacteria, together with the gamma distribution given in
(2.6), which models the non-motile speed PDFs. The global shapes of the rescaled speed
PDFs for the motile bacteria are very similar to the speed PDF for the non-motile bacteria
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Dispersion of motile bacteria in a porous medium

represented by the gamma distribution. However, they are shifted towards smaller values
when compared with the non-motile bacteria, with a small peak at low values, which can
be related to bacteria motion along the grains. The speed PDFs with um ≥ 98 µm s−1

scale with the mean speed vm and group together above all at those at intermediate and
small speeds. The speed PDF of the motile bacteria measures the combined speed of the
flow field and bacteria motility. The fact that the speed PDFs collapse when rescaled by
the respective mean flow speeds indicates that bacteria motion scales with the flow speed.
This seems to be different for the speed PDFs for um ≤ 66 µm s−1. The PDFs are more
scattered and shifted towards smaller values compared with the speed PDFs for the high
flow rates.

Particle trajectories are tortuous due to pore and velocity structures, and thus are longer
than the corresponding linear distance. The ratio between the average trajectory length
of the non-motile bacteria and the linear length in the mean flow direction defines the
tortuosity χ . It can be quantified by the ratio between the mean flow speed vm and the
mean flow velocity um as (Koponen, Kataja & Timonen 1996; Ghanbarian et al. 2013;
Puyguiraud, Gouze & Dentz 2019b)

χ = vm

um
. (2.7)

We obtain from the velocity data at all flow rates tortuosity values between χ = 1.17 and
1.23.

3. Theoretical approach

We present here the theoretical approach to modelling the dispersion of non-motile and
motile bacteria. We use the CTRW framework to model the stochastic motion of bacteria
due to pore-scale flow variability and motility, based on a spatial Markov model for
subsequent particle velocities, and a compound Poisson process for motility. This type of
approach was used to upscale and predict hydrodynamic transport in porous and fractured
media at the pore and continuum scales (Berkowitz & Scher 1997; Noetinger et al. 2016;
Dentz et al. 2018; Hyman et al. 2019). It naturally accounts for the organization of the
flow field along characteristic length scales that are imprinted in the host medium. We
focus here on the quantification of the streamwise motion and large-scale dispersion of
bacteria, which play a key role for the prediction of the length of bacteria plumes and the
distributions of residence times in a porous medium.

3.1. Non-motile bacteria
Non-motile bacteria are considered as passive tracer particles that are transported by
advection only. Non-motile bacteria move along streamlines of the pore-scale flow field,
and thus explore the pore-scale velocity spectrum, except for the lowest velocities close to
the grains, due to volume exclusion or molecular diffusion. Typical trajectories are shown
in figure 1. In the following, we model the motion of non-motile bacteria using a spatial
Markov model for particle speeds (Dentz et al. 2016; Morales et al. 2017; Puyguiraud et al.
2019b).

3.1.1. Spatial Markov model
Particle motion is characterized by the spatial persistence of particle velocities over a
characteristic length scale, which is imprinted in the spatial structure of the porous medium
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(Dentz et al. 2016). This provides a natural parameterization of bacteria motion in terms of
travel distance. That is, motion is modelled by constant space and variable time increments
along streamlines. Thus, the equations of streamwise motion of non-motile bacteria can
be written as (Puyguiraud et al. 2019b)

xn+1 = xn + �s
χ
, tn+1 = tn + �s

vn
, (3.1a,b)

where�s is the transition length along the tortuous particle path. The advective tortuosity
χ accounts for streamline meandering in the pore space between the grains. It quantifies
the ratio of the average streamline length to streamwise distance. Note that this meandering
is different for each streamline and may be correlated with the particle speed. However,
under ergodic flow conditions, the streamline lengths converge toward the average value
and thus, at scales larger than �0, tortuosity provides a good estimate for the longitudinal
displacement.

The point distribution pv(v) of particle speeds is given in terms of the Eulerian flow
speed distribution pe(v)

pv(v) = vpe(v)

vm
. (3.2)

This speed-weighting relation is due to the fact that, in this framework, particles make
transitions over constant distance, while the distribution of flow speeds pe(v) is obtained
by measuring speeds at constant frame rate, this means isochronically (Dentz et al.
2016; Morales et al. 2017; Puyguiraud et al. 2019b). Equations (3.1a,b) constitute a
CTRW because bacteria are propagated over constant (discrete) distances while time is
a continuous variable. In this framework, the position x(t) of a particle at time t is given
by x(t) = xnt , where nt = max(n|tn ≤ t < tn+1). The displacement moments are defined
by mi(t) = 〈x(t)i〉. The displacement variance is given by σ 2(t) = m2(t)− m1(t)2.

The series {vn} of particle speeds is modelled as a stationary Markov process whose
steady state distribution is given by (3.2). Specifically, we model {vn} through an
Ornstein–Uhlenbeck process for the unit normal random variable wn which is obtained
from vn through the transformation (Puyguiraud, Gouze & Dentz 2019a)

wn = Φ−1[Pv(vn)], vn = P−1
v [Φ(wn)], (3.3a)

where Pv is the cumulative speed distribution and Φ−1(u) the inverse of the cumulative
unit Gaussian distribution. Also, wn satisfies the Langevin equation

wn+1 = wn − �−1
c �swn +

√
2�−1

c �sξn, (3.3b)

where ξn is a unit Gaussian random variable. The length scale �c denotes the characteristic
correlation scale of particle speed. It is typically of the order of the characteristic grain size
�0 (Puyguiraud, Gouze & Dentz 2021). However, its exact value needs to be adjusted from
the data for the displacement variance. The increment�s is chosen such that�s � �c. The
phase-space particle density p(x,v,t) in this framework is given by the Boltzmann-type
equation (Comolli, Hakoun & Dentz 2019)

∂p(x,v,t)
∂t

+ vχ−1 ∂p(x,v,t)
∂x

= − v

�s
p(x,v,t)+

∫ ∞

0
dv′r(v,�s|v′)

v′

�s
p(x,v′,t), (3.4)

see also Appendix B.1. The initial distribution is given by p(x,v,t = 0) = p0(x,v) =
δ(x)p0(v), where p0(v) is the distribution of initial particle velocities. The propagator,

946 A33-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

59
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.596


Dispersion of motile bacteria in a porous medium

that is, the distribution of particle displacements, is given by

p(x,t) =
∫ ∞

0
dvp(x,v,t). (3.5)

3.1.2. Asymptotic theory
The behaviour of the upscaled model at travel distances much larger than the correlation
length �c, can be obtained by coarse-graining particle motion on a length scale �′c ≥ �c,
such that

xn+1 = xn + �′c
χ
, tn+1 = tn + τn. (3.6a,b)

The transition times τn = �′c/vn are independent random variables whose distribution ψ(t)
is given in terms of pv(v) as

ψ(t) = �′ct−2pv(�′c/t) =
(

t
τ0

)−2−α exp(−τ0/t)
τ0Γ (α + 1)

, (3.7)

where τ0 = �′c/v0.ψ(t) is given here by an inverse gamma distribution because the particle
speed is gamma distributed, see (2.6).

For the velocity distribution (2.6) with α = 2.25, the CTRW predicts asymptotically
a Fickian dispersion. That is, for times t 
 τv , transport can be quantified by the
advection–dispersion equation (Dentz & Berkowitz 2003)

∂p(x,t)
∂t

+ um
∂p(x,t)
∂x

− Dnm
∂2p(x,t)
∂x2 = 0, (3.8)

with the average velocity um = vm/χ and the dispersion coefficient (Puyguiraud et al.
2021)

Dnm = um�
′
c

2χ
〈τ 2〉 − 〈τ 〉2

〈τ 〉2 . (3.9)

The mean and mean squared transition times are defined by

〈τ k〉 =
∫ ∞

0
dttkψ(t) = τ k

0
Γ (α + 1 − k)
Γ (α + 1)

, (3.10)

for k = 1, 2. Here, Γ (α) denotes the gamma function. We find by comparison of the
dispersion coefficients from the full spatial Markov model and the CTRW model (3.6a,b)
that �′c ≈ 1.57�c.

3.2. Motile bacteria
We provide here the theoretical framework to interpret the trajectory data and motion
of motile bacteria. The motion of motile bacteria is due to advection in the flow field
and their own motility, as illustrated in figure 1. At zero flow rate, bacteria fluctuate in a
random walk-like manner characterized by a zero mean displacement with a characteristic
two-dimensional projected swimming velocity v0 ≈ 12 µm s−1 (Creppy et al. 2019).
At finite flow rate, bacteria tend to swim along the streamlines, and make excursions
perpendicular to them in order to move toward the solid grains. Based on the observations
of Creppy et al. (2019) for bacteria motility, we couple the CTRW model for hydrodynamic
transport with a trapping approach. These authors found that bacteria move towards the
grains at a flow-dependent rate γ and dwell on the grain surface for random times θ ,
which are distributed according to the trapping time distribution ψf (t).
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3.2.1. Spatial Markov model and trapping
Within the CTRW approach outlined in the previous section, the trapping of bacteria is
represented by a compound Poisson process for the time tn of the bacteria after n CTRW
steps. Thus, the equations of motion are given by

xn+1 = xn + �s
χ
, tn+1 = tn + �s

vn
+ τ(�s/vn), (3.11a,b)

for n >1. The initial displacement is x0 = 0 for all bacteria. The initial time is set to t0 = 0.
The particle speeds vn evolve according to the process (3.3). The compound trapping time
τ(r) is given by

τ(r) =
nr∑

i=1

θi, (3.12)

where θi is the trapping time associated with an individual trapping event, and nr is the
number of trapping events during time r. The number of trapping events nr follows a
Poisson process characterized by the rate γ , that is, the mean number of trapping events
per CTRW step is γ�s/vn. The trapping rate is constant and counts the average number of
trapping events per mobile time. While the trapping properties could depend, for example,
on the local flow speeds, we use a Poisson process with constant rate as a robust and simple
way of describing the average trapping properties, which is fully defined by the average
number of trapping events per mobile time. The distribution of compound trapping times
τ(r), denoted byψc(t|r), can be expressed in Laplace space by Feller (1968) and Margolin,
Dentz & Berkowitz (2003)

ψ∗
c (λ|r) = exp(−γ r[1 − ψ∗

f (λ)] − λr). (3.13)

Here, ψc(t|r) denotes the probability that the trapping time is t given that a trapping event
occurred at time r. For n = 1, we distinguish the proportion ρ of bacteria that are initially
trapped, and 1 − ρ of initially mobile bacteria. For the trapped bacteria, x1 = 0 and t1 =
η0, where the initial trapping time η0 is distributed according to ψ0(t). For the mobile
bacteria, x1 and t1 are given by (3.11a,b) for n = 0.

We consider here steady state conditions at time t = 0. As experimental trajectories and
their starting points are recorded continuously, it is reasonable to assume that a steady state
between mobile and immobile bacteria is attained. Under steady state conditions, the joint
probability of the bacteria being trapped and the initial trapping time being in [t, t + dt] is

P0(t) =
∫ ∞

t
dt′γ exp[−γ (t′ − t)]ψf (t′); (3.14)

see Appendix C. The trapping times are assumed to be exponentially distributed, that is,

ψf (t) = exp(−t/τc)/τc, (3.15)

with τc the characteristic trapping time. This means we use Poissonian statistics to account
for the effective retention of motile bacteria in the vicinity of grain surfaces. This picture is
classically based on the idea that the run to tumble process promoting surface detachment
is itself a memory-less Poisson process (Berg 2018). However, there has been recent
evidence that the run-time distribution for bacterial motion in a free fluid is a long-tail
non-Poissonian process (Figueroa-Morales et al. 2020b), which is also at the origin of
long-tailed distributions of bacteria sojourn times on flat surfaces (Junot et al. 2022).
For porous media, there are currently no direct measurements that offer a quantitative
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Dispersion of motile bacteria in a porous medium

microscopic description of the complex exchange processes taking place between the
surface regions and the flowing regions. Thus, we adopt Poissonian statistics characterized
by the mean retention time τc as a model with minimal assumptions. We hope that our
conceptual approach, which provides a model of the emerging transport process, will
motivate more detailed experimental investigations on this central question. Using (3.15)
in (3.14), we obtain

P0(t) = β

1 + β

exp(−t/τc)

τc
, (3.16)

where we define the partition coefficient β = γ τc. Thus, the fraction of trapped bacteria
is ρ = β/(1 + β), and the initial trapping time distribution is ψ0(t) = ψf (t). Thus, the
steady state partitioning of bacteria is directly related to their motility through the trapping
rate γ and mean dwelling time τc on the grain surface.

Note that this picture does not account for the tortuous particle path on the grain
surfaces, which is represented as a localization event at fixed positions. Grain-scale
bacteria motility could eventually be modelled by an additional process. However, here,
we focus on large-scale bacteria dispersion and only account for tortuosity due to the flow
path geometry. As above the bacteria position x(t) at time t is given by x(t) = xnt . The
expressions for the displacement mean and variance are analogous.

The density ps(x,v,t) of mobile bacteria in the stream is quantified by the non-local
Boltzmann equation

∂ps(x,v,t)
∂t

+ ∂

∂t

∫ t

0
dt′γφ(t − t′)ps(x,t′)+ v

χ

∂ps(x,v,t)
∂x

= ρδ(x)p0(v)ψf (t)− v

�s
ps(x,v,t)+

∫ ∞

0
dv′r(v|v′)

v′

�s
ps(x,v′,t′), (3.17)

see Appendix B.2. We defined by

φ(t) =
∫ ∞

t
dt′ψf (t′), (3.18)

the probability that the trapping time is larger than t. Equation (3.17) reads as follows.
The evolution of the particle density in the stream is given by the (second term on the
left side) particle exchange between the stream and grain surface, (third term on the left)
advection by the local velocity, (first term on the right side) release of bacteria that were
initially on the grains and (second and third terms on the right) velocity transitions along
the trajectory.

The total bacteria density is given by

p(x,v,t) = ps(x,v,t)+ pg(x,v,t). (3.19)

The density pg(x,v,t) of bacteria on the grains is given by

pg(x,v,t) =
∫ t

0
dt′φ(t − t′)γ ps(x,v,t′)+ δ(x)ρφ(t)p0(v). (3.20)

This first term on the right side reads as follows. The density of bacteria on the grains is
given by the probability per time γ ps(x,t′) that bacteria are trapped at time t′ times the
probability φ(t − t′) that the trapping time is longer than t − t′. The second term denotes
the bacteria that are initially trapped and whose trapping time is larger than t. The speed v
associated with a bacteria on the grain should be understood as the bacteria speed before
the trapping events.
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3.2.2. Asymptotic theory
Similar to the discussion in the previous section for the non-motile bacteria, for distances
much larger than �c, particle motion can be coarse grained such that

xn+1 = xn + �′c, tn+1 = tn + τn + τ(τn), (3.21a,b)

where the advective transition times τn = �′c/vn are distributed according to (3.7). Here,
τ(r) describes the compound Poisson process defined above. The propagator ps(x,t)
of bacteria in the stream for this equation of motion is quantified by the non-local
advection–dispersion equation

∂ps(x,t)
∂t

+ ∂

∂t

∫ t

0
dt′γφ(t − t′)ps(x,t′)

+ um
∂ps(x,t)
∂x

− Dnm
∂2ps(x,t)
∂x2 = ρδ(x)ψf (t), (3.22)

while the distribution pg(x,t) of bacteria at the grains is given by

pg(x,t) =
∫ t

0
dt′φ(t − t′)γ ps(x,t′)+ δ(x)ρφ(t). (3.23)

Asymptotically, that is for times t 
 τc, the transport of the bacteria concentration p(x,t)
can be described by the advection–dispersion equation

∂ps(x,t)
∂t

+ um

R
∂ps(x,t)
∂x

− Dm
∂2ps(x,t)
∂x2 = 0, (3.24)

see Appendix D. The retardation coefficient R and the asymptotic dispersion coefficient
Dm are given by the explicit expressions

R = 1 + γ τc = 1
1 − ρ

, (3.25)

Dm = Dnm(1 − ρ)+ u2
mτcρ(1 − ρ)2. (3.26)

By definition, R compares the average velocity of motile bacteria with the average flow
velocity. In the absence of trapping, ρ = 0 and R = 1, the bacteria are transported
in the porous medium with an average velocity equal to the average fluid velocity. If
trapping is present, retardation increases, indicating a decrease of the average bacteria
velocity compared with the fluid velocity. The retardation coefficient is directly related
to bacterial motility, which in our modelling framework is expressed by the trapping
rate γ and the mean retention time τc for which a bacteria dwells at the grain
surface.

The asymptotic dispersion coefficient in (3.26) contains two terms. The first term
Dnm(1 − ρ) corresponds to the so-called dispersion coefficient at steady state (Yates,
Yates & Gerba 1988; Tufenkji 2007). It predicts a reduction of the dispersion coefficient
of the motile bacteria compared with the non-motile concomitant with the reduction
of the average velocity of the bacteria population. It accounts for the dispersion of the
motile proportion 1 − ρ only. The second term quantifies a mechanism similar to Taylor
dispersion. It originates from the spread of the bacteria plume due to fast transport in the
pores and localization at the grains. The resulting dispersion effect can be rationalized
as follows. The typical separation distance between localized and mobile bacteria, that
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Figure 3. (a) Normalized mean displacements and (b) normalized displacement variances for non-motile
bacteria as a function of normalized time. The solid lines denote the estimate from the CTRW model. The
dash-dotted line in the (b) indicates the initial ballistic growth.

is, the dispersion length is umτc, while the dispersion time is τc. The corresponding
dispersion coefficient is the dispersion length squared divided by dispersion time, which
gives exactly the scaling u2

mτc of (3.26). As we will see in the next section, this interaction
can lead to a significant increase of bacteria dispersion compared with non-motile
bacteria.

Asymptotic bacteria transport is predicted to obey the advection–dispersion equation
with constant parameters for two reasons. First, the distribution of particle velocities does
not tail towards low values, that is, the mean and mean squared transition times are finite.
Second, the distribution of retention times is exponential. Thus, for times large compared
with the characteristic mass transfer times, the support scale can be considered as well
mixed, and, similar to Taylor dispersion (Taylor 1953), and generalized Taylor dispersion
(Brenner & Edwards 1993) transport can be described by an advection–dispersion
equation.

4. Results

We discuss the experimental results for the displacement means and variances, as well as
the displacement distributions, in the light of the theory presented in the previous section.
As discussed in Appendix A, the number of experimentally observed tracks decreases with
the travel time, which introduces a bias toward slower bacteria. Thus, in the following, we
consider travel times shorter than 5τv in order to avoid a too strong bias toward slow
bacteria. Even so, as we will see below, there is a slowing down of the mean displacement
with increasing travel time, specifically for the motile bacteria.

The proposed theoretical approach for the non-motile bacteria has one parameter that
needs to be adjusted, the correlation scale �c, which typically is of the order of the grain
size. It is adjusted here from the data for the displacement variance for the non-motile
bacteria. The approach for the motile bacteria has two additional parameters, the trapping
rate γ and the mean trapping time τc. The partition coefficient β = γ τc is adjusted from
the mean displacement data for the motile bacteria, while the trapping time τc is adjusted
from the data for the displacement variance of the motile bacteria. Thus, the non-motile
CTRW model needs to adjust one parameter, which is of the order of the grain size. The
motile CTRW model needs to adjust two parameters, which are related to the partitioning
of bacteria between flowing and stagnant regions close to the grains.
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Figure 4. Propagators of non-motile bacteria at (a–d) t = 0.1, 0.9, 2.6, 4.3τv . The blue solid lines denote
the prediction of the CTRW model, the black lines are the fits from the Gaussian transport model that is
characterized by the corresponding measured displacement mean and variance shown in figure 3.

4.1. Dispersion of non-motile bacteria
Figures 3 and 4 show displacement means and variances and the propagators for
non-motile bacteria at different flow rates and for the same dimensionless times. Time
is non-dimensionalized by the mean advection time over the size of a grain, which
implies that the propagators are reported for the same mean travel distances. The CTRW
model uses the velocity distribution (2.6) with α = 2.25, correlation length �c ≈ 2�0 and
advective tortuosity χ = 1.2.

The mean displacement is linear with a slightly higher slope at short compared with
large times. It starts deviating from the expected behaviour m1(t) = umt at around t =
2τv . We relate this behaviour to a bias due to the decrease in the number of tracks, as
discussed in Appendix A. The displacement variance shows a ballistic behaviour at t < τv ,
this means it increases as t2. Then, for t > τv , it increases superlinearly, which can be
seen as a long cross-over to normal behaviour. These behaviours are accounted for by the
CTRW model. For flow velocities um ≤ 66 µm s−1, we observe a larger variance than
for the higher flow rates. This, and the slightly smaller mean displacements compared
to higher flow rates, can be attributed to the localization of some bacteria at the origin
(see figure 4), which causes a chromatographic dispersion effect, which is discussed in
more detail for the motile bacteria.

Figure 4 compares the experimental data for the propagators with the results of the
CTRW model. The propagators are asymmetric but compact, meaning that there are
no significant forward or backward tails in the distribution. For comparison, we plot a
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Figure 5. (a) Normalized mean displacements and (b) normalized displacement variances for motile bacteria,
as a function of normalized time. The experimental data are denoted by the symbols, the corresponding CTRW
model results by the thick solid lines. The CTRW model uses τc = 2.5τv and β = γ τc = 0.4 for um ≥ 98 µm s1

and τc = 2τv and β = 1 for um = 66 µm s1. The solid blue lines denote the model outcomes for the non-motile
bacteria.

Gaussian-shaped propagator characterized by the mean displacement and displacement
variance shown in figure 3. The asymmetry decreases with increasing travel time and the
propagators become closer to the corresponding Gaussian. The CTRW model captures the
initial asymmetry and the transition to symmetric Gaussian behaviour for all flow rates.

4.2. Dispersion of motile bacteria
Figures 5–7 show the displacement mean and variance, and the propagators for the motile
bacteria at different flow rates. As in the previous section, time is measured in units of τv ,
that is, it measures the mean number of grains the bacteria have passed. The propagators
are measured at the same non-dimensional times, that is, at the same mean distance. The
motile CTRW model is parameterized by the same correlation length and tortuosity as
the non-motile model. The partition coefficient β = γ τc is adjusted from the early time
behaviour of the mean displacement, which is predicted to behave as

m1(t) = umt
R

= umt
1 + β

, (4.1)

because we consider the system to be initially in a steady state. The characteristic trapping
time is adjusted from the displacement variance by keeping β fixed. We adjust τc = 2.5τv
and β = γ τc = 0.4 for um ≥ 98 µm s−1, and τc = 2τv and β = 1 for um = 66 µm s−1.

As shown in figure 5, the mean displacement is consistently lower for the motile than
for the non-motile bacteria, which is due to migration toward the grain surfaces and
localization at the grains. The means displacement initially evolves linearly until a time of
approximately 2τv and, from there, the evolution slows down. We relate this to the decrease
of the number of experimentally observed tracks, which induces a bias toward slow tracks,
as discussed in Appendix A. In contrast to the mean displacement, the displacement
variance can be larger than its non-motile counterpart for um ≥ 98 µm s−1 and lower for
um ≤ 66 µm s−1. The data seem to fall into two groups for high and low flow rates, except
for um = 18 µm s−1. In this case, the flow velocity is of the order of the swimming velocity
v0 ≈ 12 µm s−1. The data indicate that that the density of trapped particles is higher at
high compared with low flow rates. The possible mechanisms for these behaviours are
discussed in § 5.
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Figure 6. Distributions of motile bacteria for high flow rates at (a–d) t = 0.1, 0.9, 2.6, 4.3τv . The blue solid
lines denote the corresponding predictions of the CTRW model for the non-motile bacteria.

These behaviours are also reflected in the propagators shown in figure 6 for high flow
rates with um ≥ 98 µm s−1 and in figure 7 for um ≤ 66 µm s−1. The green symbols
in figure 6 denote the experimental data rescaled by the mean grain size �0, and the
solid green lines the corresponding solution from the CTRW model for the parameters
τc = 2.5τv and β = γ τc = 0.4. Analogously, the red symbols in figure 7 denote the
experimental data rescaled by the mean grain size �0. The solid red lines show the
corresponding solution from the CTRW model for the parameters τc = 2τv and β = 1.
For comparison, we also plot the corresponding CTRW solution for the non-motile
bacteria, marked by the blue solid lines. The motile propagators are delayed compared
with the non-motile bacteria. They are characterized by a localized peak around zero
and a pronounced forward tail, which can be attributed (i) to slow motion towards and
around grains and (ii) to fast motion in the main pore channels. Figure 6 shows that the
propagators at high flow rates (um ≥ 98 µm s−1) overlap, which indicates that bacteria
motion scales with the mean flow. Similarly, for the low flow rates (um ≤ 66 µm s−1)
shown in figure 7, we observe overlap in the forward tails, which are advection dominated
due to transport in the pore channels. However, the upstream tails that develop starting
from the localized peak do not group together. They can be attributed to bacteria motility,
which is independent of the flow rate. This is most pronounced for um = 18 µm s−1, which
is characterized by strong localization and an almost symmetric propagator. The features of
peak localization and forward tailing show that a steady state in the macroscopic transport
behaviour has not been attained at the largest observation time. At asymptotic times, that is,
for t 
 τc, the theoretical model given by (3.24) predicts Fickian transport characterized
by symmetric propagators.
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Figure 7. Propagators of motile bacteria for low flow rates at (a–d) t = 0.1, 0.9, 2.6, 4.3τv . The blue solid
lines denote the prediction of the CTRW model for the non-motile bacteria.

The data for the displacement moments and propagators seem to be grouped in two
families, which we have highlighted by using two different colours. These observations
are in agreement with the behaviours of the speed PDFs shown in figure 2. We therefore
fit each family separately. From the early time evolution of the mean displacements, we
adjust the partition coefficient β = 0.4 for um ≥ 98 µm s−1, β = 1 for um ≤ 66 µm s−1.
For um ≥ 98 µm s−1, we adjust from the displacement data τc = 2.9τv and for um =
66 µm s−1, we adjust τc = 2.3τv .

With these parameter sets, the CTRW model is able to describe the propagators and
displacement moments as shown in figures 5 and 6. For the lowest flow velocity, bacteria
are able to swim upstream over relatively long distances. The subsequent backward tail
that develops because of the upstream motion is clearly visible in figure 6(c,d), and also,
to a smaller extent, at the higher flow rates (a,b). This effect is not accounted for in the
model that assumes that the trapping is localized and that trapped bacteria do not move
once trapped.

Since τv ∝ 1/um, our results indicate that the trapping rate increases linearly with the
average flow velocity um while the characteristic trapping time decreases linearly with
um. We used different values for β = γ τv and τc to adjust the two sets. Recall that the
fraction of trapped bacteria ρ is β/(1 + β). Each set thus corresponds to a different value
of the fraction of trapped bacteria. The fraction of trapped bacteria is high at low velocities
(ρ ≥ 0.5) and decreases towards an asymptotic value of approximately ρ = 0.3 as the flow
velocity is increased. The fraction of trapped bacteria is also related to the retardation
coefficient R through (3.25), which is estimated from the experimental data for the mean
bacteria displacement according to relation (4.1). The dependence of R and thus ρ on the
flow rate is further discussed in the next section.
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Figure 8. Model predictions for the displacement (a) means and (b) variances of motile and non-motile
bacteria. (c) Retardation coefficient from experimental data. The dash-dotted line indicates the values used
in the CTRW model at (green) high and (red) low flow rates. (d) Dispersion coefficient for the motile bacteria
as a function of the fraction ρ of trapped bacteria for τc = 2τv, 2.5τv, 5τv . The squares denote the dispersion
coefficient at the ρ-values for (green square) um ≥ 98 µm s−1 and (red square) um = 66 µm s−1.

4.3. Asymptotic dispersion and retardation
The CTRW model allows us to extrapolate the transport behaviours to times that cannot
be reached in the experiment. Panels (a,b) of figure 8 show the displacement mean and
variance up to times of 1000τv . We see that both observables evolve linearly at asymptotic
times. The mean displacement indicates a lower average velocity for the motile than for
the non-motile bacteria, which is due to trapping. The displacement variance on the other
hand is larger for the motile than for the non-motile bacteria at high flow rates, which
indicates stronger motile dispersion. This effect can be quantified by (3.25) and (3.26) for
the retardation coefficient and asymptotic dispersion coefficient.

The retardation coefficient R = 1/(1 − ρ) = 1 + β can be estimated directly from the
experimental data for the mean displacement according to (4.1). Panel (c) of figure 8 shows
that the retardation coefficient decreases with increasing flow rate, which is consistent with
the values adjusted for β in the previous section. Thus the data show also that the fraction
ρ of trapped particles decreases with increasing flow rate.

The behaviour of Dm as a function of the proportion ρ of trapped bacteria is shown
in panels (c,d) of figure 8. The solid line shows the theoretical behaviour of Dnm for
τc = 2.5τv and τc = 2τv , which corresponds to the value used in the CTRW model. The
green and red symbols denote the values obtained from the CTRW models at high and low
flow rates. We see that, at low fractions of immobile bacteria, the Taylor term in (3.26)
dominates and motile bacteria disperse more than non-motile. At high proportions of
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trapped bacteria, localization dominates over the Taylor mechanism, and motile dispersion
is lower than non-motile. Figure 8 illustrates the competition between the trapping time
τc and the proportion ρ of trapped bacteria. For increasing τc, motile dispersion can be
significantly larger than non-motile dispersion.

5. Discussion

We study the interaction between bacteria motility and flow variability, and its impact on
the dispersion of bacteria. To do so we use data obtained in a microfluidic chip containing
randomly placed obstacles, in which thousands of non-motile and motile bacteria were
tracked at different flow rates. This geometry reproduces the structure of a porous medium
on the scale of a few pores, and is thus ideal to study transport phenomena at the pore
scale. Because bacteria do not adhere to the surface of the flow cell, this set-up allows
us to study the first step of filtration, which consists of the transport of bacteria from the
flowing fluid to regions of low flow in the vicinity of solid grains.

Bacteria motion is quantified by a CTRW approach that is based on a Markov model
for equidistant particle speeds. The experimental data for the displacement of non-motile
bacteria are used to constrain the velocity correlation length, which is of the order of the
grain size. Bacteria motility is modelled in this framework by a trapping process, which
accounts for the rheotactic motion toward and along the grain surfaces by a trapping rate
γ and characteristic dwelling time τc. The ratio between trapped and mobile bacteria at
steady state is measured by the partition coefficient β = γ τc.

Adjustment of the model to the experimental data reveals two main features. Firstly, we
observe that γ ∝ um and τc ∝ 1/um. The increase of the trapping rate with the flow rate
can be explained by the constant reorientation of the bacteria by the flow. The frequency
at which bacteria point toward the grains increases with the flow rate, which may explain
the increase of the trapping rate. Similarly, for increasing flow rate, shear increases on the
grains and thus the area for motion around the grains decreases and the bacteria are more
easily blown off by the flow. This can explain why the residence time decreases with flow
rate. A model that supports this idea is proposed in Appendix E.

Secondly, we observe that the ratio β between trapped and mobile bacteria is different
at high and low flow rates. This observation indicates a transition between a regime at
low flow rates, where motility favours trapping with a high density of trapped bacteria
(approximately 50 % of trapped bacteria), to a regime at high flow rates, where the
flow hinders trapping (approximately 30 % of trapped bacteria). Two phenomena may
contribute to this change. The first comes from the volume of fluid in which the bacteria
can be considered as trapped. This fraction can be separated in two: a part where the
velocity is very small (this part corresponds to the dark blue regions that can be seen
in figure 1 and is always present for all the flow rates used) and a second contribution
which comes from the regions of flowing fluid where the average flow velocity is less
than the swimming velocity. In those volumes, which are located close to the grain
surface, the bacteria trajectories are little influenced by the flow and they swim much
as in a quiescent fluid. Bacteria can be considered trapped when they swim along the
grain surfaces. This contribution, however, decreases with the flow rate, reducing in turn
the density of trapped bacteria, as observed. The second contribution comes from the
diffusion due to the constant reorientation of the bacteria. In a fluid at rest, the trajectories
of the bacteria can be decomposed into a succession of runs followed by tumbles that
reorient the bacteria. At large scale, the reorientation is diffusive and can be characterized
by the translational diffusion coefficient Db. For E. coli we have here Db ≈ 243 µm2 s−1
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(Creppy et al. 2019). In a shear flow, bacteria constantly tumble and are reoriented at
a frequency set be the shear rate γ̇ (Jeffery 1922). When the Péclet number defined
as Pe = um�0/2Db is of the order of 1 and for a grain size of �0 = 30 µm, we have
Pe � um/(16 µm s−1). Random orientation will thus dominate shear alignment for the
lowest flow rate with little or no influence at high flow velocity.

6. Conclusions

In conclusion, to understand the dispersion of bacteria in porous media, our study focuses
on the central importance of hydrodynamic flow fluctuations and the active exploration
process into high shear regions around the solid grains. The rheotactic coupling between
flow and bacteria motility manifests itself at intermediate scales through non-Fickian
behaviour, and at large scales through a motility-dependent hydrodynamic dispersion
effect. Noticeably, the interplay between fast transport in the flow and motile motion
toward grain surfaces is the first necessary step before possible adhesion (Yates et al.
1988). To date, it had been assumed that the transfer between regions of high fluid
flow and low flow regions in the vicinity of the grain surfaces was diffusive, as for
passive solutes, and had been modelled as a kinetic single-rate mass transfer process
(Yates et al. 1988; Bai et al. 2016). Our study suggests that both motility and flow
play a central role in the trapping and release processes, which are characterized by
two different rates. Both trapping and release rates are proportional to the average flow
velocity, while the ratio between mobile and trapped bacteria increases with increasing
flow velocity. The trapping and release mechanisms explain apparently contradictory
observations of the concomitant enhancement of retention and dispersion. They are
quantified in a theoretical approach that captures the salient features of the experimental
displacement data, and allows for prediction of the dispersion of motile bacteria at large
scales. These findings shed light on the strategies microorganisms may use to maximize
their survival and proliferation abilities under natural conditions, and can give new insights
into bacteria filtration and biofilm growth, for which the contact with grain surfaces is
determinant.
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Appendix A. Track length statistics

The number of observed tracks decreases with time because tracks leave the observation
window according to their average velocity. Figure 9 shows the number of tracks of
non-motile and motile bacteria for the experiments at different flow rates as a function
of time measured in units of the characteristic advection time τv , which here is the time
to move over the characteristic grain length �0 by mean advection um. We see that the
number of tracks decreases to around 90 % of the initial number of tracks after around 2τv
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Figure 9. Number of tracks of (a) non-motile and (b) motile bacteria as a function of time.
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Figure 10. Schematic of the representation of a particle trajectory in the CTRW approach. Particle speeds are
sampled equidistantly at turning points along a trajectory indicated by the constant �s. The CTRW represents
the trajectory projected onto the direction of the mean flow.

for the non-motile and motile bacteria. After around 4τv the number of tracks decreases
to approximately 35 % for the non-motile and to around 40 % for the motile bacteria. This
means that the number of tracks of lengths larger than 4�0 is 35 % and 40 % of the total
number of tracks. The long tracks are tortuous low velocity tracks that can be observed for
a longer time. This is supported by the observation that the mean velocity starts decreasing
after approximately 2τv , as shown in figures 3 and 5 below. In the following, we consider
travel times shorter than 5τv in order to avoid too strong a bias toward slow bacteria. Even
so, as we will see below, there is a significant slowing down of the mean displacement
with increasing travel time, specifically for the motile bacteria.

Appendix B. CTRW model

The streamwise motion of a non-motile bacteria in the CTRW is described by (3.1a,b).
Unlike classical random walk strategies for the modelling of particle motion in
heterogeneous flow fields, the CTRW approach models particle motion based on stochastic
series of equidistant instead of isochronic particle speeds (e.g. Dentz et al. 2016; Morales
et al. 2017), that is, particle speeds that change at equidistant points along a streamline. The
streamwise displacement in the CTRW model represents the projection of the tortuous
streamline onto the mean flow direction using advective tortuosity χ . This is illustrated
schematically in figure 10.
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B.1. Non-motile bacteria
In the following, we provide a derivation of the Boltzmann-type equation (3.4) for the joint
distribution p(x,v,t) of bacteria displacement and speed. For more details, see Comolli
et al. (2019). The distribution p(x,v,t) can be written as

p(x,v,t) =
∫ t

0
dt′R(x,v,t′)

∫ ∞

t−t′
dt′′ψ(t|v), (B1a)

where ψ(t|v) = δ(t −�s/v). The probability per time R(x,v,t) for the particle to just
arrive at (x,v) at t satisfies

R(x,v,t) = R0(x,v,t)+
∫ t

0
dt′
∫

dx′
∫

dv′ψ(x − x′,t − t′|v′)r(v|v′)R(x′,v′,t′), (B1b)

where r(v|v′) is the transition probability from v′ to v, and

ψ(x,t|v) = δ(x −�s/χ)δ(t −�s/v). (B2)

The initial condition is encoded in R0(x,v,t), which is defined by

R0(x,v,t) = p0(x,v)δ(t), (B3)

where p0(x,v) is the distribution of initial particle positions and speeds. Equations (B1a)
and (B1b) can be combined in Laplace space to the generalized master equation

λp∗(x,v,λ) = R∗
0(x,v,λ)+

∫
dx′
∫

dv′r(v|v′)

×
[
λψ∗(x − x′,λ|v′)

1 − ψ∗(λ|v′)
p∗(x′,v′,λ)− λψ∗(λ|v)

1 − ψ∗(λ|v)p
∗(x,v,λ)

]
. (B4)

Using the explicit form (B2) for ψ(x,t|v), it can be written as

λp∗(x,v,λ) = R∗
0(x,v,λ)+

∫
dv′r(v|v′)

λ exp(−λ�s/v′)
1 − exp(−λ�s/v′)

p∗(x −�s/χ,v′,λ)

− λ exp(−λ�s/v)
1 − exp(−λ�s/v)

p∗(x,v,λ). (B5)

In the limit of �s � �c, we can write

λp∗(x,v,λ)

= R∗
0(x,v,λ)+

∫
dv′r(v|v′)

[
v′

�s
p∗(x −�s/χ,v′,λ)− v

�s
p∗(x,v,λ)

]

= R∗
0(x,v,λ)+

∫
dv′r(v|v′)

v′

�s
p∗(x,v′, λ)− v

χ

∂

∂x
p∗(x,v,λ)− v

�s
p∗(x,v,λ), (B6)

where we localized r(v|v′) = δ(v − v′) in the advection term. By transformation back to
time, we obtain the Boltzmann equation

∂p(x,v,t)
∂t

+ v

χ

∂p(x,v,t)
∂x

= − v

�s
p(x,v,t)+

∫ ∞

0
dv′r(v|v′)

v′

�s
p(x,v′,t′). (B7)
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B.2. Motile bacteria
In the case of motile bacteria, we account for trapping during advective steps as well as
initial trapping. Thus, we modify (B1) as

p(x,v,t) =
∫ t

0
dt′R0(x,v,t′)

∫ ∞

t−t′
dt′ψ0(t|v)+

∫ t

0
dt′R(x,v,t′)

∫ ∞

t−t′
dt′′ψc(t|v). (B8a)

We define the initial transition probability

ψ0(x,t|v) = (1 − ρ)δ(x −�s)ψc(t|v)+ ρδ(x)ψf (t|v), (B8b)

and the distribution of initial transition times

ψ0(t|v) =
∫

dxψ0(x,t|v) = (1 − ρ)ψc(t|v)+ ρψf (t|v). (B8c)

The distribution of compound transition times is given by

ψc(t|v) =
∫ t

0
dt′ψ(t′|v)ψc(t − t′|t′), (B8d)

where ψc(t − t′|t′) is defined by (3.13). This relation reads in Laplace space as

ψ∗
c (λ|v) = ψ∗(λ[1 − γψ∗

f (λ)]) = exp(−λ[1 − γψ∗
f (λ)]�s/v). (B8e)

The probability per time R(x,v,t) for the particle to just arrive at (x,v) at t satisfies

R(x,v,t) = R1(x,v,t)+
∫ t

0
dt′
∫

dx′
∫

dv′ψc(x − x′,t − t′|v′)r(v|v′)R(x′,v′,t′), (B8f )

where r(v|v′) is the transition probability from v′ to v, and

ψc(x,t|v) = δ(x −�s)ψc(t|v). (B9)

The function R1(x,v,t) is given by

R1(x,v,t) =
∫ t

0
dt′
∫

dx′
∫

dv′ψ0(x − x′,t − t′|v′)r(v|v′)R0(x′,v′,t′). (B10)

Equations (B8a) and (B8f ) can be combined in Laplace space to the generalized master
equation

λG∗(x,v,λ) = R∗
1(x,v,λ)+

∫
dv′r(v|v′)

λψ∗
c (λ|v′)

1 − ψ∗
c (λ|v′)

G∗(x −�s/χ,v′,λ)

− λψ∗
c (λ|v)

1 − ψ∗
c (λ|v)

G∗(x,v,λ), (B11)

where we defined

G∗(x,v,λ) =
[

p∗(x,v,λ)− R∗
0(x,v,λ)

1 − ψ0(λ|v)
λ

]
. (B12)
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Using this definition and definition (B10), we can write (B11) as

λp∗(x,v,λ) = R∗
0(x,v,λ)

+
∫

dx′
∫

dv′r(v|v′)
[
ψ∗

0 (x − x′, λ|v′)R∗
0(x

′,v′,λ)− ψ∗
0 (λ|v)R∗

0(x,v,λ)
]

+
∫

dv′r(v|v′)
[
λψ∗

c (λ|v′)
1 − ψ∗

c (λ|v′)
G∗(x −�s/χ,v′,λ)− λψ∗

c (λ|v)
1 − ψ∗

c (λ|v)
G∗(x,v,λ)

]
. (B13)

Using the definition (B8b) of ψ0(x,t|v), we obtain

λp∗(x,v,λ) = R∗
0(x,v,λ)

+
∫

dx′
∫

dv′r(v|v′)(1 − ρ)[ψ∗
c (λ|v′)R∗

0(x −�s/χ,v′,λ)− ψ∗
c (λ|v)R∗

0(x,v,λ)]

+
∫

dv′r(v|v′)
[
λψ∗

c (λ|v′)
1 − ψ∗

c (λ|v′)
G∗(x −�s/χ,v′,λ)− λψ∗

c (λ|v)
1 − ψ∗

c (λ|v)
G∗(x,v,λ)

]
. (B14)

Note that

λψ∗
c (λ|v)

1 − ψ∗
c (λ|v)

R∗
0(x,v,λ)

1 − ψ0(λ|v)
λ

= R∗
0(x,v,λ)(1 − ρ)ψ∗

c (λ|v)+ ρR∗
0(x,v,λ)

ψ∗
c (λ|v)

1 − ψ∗
c (λ|v)

φ∗(λ), (B15)

where we defined

φ∗(λ) =
1 − ψ∗

f (λ)

λ
. (B16)

Combining everything, we obtain

λp∗(x,v,λ) = R∗
0(x,v,λ)+

∫
dv′r(v|v′)

λψ∗
c (λ|v′)

1 − ψ∗
c (λ|v′)

G∗
m(x −�s/χ,v′,λ)

− λψ∗
c (λ|v)

1 − ψ∗
c (λ|v)

G∗
m(x,v,λ), (B17)

where we defined

G∗
m(x,v,λ) = p∗(x,v,λ)− ρR∗

0(x,v,λ)φ
∗(λ). (B18)

Furthermore, we approximate for small �s

ψ∗
c (λ|v)

1 − ψ∗
c (λ|v)

= v

�s
1

1 + γφ∗(λ)
. (B19)

Thus, we obtain

λp∗(x,v,λ) = R∗
0(x,v,λ)+

∫
dv′r(v|v′)

v′

�s
G∗

m(x −�s/χ,v′,λ)
1 + γφ∗(λ)

− v

�s
G∗

m(x,v,λ)
1 + γφ∗(λ)

. (B20)
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We define now the mobile concentration of bacteria in the stream as

p∗
s (x,v,λ) = G∗

m(x,v,λ)
1 + γφ∗(λ)

= p∗(x,v,λ)− ρR∗
0(x,v,λ)φ

∗(λ)
1 + γφ∗(λ)

. (B21)

With this definition, we obtain

λ[1 + γφ∗(λ)]p∗
s (x,v,λ) = R∗

0(x,v,λ)− ρλR∗
0(x,v,λ)φ

∗(λ)

+
∫

dv′r(v|v′)
[
v′

�s
p∗

s (x −�s/χ,v′,λ)− v

�s
p∗

s (x,v,λ)
]
. (B22)

Expanding the integral terms on the right side in analogy to the previous section gives

λ[1 + γφ∗(λ)]p∗
s (x,v,λ) = R∗

0(x,v,λ)− ρλR∗
0(x,v,λ)φ

∗(λ)

+
∫

dv′r(v|v′)
v′

�s
p∗

s (x,v
′,λ)− v

χ

∂

∂x
p∗

s (x,v,λ)− v

�s
p∗

s (x,v,λ). (B23)

By transformation back to time, we obtain the Boltzmann equation

∂ps(x,v,t)
∂t

+ ∂

∂t

∫ t

0
dt′γφ(t − t′)ps(x,t′)+ v

χ

∂ps(x,v,t)
∂x

= ρp0(x,v)ψf (t)− v

�s
ps(x,v,t)+

∫ ∞

0
dv′r(v|v′)

v′

�s
ps(x,v′,t′). (B24)

Appendix C. Initial trapping time distribution

In order to derive the initial trapping time distribution, we employ the concept of the
backward recurrence time Bt0 = t0 − tN , this means the time that has passed between a
target time t0 and the time tN of the last trapping event before t0. For a Poissonian trapping
process, this means that, for an exponential inter-event time distribution, the distribution
of Bt0 in the steady state limit, that is, for N → ∞, is given by (Godrèche & Luck 2001)

ψB(t) = γ exp(−γ t). (C1)

It is independent from t0, Bt0 ≡ B. The initial trapping time η0 can be expressed in terms
of B as η0 = τf − B. Thus, the joint distribution for a bacteria to be trapped and have the
trapping time η0 < t is

Prob(η0 < t ∧ trapped) = 〈
H(τf − B)H[t − (τf − B)]

〉
(C2)

It can be written as

Prob(η0 < t ∧ trapped) =
∫ ∞

0
dt′
∫ ∞

0
dt′′H(t′ − t′′)H[t − (t′ − t′′)]ψB(t′′)ψf (t′). (C3)

Using expression (C1) for ψB(t) and shifting t′′ → t′ − t′′, we obtain

Prob(η0 < t ∧ trapped) =
∫ ∞

0
dt′
∫ ∞

0
dt′′γ exp[−γ (t′ − t′′)]ψf (t′)H(t − t′′)H(t′ − t′′)

=
∫ t

0
dt′′

∫ ∞

t′′
dt′γ exp[−γ (t′ − t′′)]ψf (t′). (C4)
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Thus, we obtain for the joint probability of being trapped and η0 in [t, t + dt] by derivation
of (C4) with respect to t

P0(t) =
∫ ∞

t
dt′γ exp[−γ (t′ − t)]ψf (t′). (C5)

For ψf (t) = exp(−t/τc)/τc, we obtain

Prob(η0 < t ∧ trapped) =
∫ t

0
dt′′

∫ ∞

t′′
dt′γ τ−1

c exp[γ t′′ − t′(τ−1
c + γ )]

= γ τc

1 + γ τc
exp(−t/τc). (C6)

Appendix D. Asymptotic dispersion and retardation coefficients for motile bacteria

In order to derive the dispersion and retardation coefficients for motile bacteria,
we consider the Fourier–Laplace transform of the total bacteria distribution
p(x,t) = ps(x,t)+ pg(x,t). From the Fourier–Laplace transform of (3.23), we obtain

p̃∗(k,λ) = p̃∗
s (k,λ)[1 + φ∗(λ)γ ] + ρφ∗(λ). (D1)

The Fourier–Laplace transform of the density ps(x,t) in the stream is obtained from (3.22)
as

p̃∗
s (k,λ) = 1 − ρλφ∗(λ)

λ[1 + φ∗(λ)γ ] − ikum + Dnmk2 , (D2)

where we used (B16) to express ψ∗
f (λ) in terms of φ∗(λ). The Laplace transforms of the

mean and mean square displacements are given in terms of p̃∗(k,λ) as

m∗
n(λ) = (−i)n

∂np̃∗(k,λ)
∂kn

∣∣∣∣
k=0

, (D3)

for n = 1, 2. Using (D1), we obtain

m∗
n(λ) = (−i)n

∂np̃∗
s (k,λ)
∂kn

∣∣∣∣
k=0

[1 + φ∗(λ)γ ]. (D4)

Using (D2), we obtain the explicit expressions

m∗
1(λ) = um

λ2
1 − ρλφ∗(λ)
[1 + φ∗(λ)γ ]

(D5)

m∗
2(λ) = 2D

λ2
1 − ρλφ∗(λ)
[1 + φ∗(λ)γ ]

+ 2u2
m

λ3
1 − ρλφ∗(λ)

[1 + φ∗(λ)γ ]2 . (D6)

We set now ρ = β/(1 + β) with β = γ τc and φ(t) = exp(−t/τc), which implies

φ∗(λ) = τc

1 + λτc
. (D7)

Thus, we obtain

m∗
1(λ) = um

(1 + β)λ2 (D8)

m∗
2(λ) = 2Dnm

(1 + β)λ2 + 2u2
m

(1 + β)2λ3
1 + λτc

1 + λ τc

1 + β

. (D9)
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The latter can be written as

m∗
2(λ) = 2Dnm

(1 + β)λ2 + 2u2
m

(1 + β)2λ3 + 2u2
mβτc

(1 + β)3λ2
1

1 + λ τc

1 + β

. (D10)

In the limit of λτc → 0, we obtain at leading order

m∗
2(λ) = 2Dnm

(1 + β)λ2 + 2u2
m

(1 + β)2λ3 + 2u2
mβτc

(1 + β)3λ2 . (D11)

Inverse Laplace transform gives

m1(t) = umt
1 + β

(D12)

m2(t) = 2Dnmt
1 + β

+ u2
mt2

(1 + β)2
+ 2u2

mβτc

(1 + β)3
. (D13)

We define the retardation coefficient by comparing m1(t) with the mean displacement for
the non-motile bacteria. This gives

R = 1 + β. (D14)

The displacement variance is given by

σ 2(t) = 2Dnmt
R

+ 2u2
mτc(R − 1)t

R3 . (D15)

Thus, we obtain for the dispersion coefficient

Dm = Dnm

R
+ u2

mτc(R − 1)
R3 . (D16)

We consider now the asymptotic equation for the total bacteria concentration. Thus,
we consider the Fourier–Laplace transform of the total bacteria distribution p(x,t) =
ps(x,t)+ pg(x,t). From the Fourier–Laplace transform of (3.23), we obtain

p̃∗
s (k,λ) = p̃∗(k,λ)− ρφ∗(λ)

[1 + φ∗(λ)γ ]
. (D17)

Thus, we obtain from (3.22)

λp̃∗(k,λ)−
(

ikum − Dnmk2
) p̃∗(k,λ)− ρφ∗(λ)

1 + φ∗(λ)γ
= 1, (D18)

where we used (B16) to express ψ∗
f (λ) in terms of φ∗(λ). We use the expansion

φ∗(λ) = τc(1 − λτc), (D19)

in order to expand (D18) up to linear order in λ

λp̃∗(k,λ)− ikum − Dnmk2

1 + γ τc
p̃∗(k,λ)

(
1 − λγ τ 2

c

1 + γ τc

)
= 1, (D20)
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where we disregard terms of order kφ∗(λ) and order λ2. We set now self-consistently

λp̃∗(k,λ) = 1 + ikum

1 + γ τc
p̃∗(k,λ), (D21)

to obtain

λp̃∗(k,λ)− ikum − Dnmk2

1 + γ τc
p̃∗(k,λ)+ u2

mγ τ
2
c k2

(1 + γ τc)3
p̃∗(k,λ) = 1, (D22)

where we disregard terms of order k. Using definitions (D14) and (D16), we obtain

λp̃∗(k,λ)−
(

ik
um

R
− Dmk2

)
p̃∗(k,λ) = 1. (D23)

The inverse Fourier–Laplace transform of this equation gives (3.24).

Appendix E. Physical model for bacteria blow-off from grains

A simple model is proposed with the objective of showing that the characteristic residence
time τc is inversely proportional to the average flow velocity. Let us consider a circular
obstacle of size �0 facing a flow of average velocity U. The flow field around the grain is
given by

vr = U

(
1 − �2

0
4r2

)
cos(θ) (E1)

vθ = −U

(
1 + �2

0
4r2

)
sin(θ), (E2)

where r is the distance from the centre of the grain and θ the angle with respect to the flow
direction. The shear rate on the grain surface is

γ̇ = ∂vθ

∂r

∣∣∣∣
r=�0/2

= 4U
�0

sin(θ). (E3)

Bacteria transported in the vicinity of the grain rotate because of the local shear as
illustrated in figure 11. Because of their swimming ability, some are able to reach the rear
of the obstacles where the flow is low (Miño et al. 2018). Once on the surface, the bacteria
body aligns with the surface and hydrodynamic interaction favours their swimming along
the surface. Hydrodynamic interactions are known to influence the bacteria over a distance
δ of the order of ten microns (Berke et al. 2008; Li et al. 2011). As they move upstream
along the surface, they face an increasing shear rate. When the shear rate reaches the
critical value of γ̇c ∼ 5 s−1, the bacteria are stopped by the flow and are eventually
detached from the surface and returned to the flow. This scenario is based on the video
available in the supplemental material section of Creppy et al. (2019). This video shows
motile bacteria (white rods) transported by a flow (average velocity 72 µm s−1). In the
video, the upstream displacements are clearly identifiable as well as the motion towards
the rear of the grains and the displacements on the surfaces and the final release. This
succession of steps was also recently identified by computer simulations using molecular
dynamics coupled with lattice Boltzmann (Lee et al. 2021) as the scenario characterizing
the entrapment and release of motile bacteria moving near an obstacle.
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(i)

(ii)

Region where the
magnitude of the flow
velocity is less than
the swimming velocity

vb
δ

R

(iv)

(v)

Figure 11. Illustration of the model. (i) Because of the local shear, the bacteria rotates in the flow, (ii) some
are redirected towards the rear of the grain where the flow velocity is small (iii) and the bacteria then swims
towards the grain and then along the surface. As it moves along the grain it faces an increased local shear rate.
When the shear becomes larger than a critical value γ̇c, the bacteria gets blown off and goes back to the flow.

The critical shear rate is reached when θ = arcsin(γ̇c�0/4U). The model requires a
minimal mean flow velocity Uc = �0γ̇c/4, below which diffusion of the bacteria due to the
swimming activity dominates. The minimal fluid velocity required to see the separation
between bacteria moving on the grains and in the pore channels is approximately
30 µm s−1. Above this velocity, the total distance swum by the bacteria on the grain
surface before its release is l ∼ �0θ/2 if θ is not too large. The motion on the grain is at
swimming velocity v0 and the total time to swim from the back of the grain to the critical
angle is τc = (�2

0γ̇c/8v0)(1/U). We recover here the scaling obtained from interpretation
of the data by the CTRW model.
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