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Abstract

Macroscale “continuum” level predictions are made by a new way to construct
computationally efficient “wrappers” around fine-scale, microscopic, detailed
descriptions of dynamical systems, such as molecular dynamics. It is often significantly
easier to code a microscale simulator with periodicity: so the challenge addressed here
is to develop a scheme that uses only a given periodic microscale simulator; specifically,
one for atomistic dynamics. Numerical simulations show that applying a suitable
proportional controller within “action regions” of a patch of atomistic simulation
effectively predicts the macroscale transport of heat. Theoretical analysis establishes
that such an approach will generally be effective and efficient, and also determines good
values for the strength of the proportional controller. This work has the potential to
empower systematic analysis and understanding at a macroscopic system level when
only a given microscale simulator is available.

2010 Mathematics subject classification: primary 37M05; secondary 65P20, 76M28,
91B69.

Keywords and phrases: macroscale dynamics, emergence, periodic microscale, patch
scheme, equation-free analysis.

1. Introduction

Computational molecular simulations have become a valuable tool to the point where
computation now stands alongside theoretical and experimental methods in addressing
problems in materials science. However, the high computational cost often constrains
simulations to limited space–time domains [12]. The equation-free multiscale scheme
aims to use such microscale molecular simulations to efficiently compute and predict
large macroscale space–time dynamics [21, 24]. This article focuses on establishing
the basis for a novel design of the equation-free scheme in predicting emergent
macroscale properties over large space scales by computing atomistic dynamics only
on relatively small widely distributed patches [33]. In the scenario where a user has
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314 H. Alotaibi, B. Cox and A. J. Roberts [2]

coded a microscale simulator with microscale periodicity, our innovation is to show
how to couple such small periodic patches, so that the overall scheme predicts the
correct macroscale spatial dynamics.

Others have previously used an equation-free approach to aid in molecular
simulations [14, 32]. However, they concentrated on issues associated with long-
time integration, whereas here we focus upon designing effective algorithms for large
space domains. Future development of a full multiscale equation-free scheme would
combine both aspects.

Alternative multiscale methods that have been proposed are based upon analogous
simulations at the microscale level. For example, in the flow through a porous
medium, Hassard et al. [18] used smoothed particle hydrodynamics on the microscale
to estimate macroscale volume averaged fluxes, with a view to forming a two-scale
model that appears like a finite-volume scheme on the macroscale. For general
gradient-driven transport processes, Carr et al. [10] correspondingly proposed an
extended distributed microstructure model where the macroscale flux is determined
as the average of microscale fluxes within microcells. Both approaches suggest that
microscale simulations can be coupled usefully across macroscales. We similarly
propose coupling expressed in terms of macroscale quantities (here the temperature).
In principle, one or more patches may use the same coupling to couple with
surrounding continuum simulations. Thus, our approach may readily form part of
a hybrid molecular–continuum method [20].

Section 2 describes our straightforward computational scheme for the simulation
of the atoms of a dense gas, listed in supplementary material, Appendix A
(supplementary material is available at doi:10.1017/S1446181117000396). Such a
scheme is also at the core of more complicated schemes for more complicated
molecular simulations [19, 23, 35]. In many scenarios, it is easiest to write a
microscale simulator with spatially periodic boundaries: for molecular dynamics
some relevant comments by other researchers include “periodic boundaries have been
used” [13, p. 248]; “in general, one prefers periodic boundary conditions” [22, p. 260];
and “to circumvent this problem, . . . a periodic system may be assumed” [23, p. 477].
One aim of the equation-free approach is to use whatever simulator has been provided
and adapt it to macroscale simulations. Hence, the important new challenge we address
is to use a triply periodic atomic simulation code as “a given” for the computed patches
in an equation-free scheme.

In order to research realistic problems in the future we expect to implement the
methodology within one of the established powerful molecular dynamics simulators
such as lammps [26]. However, here we focus attention on establishing a proof-
of-principle and the fundamental effectiveness of the scheme: for that purpose, our
straightforward atomistic code is sufficient.

Our innovation is to couple relatively small, triply periodic, atomistic patches
over unsimulated space: the coupling mechanism has to differ from that used in
patch schemes to date [24]. Section 3 describes a way to implement a proportional
controller [3] in two so-called “action regions” that surround the “core” of each patch.
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[3] Couple microscale periodic patches to simulate macroscale emergent dynamics 315

The average kinetic energy in a core estimates the local temperature in a patch.
Then, interpolating such core temperatures over the unsimulated space estimates
the macroscale temperature field. The applied control aims to appropriately drive
the average kinetic energy in each action region to the corresponding macroscale
temperature. Section 5 uses some modern dynamical systems theory [2] to prove that
a line of such coupled periodic patches has macroscale dynamics that emerges for a
range of initial conditions and for a wide class of microscale systems. Then Section 5.2
explicitly constructs the emergent dynamics for the scheme of controlled patches for
a general advection–diffusion partial differential equation (pde). The construction
establishes that there is a good control strength so that the emergent dynamics of the
scheme reasonably approximates the correct macroscale advection–diffusion.

Section 4 confirms that the proposed controlled coupling of periodic patches
is effective for atomistic simulations, and for a control roughly as predicted by
the analysis.

For patch dynamics in space–time, a full implementation involves projective
integration forward in time [16, 25, 34]. In such projective integration, the issues
of lifting and restriction may become significant computational costs. However,
we leave projective integration of periodic patches to future research, and so also
leave detailed evidence and discussion on computational savings. Future research
could extend the analysis herein to establish the potential for high-order accuracy,
in multiple dimensions, analogous to what has been proven for patches with Dirichlet/
Neumann/Robin boundaries [30, 31]. Although this article focusses on the macroscale
temperature diffusion emerging from an atomistic simulation, the equation-free patch
scheme does usefully apply to wave systems [8, 9] and so we expect that controlled
periodic patches should also be able to reasonably predict the emergent density–
momentum waves of an atomistic simulation.

2. An isolated triply periodic patch

As a first test of our novel methodology, our microscale, detailed simulator is
the molecular dynamics of a monatomic gas in three-dimensional (3D) space. The
simulator computes the motions of N interacting atoms in a microscale patch of space–
time, where for our purposes typically there are up to a few thousand atoms in a
patch. For example, Figure 1 shows the apparently chaotic path in space of N = 64
atoms in a patch for one short-time simulation. We implemented a triply periodic
cubic domain where an atom crossing any face is re-injected into the cube across the
opposing face. Our challenge is to develop methods that use such a “given” spatially
periodic microscale simulator to predict macroscale dynamics.

As evident in Figure 1, throughout we nondimensionalize all quantities with respect
to atomic scales so that, for example, the inter-atomic equilibrium distance is one and
the atomic mass is one.

To describe the coded simulator (supplementary material, Appendix A), let xi(t)
denote the position in space of the ith atom as a function of time t and let qi(t) denote
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316 H. Alotaibi, B. Cox and A. J. Roberts [4]

Figure 1. Trajectories of 64 atoms, over a time 0 ≤ t ≤ 3, in a triply periodic, cubic, spatial domain,
showing the beginnings of the complicated inter-atomic interactions. This stereo pair when viewed cross-
eyed gives a 3D effect.

the velocity of the ith atom. Then one set of ordinary differential equations (odes) for
the system are (supplementary material, Appendix A.3, lines 13–16)

dxi

dt
= qi, i = 1, . . . ,N. (2.1)

The other set of odes for the system come from the inter-atomic interactions. For
this monatomic gas, we use the classical Lennard-Jones potential (see, for example,
[22]) for which the force between atoms separated by a distance r is F = 1/r7 − 1/r13

(nondimensionally). For atoms of nondimensional mass one, Newton’s second law
then gives the acceleration of each atom as (supplementary material, Appendix A.3,
lines 27–35)

dqi

dt
=

∑
j

( 1
r7

i j

−
1

r13
i j

) ri j

ri j
, i = 1, . . . ,N, (2.2)

where ri j is the displacement vector from the ith atom to the jth, and distance ri j = |ri j|.
Because the patch is triply periodic, the inter-atomic sum in (2.2) should be over all
periodic images of the atoms. Computationally, in the sum we neglect atoms and their
images further away than a patch half-width (supplementary material, Appendix A.3,
lines 19–24). Due to the 1/r7 decay of long-range attraction, and with a typical patch
of size 10 × 10 × 10 atoms, the error in accounting for only these atoms/images is
roughly 5−7 ≈ 10−5—reasonably negligible. Upon checking, the mean momentum is
conserved to machine precision, which reflects the symmetry in the coding. Moreover,
Figure 2 shows one example of the kinetic and potential energies and their sum; we
found that the total energy is typically conserved to a relative error of about 10−5.

Most of the remaining code in the time-derivative routine (supplementary material,
Appendix A.3) couples a patch to the macroscale surroundings—described in
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[5] Couple microscale periodic patches to simulate macroscale emergent dynamics 317

Figure 2. For the case of Figure 1, this plot of nondimensional kinetic energy (ke), potential energy
(pe), and their sum (Tot) illustrates the conservation of energy by the coded simulation.

Section 3. Our code does not employ any fast multipole or cognate techniques [11],
because preliminary exploration indicated that for only a few thousand atoms per
patch the fast techniques are not effective. The microscale simulator is then used to
integrate the odes (2.1)–(2.2) in time. For simplicity in this proof-of-principle study,
we use a generic Matlab integration routine (supplementary material, Appendix A.1,
line 31) rather than any of the more accurate symplectic integrators that apply to this
Hamiltonian system [17, 36]. Such a generic integration routine would not handle
the discontinuous re-injection of atoms that leave the cube; consequently, we allow
the integrated atom positions to exit the cube smoothly, but map such atoms inside
the cubic patch (supplementary material, Appendix A.2) for computing inter-atomic
forces and for plotting. Figure 1 plots one very short example simulation with N = 64
atoms.

3. Couple patches with a proportional controller

Section 2 described a microscale simulator for the isolated dynamics of atoms in
a cubic domain. It is an example of the straightforward code that can be written for
simulations which are triply periodic in space. Our innovative challenge is to use the
code, as if it were almost a “black box”, to simulate over large space–time scales. In
our equation-free methodology, such a large-scale space–time simulation is achieved
by simulating in small, spatially distributed patches and coupling them over the empty
space between the patches [21, 33].

In this first study of the use of periodic patches, we only address the scenario of one
large spatial dimension. The other space–time dimensions are assumed small. Further,
as a proof-of-principle, this section addresses the specific case of one such periodic
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Figure 3. The simplest case is one triply periodic patch of atomistic simulation, −h < x < h, coupled
to distant sidewalls, at x = ±H, of specified temperature. The patch’s core region defines its local
temperature, and a proportional controller applied in the left and right action regions generates a good
macroscale prediction.

patch coupled to “distant” imposed boundary conditions (Section 5 analyses the case
of multiple coupled patches in one large dimension). Figure 3 illustrates the scenario
with one “small” periodic patch centred on x = 0 in a macroscale domain −H < x < H.
This basic scenario allows us to focus on the key methodological innovation: namely
how to couple a microscale periodic patch to the surrounding macroscale environment.

For the purpose of validating our novel patch scheme, in this pilot study we suppose
that we want to predict macroscale heat transport by the atomistic simulation. Thus,
here we compare the scheme’s predictions for the temperature field T (x, t) with the
qualitative dynamics of the continuum heat diffusion pde

∂T
∂t

= K
∂2T
∂x2 such that T (−H, t) = TL(t), T (+H, t) = TR(t). (3.1)

Specific initial conditions are not important to our focus on the emergent long-term
dynamics.

This section places at the origin a (2h × 2h × 2h)-periodic patch of the atom
simulation, as in Figure 3. This patch extends over −h < x < h within the macroscale
domain −H < x < H with specified temperatures, TL(t) and TR(t), on the ends of the
domain, x = −H and x = H, respectively; unsimulated spaces are the comparatively
large domains h < |x| < H. This article mostly uses the convention of lowercase letters
denoting microscale quantities, such as x, q, and h, and uppercase letters denoting
macroscale quantities, such as H and T . Here the problem is assumed to be doubly
2h-periodic in the other two spatial dimensions; that is, the physical domain is long
and thin (Figure 3). We divide the patch into four equal-sized regions (supplementary
material, Appendix A.3, lines 38–43):

• the core being |x| < h/4 that is used to define macroscale quantities of the patch
such as the temperature T (0, t);
• the left action region being |x + h/2| < h/4 that is, with the right action region,

used to couple the patch to surround macroscale information such as the next
patches or the environmental boundary values;
• the right action region being |x − h/2| < h/4; and
• a “buffer” region for |x| > 3h/4 that caters for a smooth transition between the

action regions.

https://doi.org/10.1017/S1446181117000396 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000396
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Figure 4. A schematic view of a microscale patch that emphasizes the 2h-periodicity in x and indicating
the need for the lower “buffer” region allowing for a smooth transition between the action regions
“opposite” the core.

Figure 4 shows an alternative schematic view of the patch; this view emphasizes the
microscale 2h-periodicity in x and the role of the “buffer” region between the two
action regions, on the “opposite side” to the important core region.

There appears to be no need for buffer regions between the action regions and the
core region [5, 7] (Figures 3 and 4).

We implement a proportional controller [3] to couple the patch to the surrounding
macroscale variations (we leave exploration of proportional-integral and proportional-
integral-derivative controllers to future research). The applied control is proportional
to the differences in the action regions between the macroscale field and the microscale
patch simulator. During the atomistic simulation, we compute the nondimensional
temperatures in the core and action regions as (supplementary material, Appendix A.3,
lines 45–48)

Tc = mean
j∈core
ke j, Tl = mean

j∈left
ke j, Tr = mean

j∈right
ke j, (3.2)

in terms of the nondimensional kinetic energy of each atom, ke j = |q j|
2/2 (the initial

conditions and conservation of momentum in the algorithm ensure that the mean
velocity of the atoms is zero). With one patch centred at x = 0 coupled to boundaries
at x = ±H, the scheme’s predicted macroscale field for the temperature is the parabolic
interpolation through the three values TL, T0, and TR,

T (x, t) = TL
x(x − H)

2H2 + T0
H2 − x2

H2 + TR
x(x + H)

2H2 . (3.3)

But, due to the curvature of the parabola, the macroscale core average temperature is
slightly different to T0; averaging (3.3) provides

Tc =
2
h

∫ h/4

−h/4
T (x, t) dx = T0 +

1
6

( h
4H

)2
(TL − 2T0 + TR).

Rearranging this identity gives the central temperature

T0 =
Tc − (TL + TR)(h/4H)2/6

1 − (h/4H)2/3
. (3.4)
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Then averaging the predicted macroscale field (3.3) over each action region gives that
the macroscale interpolation predicts that the action regions should have the average
temperatures

Tint,± = T0 ± (TR − TL)(h/4H) + 13
6 (TR − 2T0 + TL)(h/4H)2, (3.5)

where ± is for the right/left action region, respectively. The applied control is
proportional to the differences between these macroscale predictions (3.5) and the
temperatures (3.2) from the patch simulation (supplementary material, Appendix A.3,
lines 50–55).

The controller accelerates or decelerates the atoms in the action region accordingly.
That is, for each atom, Newton’s second law (2.2) is modified by the control to the
following (supplementary material, Appendix A.3, lines 56–59): here the ellipsis
denotes the forces (2.2) from the inter-atomic Lennard-Jones potential,

dq j

dt
= · · · +



Kµ
2h2Tr

(Tint,+ − Tr)q j, j ∈ right action,

Kµ
2h2Tl

(Tint,− − Tl)q j, j ∈ left action,

0, otherwise,

(3.6)

where the nondimensional parameter µ is the strength of the control. Consequently,
when the atoms in an action region are too cool, below Tint,±, then the control
accelerates the atoms to heat them up and vice versa.

Figure 5 demonstrates that the proportional controller is effective. The simulation
is of 343 atoms in a patch of size 7 × 7 × 7, coupled to boundaries at x = ±7 with
specified temperatures TL = 0.5 and TR = 1.5. The control strength µ = 30 in (3.6).
Two time scales are apparent.

• On a microscopic time scale of ∆t < 1 the control establishes that the
temperatures in the action region differ according to the local gradient of
macroscale temperature. This microtime is the time required to “lift” the given
initial configuration of atoms to be in quasi-equilibrium with the macroscale
field.
In this realization, the temperature gradient is 1/(2H) = 1/14, so that over the
distance 2/7 between mid-action regions a temperature difference of 0.25 is
maintained as shown by Figure 5(b). The atomistic fluctuations about this mean
increase in time as the overall temperature increases (Figure 5(a)).
In this simple pilot scenario, with prescribed constant boundary temperatures,
the desired temperature gradient across the core of the patch is constant in
time. This constancy here is a consequence of the macroscale parabolic
interpolation resulting in a centred difference estimate for the gradient about
the symmetrically placed core. With dynamic boundary values, or asymmetry in
the geometry, the desired temperature gradient across the core would generally
vary in time.
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Figure 5. (a) Temperatures over macroscale times in the subpatch regions and (b) the temperature
difference Tl − Tr. Simulate 343 atoms in a patch of spatial periodicity 2h = 7 and with control strength
µ = 30 to couple with macroscale boundary temperatures TR = 1.5 and TL = 0.5 at x = ±7.

• Figure 5(a) shows that over a macroscopic time scale of ∆t ≈ 30 the core
temperature evolves towards the correct mean of 1.0—albeit with fluctuations
arising from the stochastic nature of the atomistic dynamics. This macroscopic
time scale is the diffusion time for heat across the macroscopic length scale 2H =

14. Indeed, it is on this and longer macroscopic time scales that in future
developments we would implement projective integration in time [15, 21].

For completeness, we should perhaps also implement proportional controllers for
the other macroscale variables of density, pressure, and average velocity. However,
here there is little to control in these variables as, through conservation in the code
of atoms and overall momentum, in the patch the density is constant, and the average
velocity zero from the initial conditions. Thus, in this first study, we just control the
nontrivial dynamics of the temperature.

Potentially, the macroscale boundary conditions at x = ±H could be fixed flux
(perhaps insulated) or Robin. In such cases, we conjecture that one would simply
change the macroscale parabolic interpolation (3.3) to satisfy the given macroscale
boundary conditions, and that the core average matches that of the patch simulation.
This issue remains for future research.

4. Analyse optimal control for a single patch

This section analyses heat diffusion pdes that model the controlled patch atomistic
simulation of Section 3. We find that a good control has strength parameter of roughly
µ ≈ 30 in this scenario.
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We compare the patch atomistic simulation with the dynamics of the well-
established continuum heat diffusion pde (3.1) on the macroscale domain. With
constant boundary temperatures, its equilibrium solution is the linear field T =

(TR + TL)/2 + x(TR − TL)/(2H). The dynamics superimposed on this equilibrium
is an arbitrary linear combination of the modes e−λnt sin[kn(x + H)] for eigenvalues
λn = −Kk2

n and wavenumbers kn = nπ/(2H). With only one patch in the domain
(Figure 3), the patch atomistic simulation can only approximate the gravest n = 1 mode
e−λ1t cos(k1x) with wavenumber k1 = π/(2H) and rate λ1 = −Kk2

1 = −Kπ2/(4H2). We
aim for the predictions (Section 3) of the single-patch scheme to match this gravest
mode.

The atomistic simulation within a patch will also be reasonably well modelled by
the continuum heat diffusion pde albeit with significant microscale fluctuations. In the
microscale patch scheme, Figure 3, the problem is homogeneous in the cross-sectional
variables y and z, so we only explore the xt-structure, T (x, t). The continuum pde for
the controlled patch is then

∂T
∂t

= K
∂2T
∂x2 +

Kµ
h2 g(x,T ), 2h-periodic in x, (4.1)

where the control shape, piecewise constant, is

g(x,T ) =



Tint,+ −
2
h

∫ 3h/4

h/4
T dx, h/4 < x < 3h/4,

Tint,− −
2
h

∫ −h/4

−3h/4
T dx, −3h/4 < x < −h/4,

0, otherwise.

(4.2)

The temperatures Tint,±, computed by (3.5), come from the macroscale coupling, which
is the parabolic interpolation (3.3)–(3.4) via the core average Tc = (2/h)

∫ h/4
−h/4 T dx to

TR and TL at boundaries x = ±H.
In the case of constant boundary temperatures, this controlled patch problem has

equilibrium, with Tc = T0 = (TL + TR)/2, of

T =



T0 +
µ∆T

4
x/h, |x| < h/4,

T0 +
µ∆T

16

[3
2
− 2(2x/h − 1)2

]
sgn x, h/4 < |x| < 3h/4,

T0 +
µ∆T

4
(sgn x − x/h), |x| > 3h/4,

where ∆T = (TR − TL)h/[4H(1 + µ/12)]. A first important check is that this
equilibrium has the correct mean core temperature of T0 = (TR + TL)/2.

To understand the dynamics of the patch scheme (4.1)–(4.2), we characterize the
general dynamics, relative to the equilibrium, in terms of spatial eigenfunctions. We
express the dynamic analysis in terms of the half-width of the patch, h, and the ratio
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Figure 6. (Blue) (4/kh) tan(kh/4) has an infinite number of vertical asymptotes at kh = 2nπ for odd n;
(green) the parabola c[1 − (kh)2/µ] intersects it infinitely often (here for µ = 34.67 and r = 0.64). The
vertical axis is nonlinearly scaled.

r = h/H, which is the fraction of macroscale space on which the microscale patch
simulation is executed/solved. There are two classes of eigenfunctions: symmetric
and antisymmetric within the patch.

• Symmetric eigenfunctions corresponding to temporal decay e−Kk2t, k > 0, are of
the form

T =


A cos kx, |x| < h/4,

C + D cos
[
k
(
x ∓

h
2

)]
± E sin

[
k
(
x ∓

h
2

)]
, ±h/4 ≶ x ≶ ±3h/4,

B cos[k(x ∓ h)], x ≷ ±3h/4.

Substitute these eigenfunctions into the governing equations (3.4)–(3.5) and
(4.1)–(4.2). Then straightforward algebra, detailed by Alotaibi [1, Section
2.4.2], leads to requiring the characteristic equation

cos
kh
2

sin
kh
4

[(1 − 7r2/48
1 − r2/48

) 4
kh

sin
kh
4

+

(1
µ

k2h2 − 1
)

cos
kh
4

]
= 0.

The first factor being zero gives kh/2 = nπ/2 for odd n, that is, wavenumber
k = nπ/h for odd n. The second factor being zero gives kh/4 = nπ for integer
n, that is, wavenumber k = 4nπ/h for integer n. The third factor being zero
rearranges to

4
kh

tan
kh
4

=

( 1 − r2/48
1 − 7r2/48

)[
1 −

1
µ

(kh)2
]
. (4.3)

Figure 6 plots the two sides of this equation illustrating that there are an
infinite number of wavenumbers k, only one of which is small. It is this small
wavenumber mode that is of macroscale interest.
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324 H. Alotaibi, B. Cox and A. J. Roberts [12]

Figure 7. (Blue) (2/kh) tan(kh/2) has an infinite number of vertical asymptotes at kh = nπ for odd n;
(green) the parabola 1 − (kh)2/µ intersects it infinitely often (here for µ = 34.67 and r = 0.64). The
vertical axis is nonlinearly scaled.

• Antisymmetric eigenfunctions are of the form

T =


A sin kx, |x| < h/4,

±C + D sin
[
k
(
x ∓

h
2

)]
± E cos

[
k
(
x ∓

h
2

)]
, ±h/4 ≶ x ≶ ±3h/4,

B sin[k(x ∓ h)], x ≷ ±3h/4.

Substituting into the governing equations and straightforward algebra, detailed
by Alotaibi [1, Section 2.4.3], leads to requiring the characteristic equation

sin
kh
2

[ 2
kh

sin
kh
2

+

(1
µ

k2h2 − 1
)

cos
kh
2

]
= 0.

The first factor being zero gives kh/2 = nπ for integer n, that is, wavenumber
k = 2nπ/h for integer n. The second factor being zero rearranges to

2
kh

tan
kh
2

= 1 −
1
µ

(kh)2.

Figure 7 plots the two sides of this equation illustrating that there are an infinite
number of possible wavenumbers k > 0 (the algebraic formula degenerates at
k = 0, so that apparent intersection is not a possible wavenumber).

With one exception, all of these possible wavenumbers k ∝ 1/h, and the
corresponding decay rate ∝ K/h2 characterizes microscale modes within the patch.
All these microscale modes cause the spatial structure internal in the patch to rapidly
approach a quasi-equilibrium, in a time proportional to a cross-patch diffusion time
of h2/K.

The one exceptional mode corresponds to the small wavenumber k shown in
Figure 6. A straightforward small-kh approximation to the left-hand side of (4.3)
[1, Section 2.5] leads to(kh

4

)2
≈

3r2/8
(1 − 7r2/48) + (1 − r2/48)48/µ

.
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Figure 8. The temperature difference Tl − Tr. The simulation is of 343 atoms in a patch of spatial
periodicity 2h = 7 and with control strength µ = 3 to couple with macroscale boundary temperatures
TR = 1.5 and TL = 0.5 at x = ±7.

Consequently, kh ∝ r. But the neglected terms in this approximation are O
(
(kh)4),

which are equivalently O
(
r4), and so for consistency the O

(
r2) terms in the

denominator should be neglected to lead to

kH = kh/r ≈

√
6

1 + 48/µ
. (4.4)

This wavenumber ∝ 1/H is characteristic of a macroscale mode, and the corresponding
decay rate ∝ K/H2 also characterizes a single macroscale mode across the domain. For
the controlled patch simulation to best predict the correct macroscale dynamics of this
mode, we need the wavenumber (4.4) to match the gravest wavenumber of the heat
pde (3.1) on the macroscale domain: the start of this section found it to be k1H = π/2.
Thus, best predictions, via a little algebra, suggest

1
µ
≈

24/π2 − 1
48

= 0.02983, that is, µ ≈ 33.53 (4.5)

for the control strength.
In an application, the result (4.5) requires an estimate of the diffusivity K.

Simulations can give a rough estimate of diffusivity K for any microscale system that is
diffusive-like on the microscale. Figure 8 is for the same scenario as Figure 5, but with
a weaker control strength of µ = 3. Figure 8 suggests that the microscale transients
decay on a time scale of roughly one (and then evolve slowly on a macroscale time).
That is, the leading antisymmetric microscale wavenumber k3 is such that Kk2

3 ≈ 1,
that is, K ≈ 1/k2

3. Figure 7 illustrates that π < k3h < 2π, depending upon the control
via 1/µ. Assuming that k3` ≈ 3π/2—mid-range should be good enough for rough
estimates—then the microscale diffusion constant K ≈ 4h2/(9π2). The simulations
of Figures 5 and 8 were in a patch of nondimensional length 2h = 7 and hence here
the nondimensional diffusion constant is K ≈ 0.5, roughly. This resultant control is
roughly what we found convenient for generating Figures 5 and 8. The importance
of this paragraph is that it illustrates how a little analysis and a few simulations can
determine a reasonably good control of the microscale periodic patch.

https://doi.org/10.1017/S1446181117000396 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000396


326 H. Alotaibi, B. Cox and A. J. Roberts [14]

5. Couple multiple periodic patches in general

The aim of this section is to establish a basis for theoretical support of
the controlled patch/gap-tooth scheme for general molecular/particle/agent-based
simulations. Consider the class of systems whose mesoscale dynamics is modelled
by a field u(x, t) governed by the stochastic reaction–advection–diffusion pde

∂u
∂t

= Lu + α f (u, ux) + σg(u, ux)Ẇ(x, t). (5.1)

This stochastic pde (spde) (5.1) is termed “mesoscale”, because it codifies the in-
principle closure of some atomistic simulation on length–time scales large enough for
a reasonable closure to exist (even when unknown), but smaller than the macroscale of
interest, and small enough so that chaotic atomistic fluctuations may appear as “white
noise” Ẇ of strength σ. The functions f and g are some functions for the closure
of this mesoscale model. The closure functions f and g need not be known for our
theoretical support to apply, but we do assume that f and g are smooth enough. Here
we focus attention to systems where the linear operator L satisfies three properties:

• when u is constant, Lu = 0;
• L is otherwise dissipative on the mesoscale–macroscale, such as the diffusion
L ≈ K∂xx;
• but where L is bounded due to “cut-offs” on the microscale.

This section invokes stochastic centre manifold theory (as initially developed by
Boxler [4]) to provide novel support for the contention that controlled patches of the
spde (5.1) successfully simulate its macroscale dynamics. Consequently, for a wide
range of microscale simulators the same control of periodic patches will economically
predict the macroscale dynamics.

This section does not precisely prescribe all restrictions on the form of the
spde (5.1) because the aim of this section is to scope the domain and feasibility of
the controlled periodic-patch scheme. The issue of whether specific systems satisfy
the precise requirements for rigorous support is left for future researchers to certify for
the systems of their interest.

5.1. Macroscale existence and emergence theory Figure 9 illustrates a typical
scenario. Suppose that we are interested in the dynamics of the field u on a relatively
large spatial domain X = [0, L]. The patch scheme distributes M patches, equi-spaced
with macroscale spacing H, and centred at X j = jH. The microscale patches are 2h-
periodic with relatively small half-size h: the scale ratio r = h/H would be small for
efficient simulation. Let the 2h-periodic field in the jth patch be denoted by u j(x, t) for
|x − X j| < h—distinct from the field u(x, t) satisfying the spde (5.1) over all X.

The prime quantity of interest in the macroscale simulation is a measure of the field
in each patch. Measure the overall field in the jth patch by the average over the jth
core region |x − X j| < h/4:

U j(t) :=
2
h

∫ X j+h/4

X j−h/4
u j(x, t) dx, j = 1, . . . ,M. (5.2)
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Figure 9. Schematic illustration of five microscale patches, 2h-periodic, centred at X j = jH, inside a
macroscale domain [0, L]. The field u(x, t), satisfying the spde (5.1), has some macroscale boundary
conditions such as the Dirichlet conditions that u(0, t) = U0(t) and u(L, t) = U6(t).

With M patches, at the boundaries x = 0, L the specified Dirichlet boundary values
have synonyms U0(t) and UM+1(t). Let the collected core averages be denoted by the
vector U = (U1,U2, . . . ,UM).

Control each periodic patch via some coupling with neighbouring patches. Suppose
that the simulation in each patch has an imposed proportional controller so the resultant
effective system in the patches, |x − X j| < h, modifies the effective spde (5.1) to

∂u j

∂t
=Lu j + α f (u j, u jx) + σg(u j, u jx)Ẇ j(x, t)

+ µ{[I+
j (U, γ) − u+

j ] χ+
j (x) + [I−j (U, γ) − u−j ] χ−j (x)}. (5.3)

The strength of the control is parametrized by µ, and is applied in the left and right
action regions of each patch as coded by the indicator functions

χ±j (x) =

1, h/4 < ±(x − X j) < 3h/4,
0, otherwise.

The control depends upon the difference between an interpolation, I±j (U, γ), of the core
averages in neighbouring patches and the local averages of the patch field in the left
and right action regions,

u±j (t) =
2
h

∫ X j+h

X j−h
u j(x, t)χ±j (x) dx.

Because Lagrange interpolation is known to produce systematic consistency in simpler
scenarios [30, 31], to date we have coupled periodic patches via the Lagrange
interpolation of U to estimate the macroscale field U at the mid-action points x =

X j ± h/2:

I±j = {1 + γ[± 1
2 rµ̄δ + 1

8 r2δ2]

+ γ2[∓r( 1
4 −

1
8 r)µ̄δ3 − r( 1

8 −
1

16 r)δ4] + · · · }U j, (5.4)

expressed in terms of centred difference and mean operators δU j = U j+1/2 − U j−1/2
and µ̄U j = (U j+1/2 + U j−1/2)/2. The coupling parameter γ is an artificial homotopy
parameter that empowers us to connect a theoretical base at γ = 0 to the fully coupled
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case γ = 1 which is of interest. That is, this embeds the relevant physical problem, at
γ = 1, into a family of problems parametrized by γ. For the theory of this section we
require three things of the dependency of the interpolation operator I±j on the parameter
γ: I±j (U, γ) be smooth; I±j (U, 0) = U j; and I±j (U, 1) corresponds to the coded coupling
of the computational patch scheme. Further, although not necessary, it is convenient to
express I±j (U, γ) as a polynomial in γ, as in (5.4), such that a truncation which neglects
terms O

(
γp+1) invokes an I±j which depends upon only U j−p, . . . ,U j+p. This property

then empowers convenient comparison with classic finite differences/elements.
Theoretical support is based upon an equilibrium of the controlled patch system

(5.3). For parameters α = σ = γ = 0, the system (5.3) is linear with u j(x, t) =

constant being equilibria. Being independently constant in each of the M patches,
these equilibria form an M-dimensional subspace E0 (a subspace of the space of
(α,σ, γ, u1(x), u2(x), . . . , uM(x))). By the definition (5.2) of the core averages, we write
these equilibria as the patch field u j(x, t) = U j such that dU j/dt = 0 for j = 1, . . . ,M.

This subspace commonly and usefully persists upon perturbation. Specifically,
we are interested in perturbations by nonlinearity (nonzero α), by stochasticity
(nonzero σ), and most importantly by coupling with neighbouring patches (nonzero
γ). Consider the dynamics of the controlled patches, spde (5.3), linearized about each
of the equilibria in E0, namely, for patch field u j being 2h-periodic,

∂u j

∂t
= Lu j + µ[{U j − u+

j }χ
+
j (x) + {U j − u−j }χ

−
j (x)]. (5.5)

As for diffusion, L = K∂xx, we assume that the operator on the right-hand side of (5.5)
has spectrum 0 = λ1 > −β > <λ2 ≥ <λ3 ≥ · · ·, where the size, β, of the spectral
gap depends upon the size of the patches. In the linearization (5.5), each of the
M patches are isolated from each other and consequently all of these eigenvalues
have multiplicity M (at least). For example, in the case of mesoscale diffusion,
L = K∂xx, the analysis of Section 4 applies except with the replacement of the factor
(1 − 7r2/48)/(1 − r2/48) by simply one: consequently, Section 4 establishes that here
λ1 = 0, λ2 = −Kπ2/h2, and so on, and consequently we may choose bound β = 9K/h2,
say. There are three extra zero eigenvalues, one each for the parameters α, σ, and γ,
corresponding to the extended state space formed by adjoining dα/dt = dσ/dt =

dγ/dt = 0. In this scenario, and subject to some technical caveats on the nature
of the functions f (u, ux) and g(u, ux)Ẇ(x, t), the marvellous theory of Aulbach and
Wanner [2] applies to establish that there exists an (M + 3)-dimensional slow manifold
to the controlled patch mesoscale system (5.3) (or (mM + 3)-dimensional, when the
zero eigenvalue of (5.5) has multiplicity m within each patch). The slow manifold
exists globally in U and in a finite domain about zero in the parameters (α, σ, γ).

Although mesoscale diffusion K∂xx is strictly an unbounded operator, such
a diffusive operator is only a long-wavelength approximation to the microscale
dynamics, which usually has a bounded equivalent operator (for example, difference
operators on a lattice). Hence, the simulation L is usually bounded as required by
Aulbach and Wanner [2]. The global existence explicitly proved by Aulbach and
Wanner [2] also requires perturbations to be Lipschitz and bounded, whereas here
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the inter-patch coupling as posited is unbounded: consequently, here we establish
theoretical support in a finite local domain instead of the global domain.

Further, the theory establishes that the slow manifold emerges exponentially quickly
from all initial conditions in some finite domain about the slow manifold [2, Section 4].
More specifically, the exponential transients are O

(
e−βt) as t→∞. These transients

are all microscale subpatch modes as they correspond to the dissipative modes within
isolated patches. For example, in the diffusive case the lower bound β = 9K/h2 on
the decay rate corresponds to an intra-patch diffusion time which is very small for the
useful case of small patches. Just as for the single-patch case of Section 4, this leaves
the slow manifold and the evolution thereon to be the emergent macroscale dynamics
of the controlled periodic-patch scheme.

5.2. Constructing a slow manifold predicts the macroscale To confirm, or
otherwise, that the patch scheme’s macroscale dynamics matches that of the
simulation, we have to construct the slow manifold and its evolution and compare
with the mesoscale spde (5.1). Because the details of the slow-manifold construction
are closely linked to the details of the underlying system, here we specifically address
the class of systems whose mesoscale has the diffusive L = K∂xx. Further, noise from
microscale chaos enormously complicates the construction [6, 28], so here we further
restrict analysis to the cases with σ = 0.

A good robust method to construct slow manifolds is an iteration based upon the
residuals of the governing equations [27, 29, Part V]; successive approximations to
the slow manifold are corrected until the residuals are zero to within a pre-specified
order of error. The algebraic machinations of the construction are involved and of little
interest, so are not recorded here. Instead we comment on two aspects:

• computer algebra readily constructs a slow-manifold model of the macroscopic
dynamics of the controlled periodic-patch scheme (supplementary material,
Appendix B) for a variety of systems in the class (5.1);
• as an example, we show that the controlled periodic-patch scheme applied to an

advection–diffusion reasonably approximates the correct macroscale advection–
diffusion.

For example, consider a microscale simulation whose mesoscale is the linear
advection–diffusion pde

ut = Kuxx − αux, (5.6)

with macroscale boundary conditions of (MH)-periodicity so that by symmetry each
controlled patch is identical. Computer algebra, detailed in the supplementary material
(Appendix B), constructs the slow manifold of the corresponding controlled periodic-
patch system (5.3). As the simplest example, with no advection, α = 0, three iterations
find that each subpatch field is piecewise parabolic: in terms of ξ = (x − X j)/h the jth

https://doi.org/10.1017/S1446181117000396 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000396


330 H. Alotaibi, B. Cox and A. J. Roberts [18]

Figure 10. Subpatch periodic field u j(ξ,U) for amplitudes U = 0 except for: red-solid, U j = 1; green-
dashed, U j+1 = 1; blue-dotted, U j−1 = 1. For illustrative purposes this case is for r = h = H = 1, L = ∂xx,
advection α = 1, and control µ = 30. Consequently the patch core is |x − X j|/h < 1/4 and action regions
are 1/4 < |x − X j|/h < 3/4.

patch field

u j = U j + γ
[
U j

r2 − 48ξ2

16(1 + 48/µ)

+
∑
±

U j±1
−r2 ± 24ξ + 48ξ2 + 12(−r2 ± 96ξ + 48ξ2)/µ

32(1 + 48/µ)(1 + 12/µ)

]
+ O

(
γ2),

in the core |ξ| < 1/4, and somewhat longer expressions in the other regions. Figure 10
plots leading order shapes of the fields in a patch across all four regions in the case
of advection α = 1: the general field in the patch is the linear combination of these
curves with coefficients of U j and U j±1. This example is just a specific case of
the reasonably general construction of the macroscale slow manifold. The small
asymmetry in Figure 10 is due to the advection at velocity α = 1 in this case. The
downward curvature of the red-solid curve in the core region, |ξ| < 1/4, and the back/

buffer region, is due to the out-of-equilibrium macroscopic decay in the jth patch
when surrounded by patches with zero core average, U j±1 = 0. However, the interest
on the macroscale is not the detailed subpatch fields, but the long-term evolution of
the macroscale amplitudes U.

The macroscale amplitudes evolve according to the dynamics on the slow manifold.
Simultaneous with constructing the shape of the slow manifold, the computer algebra
(supplementary material, Appendix B) also finds the evolution of U on the slow
manifold as a system of coupled odes. For the general advection–diffusion mesoscale
pde (5.6) the evolution on the slow manifold is

dU j

dt
= −γα

15(U j+1 − U j−1)
8H(1 + 48/µ)(1 + 12/µ)

+ γK
3(U j−1 − 2U j + U j+1)

H2(1 + 48/µ)
+ O

(
γ2, α2).
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Evaluating at full coupling γ = 1, this slow-manifold analysis then predicts that
the emergent macroscale dynamics of the controlled periodic patches of advection–
diffusion (5.6) is

dU j

dt
≈ −α

15(U j+1 − U j−1)
8H(1 + 48/µ)(1 + 12/µ)

+ K
3(U j−1 − 2U j + U j+1)

H2(1 + 48/µ)
. (5.7)

Via such a model, the theory of this section empowers us to predict what the controlled
periodic-patch scheme would do for a range of mesoscale systems.

In this particular example of general advection–diffusion, we use the predicted
model (5.7) to now identify a good control strength in the periodic-patch scheme. The
macroscale discrete system (5.7) has equivalent pde

Ut = −α
15

4(1 + 48/µ)(1 + 12/µ)
Ux + K

3
1 + 48/µ

Uxx + O
(
H2).

Thus, the effective advection of the periodic-patch scheme will equal that of the posed
underlying mesoscale system (5.6) when the control strength is chosen such that

15
4H(1 + 48/µ)(1 + 12/µ)

= 1, that is, µ ≈
120 + 24

√
69

11
= 29.0326.

Similarly, the effective diffusion will equal that of the posed underlying mesoscale
system (5.6) when

3
1 + 48/µ

≈ 1, that is, µ ≈ 24.

To this level of approximation there may not be a single best control strength.
Nonetheless, the closeness of these two good control strengths is encouraging for
applications of the controlled periodic-patch scheme. Systematic exploration to higher
order, and with other controller schemes, would give more accurate predictions for
such optimal control in a wider range of mesoscale systems.

A future extension to a wider range of mesoscale systems is important, because the
primary rationale for the equation-free methodology is that its main application is to
systems for which we do not know a meso–macro-scale closure. Hence, we need to
develop control schemes useful for a wide range of systems such as the class (5.1).

6. Conclusion

The atomistic simulation described by Section 2 is just one important example
of microscale simulators used widely in engineering and science. In particular,
we address the class of simulators that are given with periodic conditions on the
microscale. The challenge is to create a wrapper around such microscale periodic
simulators in order to effectively predict macroscale behaviour. Section 3 implemented
a proportional controller applied to action regions in the patch to couple patches to its
neighbours over unsimulated space.

Analysis of atomistic simulations based upon just one small patch, and the
corresponding controlled diffusion pde in Section 4, indicates that there are good

https://doi.org/10.1017/S1446181117000396 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181117000396


332 H. Alotaibi, B. Cox and A. J. Roberts [20]

values for the control strength. Section 5 then created a theoretical basis for certifying
that the emergent behaviour of many coupled, controlled, periodic patches does indeed
predict appropriate macroscale, system-level dynamics for a wide range of microscale
simulators.

The construction of a slow-manifold model for the equation-free patch scheme
provides an innovative route to explore algebraically how best to couple such periodic
patches. Here Section 5.2 established the algebraic analysis to be feasible. Further
research could search for optimal core and action region sizes, optimal weight
functions for the averages in the regions, refine the interpolation that couples the
patches, and be applied to other controllers.
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