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A Morita Cancellation Problem

D.-M. Lu, Q.-S. Wu, and J. J. Zhang

Abstract. We study a Morita-equivalent version of the Zariski cancellation problem.

1 Introduction

An algebra A is called cancellative if any algebra isomorphism A[t] ≅ B[t] of poly-
nomial algebras for some algebra B implies that A is isomorphic to B. he famous
Zariski Cancellation Problem (ZCP) asks

Is the commutative polynomial ring k[x1 , . . . , xn] over a ûeld k cancellative for
n ≥ 1?

See [Kr, BZ1, Gu3]. here is a long history of studying the cancellation property
of aõne commutative domains. For example, k[x1] is cancellative by a result of
Abhyankar, Eakin, and Heinzer in 1972 [AEH], while k[x1 , x2] is cancellative by a
result of Fujita in 1979 [Fu] and Miyanishi and Sugie in 1980 [MS] in characteristic
zero, and by a result of Russell in 1981 [Ru] in positive characteristic. he ZCP for
n ≥ 3 has been open for many years. One remarkable achievement in this research
area is a result of Gupta in 2014 [Gu1,Gu2], which settled the ZCP negatively in pos-
itive characteristic for n ≥ 3. he ZCP in characteristic zero remains open for n ≥ 3.

he ZCP (especially in dimension two) is closely related to the Automorphism
Problem, the Characterization Problem, the Linearization Problem, the Embedding
Problem, and the Jacobian Conjecture; see [Kr, EH,Gu3, BZ1] for history, partial re-
sults and references concerning the cancellation problem.

he ZCP for noncommutative algebras was introduced in [BZ1] and further in-
vestigated in [LWZ]. During the last few years, several researchers have been making
signiûcant contributions to the cancellation problem in the noncommutative setting
and related topics; see, for example, [BZ1,BZ2,BY,CPWZ1,CPWZ2,CYZ1,CYZ2,Ga,
GKM,GWY,LY,LWZ,LMZ,NTY,Ta1,Ta2,WZ].

he ûrst goal of this paper is the introduction of a new cancellation property for
noncommutative algebras. Let k be a base ûeld; in the sequel, everything is over k.
For any algebra A, let M(A) denote the category of right A-modules.
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Deûnition 1.1 An algebra A is calledMorita cancellative if for any algebra B,

M(A[t]) is equivalent to M(B[t])

implies that
M(A) is equivalent to M(B).

his Morita version of the cancellation property is one of the natural generaliza-
tions of the original Zariski cancellation property when we study noncommutative
algebras. Another generalization involves the derived category of modules. Let D(A)
denote the derived category of right A-modules for an algebra A.

Deûnition 1.2 An algebra A is called derived cancellative if for any algebra B,

D(A[t]) is triangulated equivalent to D(B[t])

implies that
D(A) is triangulated equivalent to D(B).

We will show [heorem 1.7] that if Z is a commutative domain, then

Z is Morita cancellative if and only if Z is cancellative

and
Z is derived cancellative if and only if Z is cancellative.

In general, whenA is noncommutative, the relationships between these three diòerent
versions of cancellation property are not clear. Lemma 2.4 (togetherwith Example 2.5)
provides noncommutative algebras that are neither cancellative, nor Morita cancella-
tive, nor derived cancellative. We will introduce some general methods to handle the
Morita cancellation problems for noncommutative algebras.

he second aim of the paper is to show several classes of algebras are Morita
(or derived) cancellative. First, we generalize a result of [LWZ,heorem 0.2].

heorem 1.3 Suppose A is strongly Hopûan (Deûnition 4.2) and the center of A is
artinian. hen A is Morita cancellative.

Note that le� (or right) noetherian algebras and locally ûnite N-graded algebras
are strongly Hopûan [Example 4.5]. So heorem 1.3 covers a large class of algebras.
he following are consequences of the above theorem; see also [LWZ, Corollary 0.3
andheorem 0.4] for comparison.

heorem 1.4 Let A be a le� (or right) noetherian algebra such that its center is ar-
tinian.hen A isMorita cancellative. As a consequence, every ûnite dimensional algebra
over a base ûeld k is Morita cancellative.

For non-noetherian algebras we have the following theorem.

heorem 1.5 For every ûnite quiver Q, the path algebra kQ is Morita cancellative.
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Recall from [BZ1, heorem 0.5] that, if A is an aõne domain of GK-dimension
two over an algebraically closed ûeld of characteristic zero and A is not commutative,
then A is cancellative. It is well-known that, in contrast, noncommutative aõne prime
(non-domain) algebras of GK-dimension two need not be cancellative [LWZ, Exam-
ple 1.3(5)] and that commutative aõne domains of GK-dimension two need not be
cancellative, by examples of Hochster [Ho] and Danielewski [Da]; see Example 2.5(i)
and (ii). For GK-dimension one, a classical result of Abhyankar, Eakin, and Heinzer
[AEH, heorem 3.3] says that every aõne commutative domain of GK-dimension
one is cancellative. Recently, it was proved that every aõne prime k-algebra of
GK-dimension one is cancellative. Next we add another result in low GK-dimension.

heorem 1.6 Let k be algebraically closed. hen every aõne prime k-algebra of
GK-dimension one is Morita cancellative.

We are mainly dealing with the Morita cancellation property in this paper, but
occasionally, we have some results concerning the derived cancellation property, such
as the next result.

heorem 1.7 (Corollary 8.2) Let Z be a commutative domain. hen Z is cancellative
if and only if Z is Morita cancellative, if and only if Z is derived cancellative.

A question in [LWZ, Question 5.4(3)] asks if the Sklyanin algebras are cancellative.
We partially answer this question.

Corollary 1.8 (Example 6.10(2)) Let A be a non-PI Sklyanin algebra of global dimen-
sion three. hen A is both cancellative and Morita cancellative.

he paper is organized as follows. Section 2 contains deûnitions, known exam-
ples, and preliminaries. In Sections 3 and 4, we introduce the Morita version of the
retractable and detectable properties. In Section 5, we prove heorems 1.3 and 1.4.
heorems 1.6 and 1.7 are proved in Section 6 and Section 7, respectively. he derived
cancellation property is brie�y studied in Section 8. Section 8 also contains some com-
ments, remarks, and examples.

2 Definitions and Preliminaries

Some deûnitions and examples are copied from [BZ1,LWZ]. First, we recall a classical
deûnition. Let A[t] (or A[s]) be the polynomial algebra over A by adding one central
indeterminate.

Deûnition 2.1 Let A be an algebra.
(i) We call A cancellative if any algebra isomorphism A[t] ≅ B[s] implies that

A ≅ B.
(ii) We call A strongly cancellative if, for each n ≥ 1, any algebra isomorphism

A[t1 , . . . , tn] ≅ B[s1 , . . . , sn]

implies that A ≅ B.
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he following are two new cancellation properties that we will study in this paper.

Deûnition 2.2 Let A be an algebra.
(i) We call A m-cancellative if any equivalence of abelian categories M(A[t]) ≅

M(B[s]) implies that M(A) ≅ M(B).
(ii) We call A strongly m-cancellative if, for each n ≥ 1, any equivalence of abelian

categories
M(A[t1 , . . . , tn]) ≅ M(B[s1 , . . . , sn])

implies that M(A) ≅ M(B).
he letter m here stands for the word “Morita”.

Deûnition 2.3 Let A be an algebra.
(i) We call A d-cancellative if any equivalence of triangulated categories

D(A[t]) ≅ D(B[s])

implies that D(A) ≅ D(B).
(ii) We call A strongly d-cancellative if, for each n ≥ 1, any equivalence of triangu-

lated categories
D(A[t1 , . . . , tn]) ≅ D(B[s1 , . . . , sn])

implies that D(A) ≅ D(B).
he letter d here stands for the word “derived”.

Let A[t] denote the polynomial algebra A[t1 , . . . , tn] and A[s] the polynomial al-
gebra A[s1 , . . . , sn] for an integer n (that is not speciûed) when no confusion occurs.

Lemma 2.4 Let A be a commutative algebra that is not (strongly) cancellative. Let B
be an algebra with center Z(B) = k. hen A⊗ B is neither (strongly) cancellative, nor
(strongly) m-cancellative, nor (strongly) d-cancellative.

Proof Since A is not (strongly) cancellative, there is a commutative algebra C such
that A is not isomorphic to C, but A[t1 , . . . , tn] ≅ C[s1 , . . . , sn] for n = 1 (or some
n ≥ 1). hen A⊗ B[t] ≅ C ⊗ B[s]. As a consequence, we obtain that

M(A⊗ B[t]) ≅ M(C ⊗ B[s]) and D(A⊗ B[t]) ≅ D(C ⊗ B[s]) .

Since the center Z(A⊗ B) = A is not isomorphic to Z(C ⊗ B) = C, we obtain that
M(A⊗ B) ≇ M(C ⊗ B) and that D(A⊗ B) ≇ D(C ⊗ B). herefore, the assertions
follow. ∎

Next we give some precise examples of non-cancellative commutative algebras.
he above lemma gives an easy way of producing non-cancellative noncommutative
algebras.

Example 2.5 (i) Let k be the ûeld of real numbers R. Hochster showed that
k[P,Q , X ,Y , Z]/(X2 + Y 2 + Z2 − 1) is not cancellative [Ho].

(ii) he following example is due to Danielewski [Da]. Let n ≥ 1 and let Bn be
the coordinate ring of the surface xn y = z2 − 1 over k ∶= C. hen B i /≅ B j if i ≠ j,
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but B i[t] ≅ B j[s] for all i , j ≥ 1; see [Fi,Wi] for more details. herefore, all the Bn ’s
are not cancellative.

(iii) Suppose chark > 0. Gupta showed that k[x1 , . . . , xn] is not cancellative for
every n ≥ 3 [Gu1,Gu2].
As a consequence of Lemma 2.4 (by taking B = k), the algebras above are neither

m-cancellative nor d-cancellative.

We also need to recall higher derivations and Makar–Limanov invariants.

Deûnition 2.6 Let A be an algebra.
(i) [HS] A higher derivation (or Hasse–Schmidt derivation) on A is a sequence of

k-linear endomorphisms ∂ ∶= {∂ i}
∞
i=0 such that:

∂0 = idA and ∂n(ab) =
n

∑
i=0

∂ i(a)∂n−i(b)

for all a, b ∈ A and all n ≥ 0. he collection of all higher derivations on A is denoted
by DerH(A).

(ii) A higher derivation is called locally nilpotent if
(a) given any a ∈ A there exists n ≥ 1 such that ∂ i(a) = 0 for all i ≥ n,
(b) the map

G∂ ,t ∶ A[t] Ð→ A[t]
deûned by

a z→
∞
∑
i=0

∂ i(a)t i for all a ∈ A and t z→ t

is an algebra automorphism of A[t].
(iii) For any ∂ ∈ DerH(A), the kernel of ∂ is deûned to be

ker ∂ = ⋂
i≥1

ker ∂ i .

(iv) he set of locally nilpotent higher derivations is denoted by LNDH(A). Given
a nonzero element d ∈ A, let

LNDH
d (A) = {∂ ∈ LNDH

(A) ∣ d ∈ ker ∂}.

Note that (a) in part (ii) of the above deûnition implies that the map G∂ ,t deûned
in (b) is an algebra endomorphism. It is not clear to us whether G∂ ,t is automatically
an automorphism. However, by [BZ1, Lemma 2.2(2)], when ∂ is an iterative higher
derivation, G∂ ,t is automatically an automorphism.

It is easy to see that 1 ∈ ker ∂ for all higher derivations ∂. Hence, LNDH
1 (A) =

LNDH(A). We generalize the original deûnition of the Makar–Limanov invariant
[Mak].

Deûnition 2.7 Let A be an algebra and d a nonzero element in A.
(i) heMakar-LimanovHd invariant of A is deûned to be

(E1.7.1) MLH
d (A) ∶= ⋂

δ∈LNDH
d (A)

ker(δ).
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(ii) We say that A is LNDH
d -rigid if MLH

d (A) = A.
(iii) A is called strongly LNDH

d -rigid if MLH
d (A[t1 , . . . , tn]) = A, for all n ≥ 1.

(iv) heMakar–LimanovHd center of A is deûned to be

MLH
d ,Z(A) = MLH

d (A) ∩ Z(A).

(v) A is called strongly LNDH
d ,Z-rigid if MLH

d ,Z(A[t1 , . . . , tn]) = Z(A), for all n ≥ 1.

3 Morita Invariant Properties and the P-discriminant

In this section we will recall some well-known facts about Morita equivalence. Two
algebras A and B are Morita equivalent if their right module categories M(A) and
M(B) are equivalent. We list some properties concerning Morita theory.

Lemma 3.1 ([AF, Ch. 6]) Let A and B be two algebras that are Morita equivalent.
(i) here is an (A, B)-bimodule Ω that is invertible, namely, Ω ⊗B Ω∨ ≅ A and

Ω∨ ⊗A Ω ≅ B as bimodules, where Ω∨ ∶= HomB(ΩB , BB).
(ii) he bimodule Ω induces naturally algebra isomorphisms A ≅ End(ΩB) and

Bop ≅ End(AΩ).
(iii) Further, Z(A) ≅ Hom(A,B)(Ω, Ω) ≅ Z(B), which induces an isomorphism

(E2.1.1) ω ∶ Z(A) Ð→ Z(B)

such that, for each x ∈ Z(A), the le� multiplication of x on Ω equals the right multipli-
cation of ω(x) on Ω.

(iv) By using ω to identify the center Z = Z(A) of Awith the center of B, both A and
B are central Z-algebras. In this case, both Ω and Ω∨ are central Z-modules.

(v) Let ω be given as in (E2.1.1). hen, for any ideal I of Z(A), A/IA and B/ω(I)B
are Morita equivalent.

(vi) [AF, Ex.9, p.267] Let A, B, T be K-algebra for some commutative ring K. hen
A⊗K T and B ⊗K T are Morita equivalent.

Morita equivalences have been studied extensively for decades. A ring theoretic
property is called aMorita invariant if it is preserved by Morita equivalences.

Example 3.2 he following properties are Morita invariants:
(i) being simple (resp., semisimple);
(ii) being right (or le�) noetherian, right (or le�) artinian;
(iii) having global dimension d (Krull dimension d, GK-dimension d, etc);
(iv) being a full matrix algebra Mn(k) for some n, when k is algebraically closed;
(v) being an Azumaya algebra [Sc, heorem 4];
(vi) being quasi-Frobenius;
(vii) being prime, semiprime, right (or le�) primitive, semiprimitive;
(viii) being semilocal;
(ix) being primitive, but not simple;
(x) being noetherian, but not artinian;
(xi) the center being k;
(xii) being projective over its center.
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Let R be a commutative algebra, SpecR be the prime spectrum of R and
MaxSpec(R) ∶= {m ∣ m is a maximal ideal of R} be the maximal spectrum of R. For
any S ⊆ SpecR, I(S) is the ideal of R vanishing on S, namely,

I(S) = ⋂
p∈S

p.

For any algebra A, A× denotes the set of invertible elements in A.
A property P considered in the following means a property deûned on a class of

algebras that is an invariant under algebra isomorphisms.

Deûnition 3.3 Let Abe an algebra, Z = Z(A) be the center of A. LetP be a property
deûned for k-algebras (not necessarily a Morita invariant).

(i) he P-locus of A is deûned to be

LP(A) ∶= {m ∈ MaxSpec(Z) ∣ A/mA has property P}.

(ii) he P-discriminant set of A is deûned to be

DP(A) ∶= MaxSpec(Z) ∖ LP(A).

(iii) he P-discriminant ideal of A is deûned to be

IP(A) ∶= I(DP(A)) ⊆ Z .

(iv) If IP(A) is a principal ideal of Z generated by d ∈ Z, then d is called the
P-discriminant of A, denoted by dP(A). In this case dP(A) is unique up to an element
in Z×.

(v) Let C be a class of algebras over k. We say that P is C-stable if for every algebra
A in C and every n ≥ 1,

IP(A⊗ k[t1 , . . . , tn]) = IP(A) ⊗ k[t1 , . . . , tn]

as an ideal of Z ⊗ k[t1 , . . . , tn]. If C is a singleton {A}, we simply call P A-stable. If
C is the whole collection of k-algebras with the center aõne over k, we simply call P
stable.

In general, neither LP(A) nor DP(A) is a subscheme of Spec Z(A).

Example 3.4 Supposek = C. LetAbe the universal enveloping algebra of the simple
Lie algebra sl2. It is well known that Z(A) = k[Q], where Q = 2(e f + f e) + h2.

Let S be the property of being simple. hen DS(A) is the set of integer points of
the form {n2 + 2n ∣ n ∈ N} inside the MaxSpeck[Q]; see [Di] or [Sm, p. 98]. In this
case, the S-discriminant ideal of A is the zero ideal of k[Q] and the S-discriminant
of A is the element 0 ∈ k[Q].

Note from [Di] or [Sm, p. 98] that for each c = n2 + 2n, A/(Q − c)A has a unique
proper two-sided ideal Mc andMc is of codimension (n+ 1)2. Let Pn be the property
of not having a factor ring isomorphic to thematrix algebraMn+1(k).henDPn(A) is
the singleton {n2+2n}, as a subset of DS(A). As a consequence, thePn-discriminant
ideal of A is (Q − (n2 + 2n)) ⊆ k[Q] and the Pn-discriminant of A is the element
Q − (n2 + 2n) ∈ k[Q].

It is clear that S is a Morita invariant, but Pn is not for each ûxed n.
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Lemma 3.5 Let P be a property.
(i) Suppose ϕ ∶ A→ B is an isomorphism. hen ϕ preserves the following:

(a) P-locus;
(b) P-discriminant set;
(c) P-discriminant ideal;
(d) P-discriminant (if it exists).

(ii) Suppose that P is a Morita invariant and that A and B are Morita equivalent.
hen the algebra map ω in (E2.1.1) preserves the following:
(a) P-locus;
(b) P-discriminant set;
(c) P-discriminant ideal;
(d) P-discriminant (if it exists).

Proof (i) his is clear.
(ii) his follows from the deûnition, Lemma 3.1(v) and the hypothesis that P is a

Morita invariant. ∎

In this and the next sections we study two properties that are closely related to the
m-cancellative property. he retractable property was introduced in [LWZ, Deûni-
tions 2.1 and 2.5]. Next we generalize Z-retractability to the Morita setting.

Deûnition 3.6 Let A be an algebra.
(i) [LWZ,Deûnition 2.5(1)]We callAZ-retractable, if for any algebra B, an algebra

isomorphism ϕ ∶ A[t] ≅ B[s] implies that ϕ(Z(A)) = Z(B).
(ii) [LWZ, Deûnition 2.5(2)] We call A strongly Z-retractable, if for any algebra B

and integer n ≥ 1, an algebra isomorphism ϕ ∶ A[t1 , . . . , tn] ≅ B[s1 , . . . , sn] implies
that ϕ(Z(A)) = Z(B).

(iii) We call A m-Z-retractable if, for any algebra B, an equivalence of categories
M(A[t]) ≅ M(B[s]) implies that ω(Z(A)) = Z(B), where ω ∶ Z(A)[t] → Z(B)[s]
is given as in (E2.1.1).

(iv) We call A strongly m-Z-retractable if, for any algebra B and n ≥ 1, an equiva-
lence of categoriesM(A[t1 , . . . , tn]) ≅M(B[s1 , . . . , sn]) implies thatω(Z(A))= Z(B),
where ω ∶ Z(A)[t1 , . . . , tn] → Z(B)[s1 , . . . , sn] is given as in (E2.1.1).

he following proposition is similar to [LWZ, Lemma 2.6].

Proposition 3.7 Let A be an algebra whose center Z ∶= Z(A) is an aõne domain.
Let P be a stable Morita invariant property (resp., stable property) and assume that the
P-discriminant of A, denoted by d, exists.

(i) Suppose MLH
d (Z[t]) = Z. hen A is m-Z-retractable (resp., Z-retractable).

(ii) Suppose that Z is stronglyLNDH
d -rigid.hen Ais stronglym-Z-retractable (resp.,

strongly Z-retractable).

Proof he proofs of (i) and (ii) are similar, so we prove only (ii). We only work on
the strongly m-Z-retractable version; the strongly Z-retractable version is similar.
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Suppose that A[t1 , . . . , tn] is Morita equivalent to B[s1 , . . . , sn] for some algebra B
and for some n ≥ 1. Let ω ∶ Z⊗k[t] → Z(B)⊗k[s] be the map given in (E2.1.1). Since
P is stable, dP(A[t]) = d ⊗ 1, where 1 is the identity element of the polynomial ring
k[t]. In other words, the principal ideal (d ⊗ 1) is the P-discriminant ideal of A[t].
Since ω preserves the discriminant ideal [Lemma 3.5(2c)] and P is stable, we obtain
that

(E2.7.1) ω((d ⊗ 1)) = ω((d)⊗k[t]) = ω(IP(A[t])) = IP(B[s]) = IP(B)⊗k[s].

As a consequence, IP(B) is a principal ideal, denoted by (d′), where d′ is the
P-discriminant of B. Equation (E2.7.1) implies that

ω(d ⊗ 1) =Z(B[s])× d′ ⊗ 1′ ,

where 1′ is the identity element of the polynomial ring k[s]. Since Z(B) is a domain,
Z(B[s])× = Z(B)×. Hence ω maps d to d′ up to a scalar in Z(B)×.

Now consider the map ω ∶ Z ⊗ k[t] → Z(B) ⊗ k[s] again. Since ω maps d to d′,
by the strongly LNDH

d -rigidity of Z, we have

ω(Z) = ω(MLH
d (Z ⊗ k[t])) = MLH

d′(Z(B) ⊗ k[s]) ⊆ Z(B),

where the last⊆ follows from the computation given in [BZ1, Example 2.4].hismeans
that the isomorphism ω induces an algebra map from Z to Z(B). Let Z′ be the subal-
gebra ω−1(Z(B)) ⊂ Z[t]. hen Z′ contains Z, which is considered as the degree zero
part of the algebra Z[t], and we have

GKdim Z′ = GKdim Z(B) = GKdim Z(B)[s] − n = GKdim Z[t] − n
= GKdim Z .

By [BZ1, Lemma 3.2], Z′ = Z. herefore, ω(Z) = Z(B) as required. ∎

he rest of this section follows closely [LWZ, Section 2]. By [BZ1, Section 5], eòec-
tiveness (and the dominating property) of the discriminant controls LNDH-rigidity.
We now recall the deûnition of the eòectiveness of an element. An algebra is called PI
if it satisûes a polynomial identity.

Next we will use ûltered algebras and associated graded algebras; see [YZ2, Sec-
tion 1] for more details. By a ûltration of a k-algebra A, we mean an ascending ûltra-
tion F ∶= {FiA}i≥0 of vector spaces such that 1 ∈ F0A and FiAF jA ⊆ Fi+ jA for all
i , j ≥ 0. We assume that F is (separated and) exhaustive. By [YZ2, Lemma 1.1], giving
a ûltration on an algebra A is equivalent to giving a degree on the set of generators
of A.

Deûnition 3.8 ([BZ1,Deûnition 5.1]) LetAbe a domain and suppose thatY=⊕n
i=1kx i

generates A as an algebra. An element 0 ≠ f ∈ A is called eòective if the following
conditions hold.

(i) here is anN-ûltration {FiA}i≥0 on A such that the associated graded ring grA
is a domain (one possible ûltration is the trivial ûltration F0A = A).With this ûltration
we deûne the degree of elements in A, denoted by degA.

(ii) For every testingN-ûltered PI algebra T with grT being anN-graded domain
and for every testing subset {y1 , . . . , yn} ⊂ T satisfying the following:
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(a) it is linearly independent in the quotient k-module T/k1T , and
(b) degT y i ≥ degA x i for all i and degT y i0 > degA x i0 for some i0,
then there is a presentation of f of the form f (x1 , . . . , xn) in the free algebra
k⟨x1 , . . . , xn⟩, such that either

f (y1 , . . . , yn) = 0 or degT f (y1 , . . . , yn) > degA f .

Here is an easy example.

Example 3.9 ([LWZ, Example 2.8]) Every non-invertible nonzero element in k[t]
is eòective in k[t].

Other examples of eòective elements are given in [BZ1, Section 5].here is another
concept, called “dominating”; see [BZ1, Deûnition 4.5] or [CPWZ1, Deûnition 2.1(2)],
that is similar to eòectiveness. Both of these properties control LNDH-rigidity. he
following result is similar to [BZ1, heorem 5.2] and [LWZ,heorem 2.9].

heorem 3.10 If d is an eòective (resp., dominating) element in an aõne commutative
domain Z, then Z is strongly LNDH

d -rigid.

Proof Since the proofs for the “eòective” case and the “dominating” case are very
similar, we prove only the “eòective” case.

Suppose Z is generated by {x j}
m
j=1. Let ∂ ∈ LNDH

d (Z[t1 , . . . , tn]) and G ∶= G∂ ,t ∈

Autk[t](Z[t1 , . . . , tn][t]) as in Deûnition 2.6(2). hen, for each j,

G(x j) = x j +∑
i≥1

t i∂ i(x j).

Since d ∈ ker ∂, by deûnition,

(E2.10.1) G(d) = d .

Recall from Deûnition 3.8 that, when d is eòective, Z is a ûltered algebra with degZ is
deûned as in [YZ2, Lemma 1.1]. It is clear that Z′ ∶= Z[t1 , . . . , tn] is a ûltered algebra
with degZ′ z = degZ z for all z ∈ Z and degZ′ ts = 1 for s = 1, . . . , n. We take the test
algebra T to be Z[t1 , . . . , tn][t] = Z′[t], where the ûltration on T is determined by
degT(z) = degZ(z) for all z ∈ Z, degT ts = 1 for s = 1, . . . , n, and degT t = α, where

α > sup{degZ′ ∂ i(x j) ∣ j = 1, . . . ,m, i ≥ 0}.

Now set y j = G(x j) ∈ T . By the choice of α, we have that
(a) degT y j ≥ degZ x j , and that
(b) degT y j = degZ x j if and only if y j = x j .
Let f (x1 , . . . , xm) be some polynomial presentation of d as in Deûnition 3.8. If
G(x j) ≠ x j for some j, by the eòectiveness of d as in Deûnition 3.8, f (y1 , . . . , ym) = 0
or degT f (y1 , . . . , ym) > degZ d = degT d. So f (y1 , . . . , ym) ≠Z× d. But f (y1 , . . . , ym)

= G(d) =Z× d by (E2.10.1), a contradiction.herefore,G(x j) = x j for all j. As a conse-
quence, ∂ i(x j) = 0 for all i ≥ 1, or equivalently, x j ∈ ker ∂. Since Z is generated by x j ’s,
Z ⊂ ker ∂. hus, Z ⊆ MLH

d (Z[t1 , . . . , tn]). It is clear that Z ⊇ MLH
d (Z[t1 , . . . , tn]);

see [BZ1, Example 2.4]. herefore, Z = MLH
d (Z[t1 , . . . , tn]), as required. ∎
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he following corollary will be used several times.

Corollary 3.11 Let A be an algebra such that the center of A is k[x]. Let P be a
stable Morita invariant property (resp., stable property) such that the P-discriminant of
A, denoted by d, is a nonzero non-invertible element in Z(A) = k[x]. hen Z(A) is
strongly LNDH

d -rigid and A is strongly m-Z-retractable (resp., strongly Z-retractable).

Proof By Example 3.9, d is an eòective element in Z(A). By heorem 3.10, Z(A)
is strongly LNDH

d -rigid. By Proposition 3.7(ii), A is strongly m-Z-retractable (resp.,
strongly Z-retractable). ∎

4 Morita Detectability

First, we recall the detectability introduced in [LWZ]. If B is a subring of C and
f1 , . . . , fm are elements of C, then the subring generated by B and the subset
{ f1 , . . . , fm} is denoted by B{ f1 , . . . , fm}.

Deûnition 4.1 ([LWZ, Deûnition 3.1]) Let A be an algebra.
(i) We call A detectable if any algebra isomorphism ϕ ∶ A[t] ≅ B[s] implies that

B[s] = B{ϕ(t)}, or equivalently, s ∈ B{ϕ(t)}.
(ii) We call A strongly detectable if for each integer n ≥ 1, any algebra isomorphism

ϕ ∶ A[t1 , . . . , tn] ≅ B[s1 , . . . , sn]

implies that B[s1 , . . . , sn] = B{ϕ(t1), . . . , ϕ(tn)}, or equivalently, for each i = 1, . . . , n,
s i ∈ B{ϕ(t1), . . . , ϕ(tn)}.

In the above deûnition, we do not assume that ϕ(t) = s. Every strongly detectable
algebra is detectable. he polynomial ring k[x] is cancellative, but not detectable. By
[LWZ, Lemma 3.2], if A is Z-retractable in the sense of [LWZ, Deûnition 2.5], then it
is detectable. We ûrst recall a deûnition from [LWZ, Deûnition 3.4].

Deûnition 4.2 ([LWZ, Deûnition 3.4]) Let A be an algebra over k.
(i) We say A is Hopûan if every k-algebra epimorphism from A to itself is an au-

tomorphism.
(ii) We say A is strongly Hopûan if A[t1 , . . . , tn] is Hopûan for every n ≥ 0.

By [LWZ, Lemma 3.6], if A is detectable and strongly Hopûan, then A is cancella-
tive. We will generalize these facts in the Morita setting. In the following deûnition,
we use ω−1 instead of ω for technical reasons.

Deûnition 4.3 Let A be an algebra. Let ω be the map given in (E2.1.1) when in a
Morita context.

(i) We call A m-detectable if any equivalence of categories M(A[t]) ≅ M(B[s])
implies that

A[t] = A{ω−1
(s)},

or equivalently, t ∈ A{ω−1(s)}.
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(ii) We call A strongly m-detectable if for each n ≥ 1, any equivalence of categories
M(A[t1 , . . . , tn]) ≅ M(B[s1 , . . . , sn]) implies that

A[t1 , . . . , tn] = A{ω−1
(s1), . . . ,ω−1

(sn)},

or equivalently, t i ∈ A{ω−1(s1), . . . ,ω−1(sn)} for i = 1, . . . , n.

he following result is analogous to [LWZ, Lemma 3.2].

Lemma 4.4 If A is m-Z-retractable (resp., strongly m-Z-retractable), then it is
m-detectable (resp., strongly m-detectable).

Proof We show only the “strongly” version.
Suppose that A is strongly m-Z-retractable. Let B be any algebra such that

the abelian categories M(A[t]) and M(B[s]) are equivalent. Since A is strongly
m-Z-retractable, the map ω ∶ Z(A)[t] → Z(B)[s] in (E2.1.1) restricts to an algebra
isomorphism Z(A) → Z(B). Write ϕ = ω−1 and f i ∶= ϕ(s i) for i = 1, . . . , n. hen

Z(A){ f1 , . . . , fn} = ϕ(Z(B)){ϕ(s1), . . . , ϕ(sn)}
= ϕ(Z(B){s1 , . . . , sn})
= ϕ(Z(B)[s]) = Z(A)[t].

hen, for every i, t i ∈ Z(A)[t] = Z(A){ f1 , . . . , fn} ⊆ A{ f1 , . . . , fn}, as desired. ∎

Next we show that m-detectability implies m-cancellative property under some
mild conditions.

Example 4.5 ([LWZ, Lemma 3.5]) he following algebras are strongly Hopûan:
(i) le� or right noetherian algebras;
(ii) ûnitely generated locally ûnite N-graded algebras;
(iii) prime aõne k-algebras satisfying a polynomial identity.

Lemma 4.6 Suppose A is strongly Hopûan.
(i) If A is m-detectable, then A is m-cancellative and cancellative.
(ii) If A is strongly m-detectable, then A is strongly m-cancellative and strongly can-

cellative.

Proof We prove only (ii).
First, we consider theMorita version. Suppose thatA[t] and B[s] areMorita equiv-

alent and ω ∶ Z(A)[t] → Z(B)[s] is the algebra isomorphism given as in (E2.1.1).
Write ϕ = ω−1 and f i = ϕ(s i) for i = 1, . . . , n. hen f i are central elements in A[t].
hus, A{ f1 , . . . , fn} is a homomorphic image of A[t1 , . . . , tn] by sending t i ↦ f i .
Since A is strongly m-detectable, A{ f1 , . . . , fn} = A[t]. hen we have an algebra
homomorphism

(E3.6.1) A[t]
π
Ð→ A{ f1 , . . . , fn}

=
Ð→ A[t].

Since A is strongly Hopûan, A[t] is Hopûan. Now (E3.6.1) implies that π is an iso-
morphism. As a consequence, A{ f1 , . . . , fn} = A[ f1 , . . . , fn] viewing f i as central
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indeterminates in A[ f1 , . . . , fn]. As a consequence, A[t] = A[ f ]. Going back to the
map

ω ∶ Z(A[t]) = Z(A[ f ]) Ð→ Z(B[s]),

one sees that ω maps f i to s i for i = 1, . . . , n. Let J be the ideal of Z(A[t]) generated
by { f i}n

i=1 and J′ be the ideal of Z(B[s]) generated by {s i}n
i=1. hen J′ = ω(J). By

Lemma 3.1(v), the algebra A (which is isomorphic to A[t]/JA) is Morita equivalent to
B (which is isomorphic to B[s]/J′B). he assertion follows.

Next we consider the “cancellative” version. Suppose that ω′ ∶ A[t] → B[s] is an
isomorphism that restricts to an isomorphism between the centers ω ∶ Z(A)[t] →
Z(B)[s]. hen ω′ induces a (trivial) Morita equivalence, and ω is the map given in
(E2.1.1). Re-use the notation introduced in the above proof. he above proof shows
that A[t] = A[ f ], where f i = ω−1(s i) for all i. herefore, ω′ induces an isomorphism

A ≅ A[ f ]/({ f i}n
i=1)

ω′
Ð→ B[s]/({s i}n

i=1) ≅ B,

as desired. ∎

For the rest of this section we study more properties concerning m-detectability.

Lemma 4.7 Let A be an algebra with center Z. Suppose Z is (strongly) cancellative.
(i) If Z is (strongly) detectable, then A is (strongly) m-detectable.
(ii) Z is (strongly) detectable if and only if it is (strongly) m-detectable.

Proof Following the pattern before, we prove only the “strongly” version.
(i) Suppose B is an algebra such that A[t] and B[s] are Morita equivalent. Let ω ∶

Z[t] → Z(B)[s] be the algebra isomorphism given in (E2.1.1). Since Z is strongly can-
cellative, one has that Z(B) ≅ Z. Nowwe have an isomorphism ω−1 ∶ Z(B)[s] ≅ Z[t].
Since Z(B) (or Z) is strongly detectable, t i ∈ Z{ω−1(s1), . . . ,ω−1(sn)} for all i. hus,
t i ∈ A{ω−1(s1), . . . ,ω−1(sn)} for all i. his means that A is strongly m-detectable.

(ii) One direction is part (i). For the other direction, assume that Z is strongly
m-detectable. Consider any algebra isomorphism ϕ ∶ Z[t] → B[s]. It is clear that B
is commutative and B ≅ Z, since Z is strongly cancellative. hen ϕ induces a (trivial)
Morita equivalent, and the map ω in (E2.1.1) is just ϕ. Now the strong m-detectability
of Z implies that Z is strongly detectable. ∎

he next result is similar to [LWZ, Proposition 3.10].

Proposition 4.8 If the center Z of A is an aõne domain of GK-dimension one that is
not isomorphic to k′[x] for some ûeld extension k′ ⊇ k, then A is strongly m-detectable.

Proof By [AEH,heorem 3.3], Z is strongly retractable and cancellative. As a conse-
quence, Z is a strongly m-Z-retractable. By Lemma 4.4, A is strongly m-detectable. ∎

5 Proofs of Theorems 1.3 and 1.4

In this section we will use the results in the previous sections to show some classes of
algebras are m-cancellative. We ûrst proveheorem 1.4.
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heorem 5.1 If A is le� (or right) noetherian, and the center of A is artinian, then A
is strongly m-detectable. As a consequence, A is strongly m-cancellative.

Proof Let Z be the center of A. hen Z is artinian by hypothesis. By [LWZ, he-
orem 4.1], Z is strongly detectable and strongly cancellative. By Lemma 4.7(i), A is
strongly m-detectable. By Example 4.5(i), A is strongly Hopûan. he consequence
follows from Lemma 4.6(ii). ∎

heorem 1.4 is a special case of heorem 5.1.

heorem 5.2 Let A be an algebra with strongly cancellative center Z. Suppose J is the
prime radical of Z such that (a) J is nilpotent and (b) Z/J is a ûnite direct sum of ûelds.
hen the following hold.
(i) A is strongly m-detectable.
(ii) If further A is strongly Hopûan, then A is strongly m-cancellative.

Proof (i) By the proof of [LWZ,heorem4.2], Z is strongly detectable. By Lemma4.7,
A is strongly m-detectable.

(ii) Follows from Lemma 4.6 and part (1). ∎

Next is heorem 1.3.

Corollary 5.3 Suppose A is strongly Hopûan and the center of A is artinian. hen A
is strongly m-detectable and strongly m-cancellative.

Proof Let Z be the center of A. By [LWZ,heorem 4.1], Z is strongly detectable and
strongly cancellative. Since Z is artinian, it satisûes conditions (a) and (b) in heo-
rem 5.2. he assertion follows by heorem 5.2. ∎

6 Proof of Theorem 1.6

We assume in this section that k is algebraically closed. Under this hypothesis, a
P-discriminant ideal has the following nice property. his is one of the reasons we
need the above hypothesis.

Lemma 6.1 Let P be a property. hen P is stable.

Proof Let Z be the center of A. By Deûnition 3.3(v), we may assume that Z is
aõne and write it as k[z1 , . . . , zm]/(R), where {z1 , . . . , zm} is a generating set
of Z and R is a set of relations. Every maximal ideal of Z is of the form (z i − α i) ∶=

(z1 − α1 , . . . , zm − αm), where α i ∈ k for all i. Every maximal ideal of Z[t] is of the
form

(z i − α i , t j − β j) ∶= (z1 − α1 , . . . , zm − αm , t1 − β1 , . . . , tn − βn),
where α i , β j ∈ k. he natural embedding Z → Z[t] induces a projection

π ∶MaxSpec(Z[t]) Ð→MaxSpec Z

by sending m ∶= (z i − α i , t j − β j) to π(m) ∶= (z i − α i).
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Let DP(A) be the P-discriminant set of A. A maximal ideal m is in DP(A[t]) if
and only if A[t]/mA[t] does not have property P. Since

A[t]/mA[t] ≅ A/π(m)A,

m ∈DP(A[t]) if and only if π(m) ∈DP(A).his implies thatDP(A[t]) =DP(A)×An .
As a consequence,

IP(A[t]) = ⋂
m∈DP(A[t])

m = ( ⋂
p∈DP(A)

p) ⊗ k[t] = IP(A) ⊗ k[t].

herefore, P is stable by Deûnition 3.3(v). ∎

Let A be an algebra with the center Z being a domain. Let τ(A/Z) be the ideal of A
consisting of elements in A that are annihilated by some nonzero element in Z. Deûne
the annihilator ideal of Z to be

κ(A/Z) = {z ∈ Z ∣ z(τ(A/Z)) = 0}.

Lemma 6.2 Retain the notation as above.
(i) κ is stable in the sense that κ(A[t]/Z[t]) = κ(A/Z) ⊗ k[t].
(ii) If A and B are Morita equivalent, then ω maps κ(A/Z) to κ(B/Z(B)) bijec-

tively.
(iii) If A is le� noetherian and suppose the center Z is a domain, then τ(A/Z) ≠ 0

if and only if κ(A/Z) is a proper ideal, neither Z nor 0.

Proof his is easy to check, so details are omitted. ∎

Lemma 6.3 Suppose A is a ûnitely generated module over its center Z and Z is a
domain. If A is prime, then τ(A/Z) = 0.

Proof his is easy to check, so details are omitted. ∎

Proposition 6.4 Let A be le� noetherian such that the center Z is an aõne domain
of GK-dimension one.

(i) If Z is not k[x], then A is strongly m-Z-retractable, m-detectable, and
m-cancellative.

(ii) If Z = k[x] and τ(A/Z) ≠ 0, then A is strongly m-Z-retractable, m-detectable,
and m-cancellative.

Proof (i) By [AEH, heorem 3.3 and Corollary 3.4], Z is strongly retractable. By
Deûnition 3.6(iii), A is strongly m-Z-retractable. By Lemma 4.4, A is strongly m-de-
tectable. Since A is le� noetherian, by Lemma 4.6(ii), A is strongly m-cancellative.

(ii) Since A is le� noetherian and τ(A/Z) ≠ 0, κ(A/Z) is a nonzero proper ideal of
k[x] by Lemma 6.2(iii). So there is a nonzero non-invertible element f ∈ k[x] such
that κ(A/Z) = ( f ). By Lemma 6.2(i) and (ii), κ is a stable Morita invariant property.
By replacingP by κ, Corollary 3.11 implies that A is strongly m-Z-retractable. he rest
of the proof is similar to the proof of part (i). ∎
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For the rest of the section we consider the case when Z = k[x] and τ(A/Z) = 0, or
more precisely, when A is aõne prime PI of GK-dimension one with Z = k[x]. We
need to recall some concepts.

Let A be an aõne prime algebra of GK-dimension one. By a result of Small and
Warûeld [SW], A is a ûnitely generated module over its aõne center. As a conse-
quence, A is noetherian.

Let R be a commutative algebra, an R-algebra A is called Azumaya if A is a ûnitely
generated faithful projective R-module and the canonical morphism

(E5.4.1) A⊗R Aop
Ð→ EndR(A)

is an isomorphism. By [DeI, heorem 3.4], A is Azumaya if and only if A is a central
separable algebra over R. Since we assume that k is algebraically closed, we have the
following equivalent deûnition.

Deûnition 6.5 ([BY, Introduction]) Let A be an aõne prime k-algebra which is
a ûnitely generated module over its aõne center Z(A). Let n be the PI-degree of A,
which is also the maximal possible k-dimension of irreducible A-modules.

(i) he Azumaya locus of A, denoted by A(A), is the dense open subset
of MaxSpec Z(A) which parametrizes the irreducible A-modules of maximal
k-dimension. In other words, m ∈ A(A) if and only if mA is the annihilator in A
of an irreducible A-module V with dimV = n, if and only if A/mA ≅ Mn(k).

(ii) IfA(A) = MaxSpec Z(A), A is called Azumaya.

We can relate the Azumaya locus with the “simple”-locus. Let S be the property of
being simple.

Lemma 6.6 Assume that A is free over its aõne center Z.
(i) A[t] is free over Z[t].
(ii) A(A) = LS(A), where the latter is deûned in Deûnition 3.3(i).

Proof (i) is obvious.
(ii) Since A is free over Z of rank n2, A/mA is isomorphic to Mn(k) if and only if

A/mA is simple. he assertion follows. ∎

Proposition 6.7 Suppose that A is an aõne prime algebra of GK-dimension one with
center k[x].

(i) If A is not Azumaya, then A is strongly m-Z-retractable, m-detectable, and
m-cancellative.

(ii) If A is Azumaya, then A is strongly m-cancellative.

Proof (i) Since theAzumaya locus is open and dense, the non-Azumaya locus ofA is
a proper nonzero ideal of Z = k[x], which is principal. Since A is prime, τ(A/Z) = 0
and whence A is projective and then free over Z. By Lemma 6.6(ii), the Azumaya
locus of A[t] agrees with the S-locus of A[t]. Hence, S is a stable Morita invariant
property such that the S-discriminant is a nonzero non-invertible element in Z. By
Corollary 3.11, A is strongly m-Z-retractable. he rest of the proof follows from the
proof of Proposition 6.4(i).
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(ii) Since A is Azumaya, by [LWZ, Lemma 4.9(3)], A = Mn(k[x]) for some integer
n ≥ 1. If A[t] is Morita equivalent to B[s], then Z(A)[t] ≅ Z(B)[s]. Since Z(A) =

k[x] is strongly cancellative, Z(B) is also isomorphic to k[x]. If B is not Azumaya,
it follows from part (i) that A and B are Morita equivalent. If B is Azumaya, then by
[LWZ, Lemma 4.9(3)], B is a matrix algebraMn′(k[x]) for some n′ ≥ 1, which is also
Morita equivalent to A. herefore, A is strongly m-cancellative. ∎

Now we are ready to proveheorem 1.6.

heorem 6.8 Let A be an aõne prime algebra of GK-dimension one.
(i) A is strongly m-cancellative.
(ii) If either Z(A) ≠ k[x] or A is not Azumaya, then A is strongly m-Z-retractable

and m-detectable.

Proof Since we assume that k is algebraically closed in this section, by [LWZ,
Lemma 4.9], there are three cases to consider.
Case 1: Z(A) /≅ k[x].
Case 2: Z(A) ≅ k[x] and A is not Azumaya.
Case 3: Z(A) ≅ k[x] and A is Azumaya.
Applying Proposition 6.4(i) in Case 1, Proposition 6.7(i) in Case 2 and Proposi-

tion 6.7(ii) in Case 3, the assertion follows. ∎

It is clear that heorem 1.6 is an immediate consequence of heorem 6.8. As far
as we know there are no examples of algebras with the center being an aõne domain
of GK-dimension one that are not m-cancellative. herefore, we ask the following
question.

Question 6.9 Let A be a le� noetherian algebra such that Z(A) is an aõne domain
of GK-dimension one. hen is Am-cancellative?

We ûnish this section with some examples of non-PI algebras that are strongly
(m-)cancellative.

Example 6.10 Let Z denote the center of the given algebra A. Assume that k has
characteristic zero.

(i) LetAbe the homogenization of the ûrstWeyl algebra that is generated by x , y, t
subject to the relations

[x , t] = [y, t] = 0, [x , y] = t2 .

It is well known that the center of A is k[t]. Let S be the property of being simple.
Since m ∶= (t − 0) is the only maximal ideal of k[t] such that A/mA is not sim-
ple, the S-discriminant dS(A) exists and equals t. By Corollary 3.11, A is strongly
m-Z-retractable. By Lemma 4.4, A is strongly m-detectable. By Lemma 4.6(ii), A is
both strongly cancellative and strongly m-cancellative.

(ii) Let A be a non-PI quadratic Sklyanin algebra of global dimension 3. It is well
known that the center of A is k[g] where g ∈ A has degree 3. We claim that A/(g − α)
is simple if and only if α ≠ 0. If α = 0, then A/(g) is connected graded which is not
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simple. Now assume that α ≠ 0. It is well known that (A[g−1])0 is simple. Let T be
the 3rd Veronese subring of A. hen (T[g−1])0 ≅ (A[g−1])0 is simple. Now

T/(g − α) ≅ T/(α−1g − 1) ≅ (T[(α−1g)−1
]) 0 =

(T[g−1
]) 0 ≅

(A[g−1
]) 0 ,

where the second ≅ is due to [RSS, Lemma 2.1]. It is clear that A/(g − α) contains
T/(g − α). Since T/(g − α) is simple and hence has no ûnite dimensional modules,
A/(g − α) does not have ûnite dimensional modules. Since the algebra A/(g − α) is
aõne of GK-dimension two, it must be simple. So we proved the claim.

he claim implies that the S-discriminant dS(A) exists and equals g ∈ k[g]. Fol-
lowing the last part of the above example, A is both strongly cancellative and strongly
m-cancellative.

Example 6.11 Suppose chark = 0. Let A be the universal enveloping algebra of the
simple Lie algebra sl2. By Example 3.4, the center of A is k[Q], whereQ is the Casimir
element. In this example, we will consider two diòerent properties.

Let W be the property of not having a factor ring isomorphic to Mn+1(k) (for
a ûxed integer n). hen dW(A) = Q − (n2 + 2n), which is a nonzero non-invertible
element in k[Q]. By Corollary 3.11, A is strongly Z-retractable. By [LWZ, Lemma 3.2],
A is strongly detectable, and by [LWZ, Lemma 3.6(2)], A is strongly cancellative.

Next we show that A is strongly m-cancellative by using a Morita invariant prop-
erty. Let H be the property that HH3(R) = 0, where HH i(R) denotes the i-th
Hochschild homology of an algebra R. By [We, heorem 9.5.6], the Hochschild ho-
mology is Morita invariant. HenceH is Morita invariant. We claim that the discrim-
inant dH(A) is Q + 1

4 . his claim is equivalent to the following assertions:

(a) HH3(A/(Q − λ)) = 0 for all λ ≠ − 1
4 ;

(b) HH3(A/(Q + 1
4 )) ≠ 0 (this is the case when λ = − 1

4 ).
Let Bλ = A/(Q − λ). hen Bλ agrees with the algebra Bλ in [FSS, Example 2.3]. By
[FSS, Example 2.3], Bλ is a generalizedWeyl algebra with σ(h) = h−1, a = λ−h(h+1).
Hence, Bλ satisûes the hypotheses of [FSS, heorem 2.1]. If λ ≠ − 1

4 , then a
′(h) and

a(h) are coprime. By [FSS, heorem 2.1(1)], HH3(Bλ) = 0, which is part (a). If
λ = − 1

4 , then the common divisor of a′(h) and a(h) is a′(h), which has degree 1.
By [FSS, heorem 2.1(2)], HH3(Bλ) = k, which is part (b). herefore, we proved
the claim. By Corollary 3.11, A is strongly m-Z-retractable. By Lemma 4.4, A is
strongly m-detectable. By Lemma 4.6(ii), A is both strongly cancellative and strongly
m-cancellative.

Remark 6.12 (i) he second half of Example 6.11 shows that using a Morita in-
variant property results a better conclusion.

(ii) Another consequence of the discussion in Example 6.11 is the following. If
σ is an algebra automorphism of A ∶= U(sl2), then σ(Q) = Q. Further, for every
locally nilpotent derivation ∂ ∈ LND(A), we have ∂(Q) = 0. his could be a useful
fact to use in calculating the automorphism group Aut(A). According to [CL, Section
3.2], the full automorphism group of A is still unknown. A result of Joseph [Jo] says
that Aut(A) contains a wild automorphism. he automorphism of A/(Q − α)A was
computed in [Di] when α ≠ n2 + 2n for all n ∈ N.
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7 Proof of Theorem 1.5

In this section we proveheorem 1.5.We refer to [ASS] for basic deûnitions of quivers
and their path algebra. LetCn be the cyclic quiverwith n vertices and n arrow connect-
ing these vertices in one oriented direction. In representation theory of ûnite dimen-
sional algebras, quiver Cn is also called type Ãn−1. Let 0, 1, . . . , n − 1 be the vertices of
Cn , and a i ∶ i → i + 1 (in Z/(n)) be the arrows in Cn . henw ∶= ∑

n−1
i=0 a ia i+1 ⋅ ⋅ ⋅ a i+n−1

is a central element in kCn . By [LWZ, Lemma 4.4], we have the following result con-
cerning the center of the path algebra kQ when Q is connected:

(E6.0.1) Z(kQ) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

k if Q has no arrow,
k[x] if Q = C1 or equivalently kQ = k[x],
k[w] if Q = Cn for n ≥ 2,
k otherwise.

Similar to [LWZ, Lemma 3.11], we have the following lemma, whose proof is
omitted.

Lemma 7.1 Let k′ be a ûeld extension of k. If A⊗k k′ is (strongly) m-detectable as an
algebra over k′, then A is (strongly) m-detectable as an algebra over k.

Lemma 7.2 Let Q = Cn for n ≥ 2. hen kQ is strongly m-detectable and strongly
m-cancellative.

Proof By [LWZ, Lemma 4.5], kCn is prime of GK-dimension one while not being
Azumaya. If k is algebraically closed, the assertion is a special case ofheorem 6.8(ii).
If k is not algebraically closed, let k′ be the closure of k. By heorem 6.8(ii), k′Q is
strongly m-detectable over k′. By Lemma 7.1, kQ is strongly m-detectable over k, and
then strongly m-cancellative by Lemmas 4.5(ii) and 4.6(ii). ∎

We need another lemma before proving the main result of this section. he ideas
of the proof are similar to the proof of [LWZ, Lemma 4.6], so the proof is omitted.

Lemma 7.3 Let A and B be two algebras.
(i) If A and B are (strongly) m-cancellative, so is A⊕ B.
(ii) If A and B are (strongly) m-retractable, so is A⊕ B.
(iii) If A and B are (strongly) m-detectable, so is A⊕ B.

Now we are ready to proveheorem 1.5.

heorem 7.4 Let Q be a ûnite quiver and let A be the path algebra kQ. hen A is
strongly m-cancellative. If, further, Q has no connected component being C1, then A is
strongly m-detectable.

Proof By Lemma 7.3, we can assume that Q is connected.
If Q = C1, then A = k[x] and the assertion follows from Proposition 6.7(ii).
If Q = Cn , then this is Lemma 7.2(ii).
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If Q ≠ Cn for any n ≥ 1, then by (E6.0.1), the center of A is k. By heorem 5.2(i), A
is strongly m-detectable. Since A is N-graded and locally ûnite, it is strongly Hopûan
by Example 4.5(ii). By heorem 5.2(ii), A is strongly m-cancellative. his completes
the proof. ∎

heorem 1.5 is clearly a consequence of the above theorem.

8 Comments, Questions, and Examples

One of the remaining questions in this project is to understand whether the
cancellation property is equivalent to the m-cancellation property (as well as the
d-cancellation property). We will make some comments about it in this section.
First, we will show that three cancellation properties are equivalent for commuta-

tive algebras. he next result was proved in [YZ1] using slightly diòerent wording.

Proposition 8.1 ([YZ1, Proposition 5.1]) Suppose that A is an Azumaya algebra over
its center Z and that Spec Z is connected. If D(A) and D(B) are triangulated equivalent
for another algebra B, then A and B are Morita equivalent.

Note that the Brauer group of a commutative algebra R, denoted by Br(R), is the
set of Morita-type-equivalence classes of Azumaya algebras over R; in other words,
Br(R) classiûes Azumaya algebras over R up to an equivalence relation [AG]. See
[Sc] for some discussion about the Brauer group. One immediate consequence is the
following corollary.

Corollary 8.2 Suppose Z is a commutative algebra with Spec Z connected. hen the
following are equivalent.
(i) Z is (strongly) cancellative.
(ii) Z is (strongly) m-cancellative.
(iii) Z is (strongly) d-cancellative.

Proof By Proposition 8.1, it remains to show that (i) and (ii) are equivalent. By
Lemma 2.4, part (i) follows from part (ii). Nowwe show that part (ii) is a consequence
of part (i).

Suppose A is an algebra such that Z[t] is Morita equivalent to A[s]. By the map ω
in (E2.1.1), we obtain that Z[t] is isomorphic to Z(A)[s]. Since Z is (strongly) can-
cellative, Z(A) ≅ Z. Let us identify Z(A) with Z. Since Z[t] is Morita equivalent
to A[s], A[s] is Morita equivalent to its center, which is Z[s]. hen the Brauer-class
[A[s]] as an element in Br(Z[s]) is trivial by [AG, Proposition 5.3]. Since the natural
map Br(Z) → Br(Z[s]) is injective, the Brauer-class [A] as an element in Br(Z) is
trivial. By [Sc, heorem 4] or [Ne, Proposition 4.1], A is Morita equivalent to Z, as
required. ∎

Corollary 8.3 Let Z be a (strongly) detectable commutative algebra such that Spec Z
is connected. If A is an Azumaya algebra over Z that is strongly Hopûan, then A is both
(strongly) m-cancellative and (strongly) d-cancellative.
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Proof By Proposition 8.1, we need to show only the claim that A is (strongly)
m-cancellative. Since A is strongly Hopûan, the claim follows from Lemmas 4.6(ii)
and 4.7(i). ∎

he next example is similar to [LWZ, Example 3.3].

Example 8.4 Let A = k[x , y]/(x2 = y2 = xy = 0). By heorem 5.1, A is strongly
m-detectable. By [LWZ, Example 3.3] and Corollary 8.2, the commutative algebra A
is neither retractable nor m-retractable.

For non-Azumaya (noncommutative) algebras, there is no general approach to
relating them-cancellation property with the d-cancellation property. However, most
of cancellative algebras veriûed by using the discriminant method in [BZ1] are
m-cancellative, as we will see next.

Since most of algebras that we are interested in are strongly Hopûan, to show that
an algebra is m-cancellative, it suõces to show that it is m-detectable [Lemma 4.6(i)].
By Lemma 7.1, under some mild hypotheses, we can assume the base ûeld k is alge-
braically closed. For simplicity, we assume that k is algebraically closed of character-
istic zero for the rest of this section.

Let I be an ideal of a commutative algebra R. hen the radical of I is deûned to be
√

I = ⋂
p∈Spec R ,I⊆p

p.

he standard trace trst deûned in [BY, Sect. 2.1(2)] agrees with the regular trace trreg
deûned in [CPWZ2, p. 758]. So we take tr = trst = trreg in this paper.

Proposition 8.5 Let Abe a prime algebra that is ûnitely generated as amodule over its
center Z and let v be the rank of A over Z. Let D ⊆ Z be either the v-discriminant ideal
Dv(B∶tr) in the sense of [CPWZ2, Deûnition 1.1(2)] or the modiûed v-discriminant
ideal MDv(B∶tr) in the sense of [CPWZ2, Deûnition 1.2(2)]. Suppose that
(i) the center Z is an aõne domain and the standard trace tr maps A to Z;
(ii)

√
D is a principal ideal of Z generated by an element f ;

(iii) f is an eòective (resp., dominating) element in Z.
hen the following hold.
(a) A is strongly m-Z-retractable.
(b) A is strongly Z-retractable.
(c) A is strongly m-detectable.
(d) A is strongly m-cancellative.
(e) A is strongly cancellative.

Proof Since we assume that k is algebraically closed of characteristic zero, we can
apply [BY, Main heorem] by taking the standard trace. By [BY, Main heorem], we
have

V(D) = MaxSpec(Z) ∖A(A),
where V(D) is the zero-set of D. By Lemma 6.6(ii),A(A) = LS(A), where S denotes
the property of being simple. hus, the S-discriminant set of A is equal to V(D).
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As a consequence, the S-discriminant ideal of A is equal to I(V(D)), which is
√
D.

By hypothesis (ii), we obtain that the S-discriminant ideal of A is a principal
ideal of Z generated by an element f . Since f is eòective (resp., dominating), Z is
strongly LNDH

f -rigid by heorem 3.10. Since S is a stable Morita invariant property
[Lemma 6.1], by Proposition 3.7(ii), A is both strongly m-Z-retractable and strongly
Z-retractable. hus, we proved parts (a) and (b). Note that part (c) follows from
part (a) and Lemma 4.4. Since A is noetherian, it is stronglyHopûan [Example 4.5(1)].
Parts (d) and (e) follow from part (c) and Lemma 4.6(ii). ∎

he next example is similar to [LWZ, Example 5.1].

Example 8.6 Let R be an aõne commutative domain and let f be a product of a
set of generating elements of R. Let

A = (
R f R
R R ) .

It is easy to check that the (modiûed) 4-discriminant of A over its center R is the
ideal generated by − f 2. Clearly, the radical of (− f 2) is the principal ideal ( f ). By the
above proposition, A is strongly m-Z-retractable, m-detectable, m-cancellative, and
cancellative.

Other precise examples follow, but we omit some details. See also [BZ1, Exam-
ple 4.8].

Example 8.7 he following algebras arem-cancellative by verifying the hypotheses
of Proposition 8.5:
(i) skew polynomial rings kq[x1 , . . . , xn] when n is an even number and 1 ≠ q is a

root of unity;
(ii) k⟨x , y⟩/(x2 y − yx2 , y2x + xy2);
(iii) quantum Weyl algebra k⟨x , y⟩/(yx − qxy − 1), where 1 ≠ q is a root of unity;
(iv) every ûnite tensor product of algebras of the form (i), (ii), and (iii).
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