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Fourier analysis is the standard tool of choice for quantifying the distribution of kinetic
energy amongst the eddies in a turbulent flow. The resulting spectral energy-density
function is the well-known energy spectrum. And yet, because eddies are distinct from
waves, alternative approaches to finding energy-density functions have long been sought.
Townsend (1976) outlined a promising approach to finding a spatial energy-density
function, V(r), where r is the eddy size. Notably, this approach led to two distinct
and mutually inconsistent formulations of V(r) in homogeneous, isotropic turbulence.
We revisit Townsend’s proposal and derive the corresponding three-dimensional V(r) as
well as introduce its one-dimensional variants (which, to our knowledge, have not been
explicitly discussed before). By training our focus on the associated dimensionality of the
function, we resolve the discrepancies between the previous formulations. Additionally,
we generalise our analysis to include anisotropic flows. Finally, by means of concrete
examples, we illustrate how one-dimensional spatial energy-density functions are useful
for analysing empirical data. Some notable findings include new insights into the k−1

1
scaling (where k1 is the streamwise wavenumber) and a possible resolution of the
enigmatic sizes of organised motions at large scales.
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1. Introduction
Turbulence is composed of blobs of fluid, called eddies, over which velocity fluctuations
are highly correlated. These eddies span a broad range of sizes, and the distribution of
turbulent kinetic energy across the range of eddy sizes is a critical attribute of a turbulent
flow. We focus on the following question: How do we quantify this energy distribution? In
other words, we need an energy-density function.
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The standard approach to quantifying the distribution of energy is to introduce the
spectral tensor, Φi j (k), which is the Fourier transform of the two-point velocity correlation
tensor Qi j (r) := 〈ui (x)u j (x + r)〉

Φi j (k) = 1
(2π)3

ˆ
R3

d3r Qi j (r)e−ik·r , (1.1a)

Qi j (r) =
ˆ
R3

d3kΦi j (k)eik·r , (1.1b)

where x and x + r are position vectors, k is the wavenumber corresponding to r , u
is the turbulent velocity vector, the subscript indices denote Cartesian components of
the corresponding vector or tensor and 〈〉 denotes an ensemble average. Note that we
have assumed the turbulent flow to be homogeneous (i.e. its statistical properties are
independent of x). In this study, we shall restrict attention to homogeneous turbulence.
When the turbulent flow is homogeneous and isotropic, we can introduce the three-
dimensional spectral energy-density function, E(k), by integrating (1/2)Φi i (k) over a
spherical shell, S(k), of radius k = ‖k‖

E(k) :=
‹

1
2
Φi i (k)dS(k). (1.2)

The factor of 1/2 was introduced to obtain the energy constraint

1
2
〈u2〉 =

ˆ ∞

0
dk E(k), (1.3)

which follows from (1.1b) and the relations Qii (r = 0) = 〈u2〉 and Qii (r → ∞) = 0,
where r = ‖r‖. (For simplicity of notation, in this study, we use the same symbol to
represent a function whether its argument is a vector, e.g. r , or its scalar norm, r ). The
energy constraint underpins the role of E(k) as an energy-density function. Specifically, it
implies that dk E(k) is the contribution to (1/2)〈u2〉 (which is the turbulent kinetic energy)
from wavenumber modes in the range (k, k + dk) so that the function E(k) represents the
energy density in the spectral space. But the problem here is how to interpret k in terms
of eddies. Although, as a rule of thumb, we may loosely associate k−1 with the eddy size,
because eddies are not waves, the validity of such one-to-one association is unclear.

These difficulties underscore the need for a complementary approach; see Davidson
(2004, Ch. 6) for a detailed discussion of this topic. In the real space, the analogue of E(k)

is a spatial energy-density function, V(r). In analogy with the properties of E(k), we can
require V(r) to have the following characteristic properties (Davidson 2004):

(i) V(r)� 0;
(ii)
´∞

0 dr V(r) = (1/2)〈u2〉;
(iii) for a random distribution of eddies of fixed size �e, the corresponding V(r) manifests

a clear peak around r ∼ �e.

An insightful approach to obtain V(r) was pioneered by Townsend (1976). Unlike the
case in the spectral space, where linking k−1 with eddy size is unclear, he sought to
construct a function in the real space whose magnitude for the argument r is clearly related
to the energy of eddies of ‘diameter’ r . For that purpose, he used Kolmogorov’s two-point
velocity structure function (Kolmogorov 1941)

Si j (r) := 〈[ui (x) − ui (x + r)][u j (x) − u j (x + r)]〉. (1.4)
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Consider the velocity component directed along r = r ê1. Heuristically, it is argued that
S11(r) is dominated by contributions from eddies of size r or less. This is because eddies
of size r or greater make comparable contributions to both u1(x) and u1(x + r), and thus
contribute little to S11(r). With this picture in mind, he postulated that the contribution to
〈u2

1〉 from eddies of size r in unit range of log r is

−r
∂

∂r

[
1
2

S11(r)

]
. (1.5)

Notably, Townsend did not obtain an explicit expression for V(r) from (1.5). That task was
taken up only relatively recently.

Davidson (2004) argued that Townsend’s proposal leads to

VTD(r) := ∂

∂r

[
3
4
〈[�υ(r)]2〉

]
, (1.6)

where 〈[�υ(r)]2〉 is the longitudinal structure function, which is defined as

〈[�υ(r)]2〉 := Si j
rir j

r2 . (1.7)

We shall refer to VTD(r) as the Townsend–Davidson function. On the other hand, Hamba
(2015) postulated

VTH(r) := − ∂

∂r

1
2

Qii (r), (1.8)

which we shall refer to as the Townsend–Hamba function. (Note that VTH(r) is closely
related to equation (13) of Danaila, Antonia & Burattini (2012).) Surprisingly, although
they stem from the same proposal, the expressions for VTD(r) and VTH(r) are distinct.

Inspired by Davidson (2004) and Hamba (2015), we take a fresh look at deriving V(r).
We first discuss homogeneous isotropic turbulence, and then generalise our approach
to anisotropic flows. Thereafter, we draw attention to an important point that has not
been explicitly considered before. Analogous to the well-known one-dimensional spectral
energy-density functions, we introduce one-dimensional spatial energy-density functions.
This allows us to resolve the surprising discrepancies between (1.6) and (1.8). Moreover,
the one-dimensional functions may find particular appeal for the analysis of empirical data.
We demonstrate this point with a few illustrative examples.

2. Deriving V(r) for homogeneous isotropic turbulence
In the spectral space, the energy constraint of (1.3) underpins the interpretation of
E(k) as an energy-density function. Here, we derive V(r) for homogeneous isotropic
turbulence using a spatial analogue of the energy constraint. (In Appendix A, we derive
this expression using Townsend’s approach).

From the sifting property of the Dirac delta function δ(r), we can write

1
2

Qii (r) =
ˆ ∞

0
dr ′

[
1
2

Qii (r
′)
]
δ(r ′ − r). (2.1)

By introducing the Heaviside function Θ(r), the above integral can be expressed as
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1
2

Qii (r) =
ˆ ∞

0
dr ′

[
1
2

Qii (r
′)
]

∂

∂r ′ Θ(r ′ − r),

=
ˆ ∞

0
dr ′ ∂

∂r ′

[
−1

2
Qii (r

′)
]
Θ(r ′ − r), (integration by parts)

=
ˆ ∞

r
dr ′ ∂

∂r ′

[
−1

2
Qii (r

′)
]
, (2.2)

where we have used Qii (r → ∞) = 0. Taking the limit r → 0 and noting Qii (0) = 〈u2〉,
we have ˆ ∞

0
dr ′

[
− ∂

∂r ′
1
2

Qii (r
′)
]

= 1
2
〈u2〉, (2.3)

which is a real-space analogue of the spectral-space energy constraint, (1.3). Thus,
analogous to the three-dimensional spectral energy-density function, E(k), we can define
a three-dimensional spatial energy-density function

V(r) := − ∂

∂r

1
2

Qii (r), (2.4)

which is the Townsend–Hamba function, VTH(r) (1.8).
Some additional remarks may be useful. Although we could have derived (2.4) without

(2.2), introducing (2.2) allows us to interpret Qii (r) in terms of kinetic energy of eddies.
Combining (2.2) and (2.4), we get

1
2

Qii (r) =
ˆ ∞

r
ds V(s) =

ˆ ∞

0
ds V(s)Θ(s − r). (2.5)

Here, the ideal low-pass filter Θ(r) ensures that only eddies of size r or greater make
contributions to (1/2)Qii (r), with the implication

1
2

Qii (r) = [cumulative kinetic energy held in eddies of size r or greater]. (2.6)

This interpretation based on V(r) can be contrasted with that based on E(k). We can
express Qii (r) in terms of E(k) as

1
2

Qii (r) =
ˆ ∞

0
dk E(k)

sin(kr)

kr
. (2.7)

Note that, while sin(kr)/(kr) effectively is a low pass-filter, dominated by contributions
from wavenumbers k � 1/r , it is not an ideal filter and has an infinite extent in k-space.
Thus, all Fourier modes contribute to (1/2)Qii (r). Interpreting the Fourier modes as eddy
sizes implies that eddies of all sizes contribute to (1/2)Qii (r). The above discussion
underscores how different definitions of the energy-density function embody distinct
physical interpretations; also see Davidson (2004).

3. Deriving V(r) for homogeneous anisotropic turbulence
So far, we have focused on homogeneous isotropic turbulence. Next we generalise the
analysis of § 2 for homogeneous anisotropic turbulence and derive an expression for the
three-dimensional spatial energy-density function, V(r).
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We begin with extending (2.1) for the general case (without assuming isotropy or
homogeneity)

1
2

Qii (r, x) =
ˆ

Ω

d3r ′
[

1
2

Qii (r ′, x)

]
δ3(r ′ − r), (3.1)

where Ω is any arbitrary flow domain (with the restriction that r is contained within it) and
δ3(r) denotes the Dirac delta function in R

3. Noting that the Dirac delta function satisfies
the relation

∇ ·
[(

1
4π

r − r ′

||r − r ′||3
)]

= δ3(r − r ′), (3.2)

we write (3.1) as

1
2

Qii (r, x) =
ˆ

Ω

d3r ′ ∇′ ·
[

1
2

Qii (r ′, x)
1

4π

r ′ − r

||r ′ − r||3
]

−
ˆ

Ω

d3r ′ 1
4π

r ′ − r

||r ′ − r||3 · ∇′
[

1
2

Qii (r ′, x)

]
. (3.3)

Applying the divergence theorem yields

1
2

Qii (r, x) =
ˆ

∂Ω

dS
1
2

Qii (r ′, x)
1

4π

(r ′ − r) · n′

||r ′ − r||3

−
ˆ

Ω

d3r ′ 1
4π

r ′ − r

||r ′ − r||3 · ∇′
[

1
2

Qii (r ′, x)

]
, (3.4)

where n̂′ is the unit normal to the surface ∂Ω that bounds the domain Ω . This brings us to
a critical consideration. When the turbulence is homogeneous, the surface integral in (3.4)
vanishes, yielding

1
2

Qii (r) =
ˆ

Ω

d3r ′ 1
4π

r ′ − r

||r ′ − r||3 · ∇′
[
−1

2
Qii (r ′)

]
. (3.5)

This is the generalisation of (2.2) for homogeneous anisotropic turbulence.
Next, taking the limit r → 0, we arrive at the energy constraintˆ

Ω

d3r ′ 1
4π

1

||r ′||2 r̂ ′ · ∇′
[
−1

2
Qii (r ′)

]
= 1

2
〈u2〉, (3.6)

where we have used Qii (0)/2 = 〈u2〉/2 and r̂ ′ := r ′/‖r ′‖. From (3.6), we can define a
three-dimensional spatial energy-density function

V(r) := 1
4π

1
‖r‖2 r̂ · ∇

[
−1

2
Qii (r)

]
= 1

4π‖r‖2 Dr

[
−1

2
Qii (r)

]
, (3.7)

where Dr := r̂ · ∇ is the directional derivative. For the case of homogeneous isotropic
turbulence, we can simplify (3.7) by averaging V(r) over a spherical shell S(r),‚

V(r)dS(r), similar to the definition of E(k) (cf. (1.2)). This transforms (3.7) to (2.4),
thereby verifying self-consistency of the derivation discussed here.

Can the above analysis be readily generalised for inhomogeneous turbulence? For
example, we may expect that (3.7) simply generalises to (cf. (18) in Hamba 2015)

V(x, r) := 1
4π‖r‖2 Dr

[
−1

2
Qii (x, r)

]
. (3.8)
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We urge caution with this step. As we noted in the discussion of (3.4), the surface
integral vanishes for homogeneous turbulence. But that may not hold for inhomogeneous
turbulence. Note, however, that for the case of inhomogeneous turbulence where there
exists one or more directions of homogeneity (e.g. streamwise and azimuthal directions in
a fully developed pipe flow), the surface integral still vanishes when r is restricted to the
homogeneous directions.

4. One-dimensional spatial energy-density functions
In the analysis so far, we considered the three-dimensional spatial energy-density
function. Here, we turn attention to the corresponding one-dimensional functions. In
the spectral space, one-dimensional spectral energy-density functions, typically denoted
by E11(k1), E22(k1), . . . , are well known (Davidson 2004). They are particularly useful
in the analysis of experimental data, wherein measuring the (three-dimensional) E(k)

is very challenging. In the same spirit, here we seek to derive one-dimensional spatial
energy-density functions.

For a homogeneous anisotropic turbulent flow, consider the direction r = r1 ê1. The
associated longitudinal velocity correlation function can be expressed as (cf. (3.1))

1
2

Q11(r1 ê1) =
ˆ ∞

0
dξ

[
1
2

Q11(ξ ê1)

]
δ(ξ − r1). (4.1)

Following the analysis of § 2, we can simplify the above integral as

1
2

Q11(r1 ê1) =
ˆ ∞

r1

dξ
∂

∂ξ

[
−1

2
Q11(ξ ê1)

]
, (4.2)

where we have used Q11(r1 → ∞) = 0. Taking the limit r1 → 0 leads to an energy
constraint ˆ ∞

0
dξ

[
− ∂

∂ξ

1
2

Q11(ξ ê1)

]
= 1

2
〈u2

1〉, (4.3)

where we have used Q11(0)/2 = 〈u2
1〉/2. We can now define a (one-dimensional)

longitudinal spatial energy-density function

V11(r1) := − ∂

∂r1

1
2

Q11(r1 ê1), (4.4)

where V11(r1)dr1 is the contribution to the turbulent energy component (1/2)〈u2
1〉 from

eddies of size in the range (r1, r1 + dr1).
Following the above procedure, we can define (one-dimensional) transverse spatial

energy-density functions

V22(r1) := − ∂

∂r1

1
2

Q22(r1 ê1), (4.5a)

V33(r1) := − ∂

∂r1

1
2

Q33(r1 ê1). (4.5b)

These functions satisfy the corresponding energy constraintsˆ ∞

0
dr1V22(r1) = 1

2
〈u2

2〉, (4.6a)
ˆ ∞

0
dr1V33(r1) = 1

2
〈u2

3〉. (4.6b)

1016 A12-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
36

8 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10368


Journal of Fluid Mechanics

(In Appendix C, we discuss the relationship between the spectral and spatial variants of
the one-dimensional energy-density functions.) Also note that the analysis discussed here
can be easily extended to other directions, namely, r = r2 ê2 and r = r3 ê3. This yields
one-dimensional spatial energy-density functions such as V11(r2), V11(r3), etc.

Last, we consider homogeneous isotropic turbulence. In this case, (4.4) and (4.5)
transform to

V11(r) := − ∂

∂r

1
2

Q11(r) = −u2

2
∂

∂r
f (r), (4.7a)

V22(r) := − ∂

∂r

1
2

Q22(r) = −u2

2
∂

∂r
g(r), (4.7b)

V33(r) = V22(r), (4.7c)

where

u2 = 〈u2
1〉 = 〈u2

2〉 = 〈u2
3〉 = 1

3
〈u2〉, (4.8)

and f (r) := Q11(r)/u2 and g(r) := Q22(r)/u2 are the longitudinal and transverse velocity
correlation functions, respectively.

Notably, our proposal for V11(r) (4.7a) can be related with a previous result. The
kinematic relationship

〈[�υ(r)]2〉 = 2u2[1 − f (r)], (4.9)

can be rewritten as

1
4

∂

∂r
〈[�υ(r)]2〉 = −u2

2
∂ f

∂r
, (4.10)

which, when substituted into (4.7a), leads to

3V11(r) = ∂

∂r

[
3
4
〈[�υ(r)]2〉

]
. (4.11)

Note that this is the Townsend–Davidson function, VTD(r) (1.6). Now, because V11(r) 
=
V22(r), it follows that VTD(r) = 3V11(r) 
= V(r) (where we have used (B1c)). We can now
see why, starting from Townsend’s proposal, Davidson (2004) and Hamba (2015) arrived
at disparate forms of energy-density functions.

5. Characteristic properties of spatial energy-density functions
In § 1, we listed three characteristic properties for a spatial energy-density function. Here,
we consider each property in turn. For simplicity, we focus on homogeneous isotropic
turbulence.

Interestingly, property (i) that a density function should be non-negative turns out to
be the most difficult to satisfy. Indeed, to our knowledge, none of the functional forms
proposed to date are guaranteed to be non-negative. The same is true for V(r), V11(r) and
V22(r). The reason can be understood by expressing these functions in terms of E(k).
Starting with the relationship

−1
2

u2 f (r) =
ˆ ∞

0
dk E(k)G1(kr), G1(x) = x cos x − sin x

x3 , (5.1)
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Figure 1. Shapes of the kernels H(x), H11(x) and H22(x).

and using (4.11), (B1a), and (B1b), we can write

r V(r) =
ˆ ∞

0
dk E(k)H(kr), (5.2a)

r V11(r) =
ˆ ∞

0
dk E(k)H11(kr), (5.2b)

r V22(r) =
ˆ ∞

0
dk E(k)H22(kr), (5.2c)

where

H(kr) = 1
r3

∂

∂r
[r4 H11(kr)],

H11(kr) = r
∂

∂r
G1(kr),

H22(kr) = 1
2r2

∂

∂r
[r3 H11(kr)].

(5.3)

Now, since the kernels H(x), H11(x) and H22(x) all oscillate about the x-axis taking
positive and negative values (figure 1), V(r), V11(r) and V22(r) are not guaranteed to be
non-negative. Thus, strictly speaking, these functions are not density functions; Davidson
(2004) suggested using the term ‘signature function’ instead. For simplicity, we shall refer
to them as density functions.

Property (ii) expresses an energy constraint. Because we have derived V(r) and its
one-dimensional variants by imposing this constraint (cf. § 2), these functions satisfy the
constraint by construction.

For checking property (iii), consider a random distribution of Townsend’s model eddies
of a fixed size �e in a two-dimensional plane (Townsend 1976). For this turbulent flow, we
can write f (r) = exp(−r2/�2

e). From (2.4) and (4.7), it follows that
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1

r/�e

�eV/u2

�eV11/u2

�eV22/u2

2 3 4

0

0

0.5

1.0

1.5

Figure 2. Distribution of energy across eddy sizes as quantified by �eV(r)/u2, �eV11(r)/u2 and �eV22(r)/u2

for a random distribution of Townsend’s model eddies of fixed size �e.

�eV(r)

u2 = (r/�e)
[
5 − 2

[
(r/�e)

]2
]

exp
(
−r2/�2

e

)
, (5.4a)

�eV11(r)

u2 = (r/�e) exp
(
−r2/�2

e

)
, (5.4b)

�eV22(r)

u2 = (r/�e)
[
2 − [

(r/�e)
]2

]
exp

(
−r2/�2

e

)
. (5.4c)

In figure 2, we plot the energy distribution across eddy sizes from (5.4). In all cases, there
is a clear peak around r ∼ �e. Notably, in this idealised flow, only V11(r) is non-negative
for all r .

The above discussion of property (iii) points to a crucial advantage of one-dimensional
spatial energy-density functions over their spectral counterparts. In the spectral space, this
property reads: for a random distribution of eddies of fixed size �e, the corresponding E(k)

(or any of its one-dimensional variants) manifests a clear peak around k ∼ �−1
e (Davidson

2004). While E(k) satisfies this property, E11(k) and E22(k) do not. Instead of having a
peak around k ∼ �−1

e , they attain their maxima at k = 0. (This is due to the phenomenon
of aliasing (Davidson 2004).) As a result, it is difficult to interpret E11(k) and E22(k) in
terms of eddy sizes, even though they satisfy the energy constraint. By contrast, as we have
seen, V11(r) and V22(r) manifest a clear peak around r ∼ �e (figure 2), underscoring their
clear advantage over E11(k) and E22(k).

6. Analysis of empirical data
In § 4, we noted that one-dimensional spatial energy-density functions can be useful for
analysis of empirical data. Here, for illustration, we analyse data from two canonical wall-
bounded flows: channel flow and pipe flow. We take ê1 along the streamwise direction, ê2
along the wall-normal direction and ê3 along the spanwise direction (for channel flow) or
the azimuthal direction (for pipe flow). The origin of the coordinate system is at the wall
(for channel flow) and the centreline (for pipe flow). Similar to most studies of empirical
data, we focus on the case where the position x2 is fixed and r is oriented along ê1. Note
that the flow is homogeneous along ê1 (and ê3), but not along ê2.

First, we consider the scaling E11(k1) ∝ k−1
1 (Perry, Henbest & Chong 1986). In the

past decades, this scaling has attracted considerable attention and no small measure of
debate (see, e.g. Smits, McKeon & Marusic (2011), Appendix A in Zamalloa et al. (2014)).
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The scaling appears over a limited spatial region and at high Reynolds numbers, Re;
curiously, however, it disappears at even higher Re (Rosenberg et al. 2013; Yamamoto &
Tsuji 2018). The range of k1 for this scaling corresponds to the large eddies. In this regime,
using Taylor’s frozen-turbulence hypothesis may incur substantial errors. This limits the
use of experimental data since most experiments obtain E11(k1) using Taylor’s hypothesis.

We analyse data from a direct numerical simulation (DNS) of channel flow at friction
Reynolds number Reτ ≈ 5200 (Lee & Moser 2015) (Reτ := uτ δ/ν, where uτ is the friction
velocity, δ the channel half-width and ν the kinematic viscosity). Lee & Moser (2015)
noted that, over a small span of wall-normal distances (90 � x+

2 � 169, where x+
2 :=

x2uτ /ν), the premultiplied spectrum k1 E11(k1) manifests a plateau, signalling E11(k1) ∝
k−1

1 (figure 3a). (Note that Taylor’s hypothesis was not invoked to compute E11(k1).)
Expressed in the form of V11(r1), E11(k1) ∝ k−1

1 scaling transforms to V11(r1) ∝ r−1
1 . (This

transformation follows from dimensional considerations: dimensionally, [k1 E11(k1)] =
[r1V11(r1)], and thus, E11(k1) ∝ k−1

1 implies V11(r1) ∝ r−1
1 .) In figure 3(b), we plot profiles

of r1V11(r1) corresponding to the spectra of figure 3(a). (We compute V11(r1) from E11(k1)
using (C3a).) Unlike k1 E11(k1), r1V11(r1) does not manifest a plateau for most of the
spatial region except near x+

2 = 169. By probing farther from the wall, we find a curious
result. For 169 � x+

2 � 191, k1 E11(k1) does not manifest a plateau but r1V11(r1) does so
(figure 4). Thus, V11(r1) ∝ r−1

1 scaling prevails over a region that is spatially contiguous
to albeit shifted from the E11(k1) ∝ k−1

1 scaling region. The results suggest that the spatial
domain of the scaling region depends on the diagnostic function employed to evince the
scaling.

In figure 3(a), we note the bimodal structure of k1 E11(k1), wherein the k−1
1 scaling

regime is flanked on its sides by two local peaks. These peaks are considered to be
signatures of organised motions at large scales, the left peak corresponding to ‘very-
large-scale motions’ (VLSMs) and the right peak to ‘large-scale motions’ (LSMs) (Kim
& Adrian 1999). We represent these peaks as kVLSM

1 and kLSM
1 , respectively. The attendant

eddy sizes are estimated as �V L SM = 2π/kVLSM
1 and �L SM = 2π/kLSM

1 , respectively. From
figure 3(a), we find �V L SM ≈ 6δ and �L SM ≈ 0.3δ. That organised motions exist at scales
�δ, as is the case with VLSMs, is a surprising finding and an active area of inquiry (Smits
et al. 2011).

We wish to draw attention to some potential problems in inferring the eddy sizes using
2π/k1. As discussed in § 1, eddies are not waves – consequently, the wavelength of a
Fourier mode may not directly correspond to an eddy size. More important, as we have
noted in § 5, it is difficult to infer eddy sizes from E11(k1). Shifting from the Fourier
space to the real space may prove useful. Interestingly, similar to its spectral counterpart,
r1V11(r1) also manifests a bimodal structure (figure 3b). Analogous to the discussion of
the peaks of k1 E11(k1), we can ascribe the left peak to signal LSMs and the right peak to
signal VLSMs. The attendant eddy sizes can be estimated as the values of r1 corresponding
to these peaks. We find �L SM ≈ 0.03δ and �V L SM ≈ 0.8δ. Notably, now the organised
motions inhabit scales �δ, consistent with the standard conceptual picture of turbulent
eddies. We suggest that an extensive study of empirical data on wall-bounded flows along
these lines may yield valuable insights into the structure of organised motions at large
scales.

Returning to the k−1
1 and r−1

1 scalings, we now turn attention to components other than
E11(k1) and V11(r1). Specifically, we consider E33(k1) and V33(r1) for DNS of channel
flow at Reτ = 2000 (Lee & Moser 2015). (We compute V33(r1) from E33(k1) using (C3c).)
Over the span 902 � x+

2 � 1198, it is difficult to discern a plateau in k1 E33(k1) (figure 5a).
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Figure 3. Testing the k−1
1 and r−1

1 scalings for DNS of channel flow at Reτ ≈ 5200 (Lee & Moser 2015):
(a) normalised premultiplied spectrum k1 E11(k1)/u2

τ and (b) normalised premultiplied spatial energy-
density function r1V11(r1)/u2

τ . Each curve corresponds to a fixed value of x+
2 in the range x+

2 ∈ [90, 169].
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Figure 4. Testing the k−1
1 and r−1

1 scalings for DNS of channel flow at Reτ ≈ 5200 (Lee & Moser 2015):
(a) normalised premultiplied spectrum k1 E11(k1)/u2

τ and (b) normalised premultiplied spatial energy-
density function r1V11(r1)/u2

τ . Each curve corresponds to a fixed value of x+
2 in the range x+

2 ∈ [169, 191].
In the nominal r−1

1 scaling regime, 0.1 � r1/δ � 0.3, the plateau value r1V11(r1)/u2
τ ≈ 0.88 (black line,

panel b).
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Figure 5. Testing the k−1
1 and r−1

1 scalings for DNS of channel flow at Reτ = 2000 (Lee & Moser 2015):
(a) normalised premultiplied spectrum k1 E33(k1)/u2

τ ; (b) normalised premultiplied spatial energy-density
function r1V33(r1)/u2

τ ; (c) normalised premultiplied spectrum k1 E33(k1)/〈u2
3〉; (d) normalised premultiplied

spatial energy-density function r1V33(r1)/〈u2
3〉. Each curve corresponds to a fixed value of x+

2 in the range
x+

2 ∈ [902, 1198]. In the nominal r−1
1 scaling regime, 0.07 � r1/δ � 0.17, the plateau value r1V33(r1)〈u2

3〉 ≈ 0.3
(black line, panel d).

By contrast, r1V33(r1) manifests a plateau, signalling V33(r1) ∝ r−1
1 (figure 5b). Unlike the

case in figure 3(b), the plateau for the curves corresponding to different x+
2 positions do not

collapse when normalised as r1V33(r1)/u2
τ . But, when normalised as r1V33(r1)/〈u2

3〉, they
collapse (figure 5d). (The normalised curves for k1 E33(k1)/〈u2

3〉 also collapse, but unlike
its real-space counterpart, there is no plateau; figure 5(c).) Remarkably, the collapse occurs
not only in the plateau region, but over the whole range of r1. In figure 5(b), we can also
see one drawback of V33(r1) – it becomes negative for r1 > δ. It does, however, satisfy a
weaker condition,

´ r1
0 dr1V33(r1)� 0 (Davidson 2004).

A few additional remarks on the V33(r1) ∝ r−1
1 scaling may be useful. Because

the definition of V33(r1) is a new result, this scaling and the attendant collapse of
r1V33(r1)/〈u2

3〉 are novel findings. It is worth noting that, to our knowledge, the spectral
counterpart of this scaling, E33(k1) ∝ k−1

1 , has not been reported, which adds to the
novelty of the V33(r1) ∝ r−1

1 scaling. Further, we observed this scaling for channel flow
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Figure 6. Testing the k−5/3
1 and r−1/3

1 scalings at the centreline of a pipe flow from the Princeton
superpipe experiment (Bailey et al. 2009; Rosenberg et al. 2013): (a) normalised premultiplied spectrum
(k1η)5/3ηE11(k1)/ν

2; (b) normalised premultiplied spatial energy-density function (r1/η)1/3η3V11(r1)/ν
2.

The data correspond to Re := U D/ν = 24 000, 81 000, 512 000, where U is the mean flow velocity and D
is the pipe diameter.

at Reτ = 2000 but not at Reτ = 1000 or Reτ ≈ 5200. It would appear that, similar to the
E11(k1) ∝ k−1

1 scaling, this scaling is also limited to a finite range of Reτ .
Unlike the k−1

1 scaling, the classical Kolmogorov inertial-range scaling, k−5/3, and
the related phenomenon of small-scale universality manifest systematic trends with
increase of Re (Kolmogorov 1941). To illustrate these trends, we turn to experimental
measurements of E11(k1) at the centreline of a pipe from the high-Re Princeton superpipe
experiment (Bailey et al. 2009; Rosenberg et al. 2013). In figure 6(a), we plot the
premultiplied spectrum k5/3

1 E11(k1). For Re � 81 000, a plateau emerges, signalling
E11(k1) ∝ k−5/3

1 . With increase in Re, the plateau broadens. Moreover, the spectra
normalised in Kolmogorov units collapse onto a universal curve at the small scales (at
large k1η, where η is the Kolmogorov length scale), signalling small-scale universality.
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The collapsed region broadens with increase in Re. (This collapse persists even for low-Re
transitional pipe flow (Cerbus et al. 2020).) The spatial counterpart of the E11(k1) ∝ k−5/3

1
scaling is V11(r1) ∝ r−1/3

1 . (This follows from dimensional considerations: using
[k1 E11(k1)] = [r1V11(r1)], E11(k1) ∝ k−5/3

1 and k1 ∝ r−1
1 , we obtain V11(r1) ∝ r−1/3

1 .) In
figure 6(b), we plot the profiles of r1/3

1 V11(r1) corresponding to the spectra of figure 6(a).
Complementary to the spectral results, we note a plateau emerging and broadening with
increase in Re. Similarly, we note a collapse onto a universal curve at small scales, with
the collapsed region broadening with increase in Re.

7. Concluding remarks
Quantifying turbulent kinetic energy distribution in the real space via a spatial energy-
density function has been a long-standing quest. Basing our analysis on an energy
constraint, in § 2, we derived V(r) for homogeneous isotropic turbulence. In § 3, we
generalised this derivation to anisotropic flows. Our analysis till that point focused on a
three-dimensional spatial energy-density function. In § 4, we introduced the concept of
one-dimensional spatial energy-density functions.

Although one-dimensional energy-density functions are well known in the spectral
space, that is not the case for the real space. Correspondingly, distinctions between
the three-dimensional V(r) and its one-dimensional variants have not been recognised
previously. Indeed, this allowed us to resolve the discrepancies between the Townsend–
Davidson function VTD(r) and the Townsend–Hamba function VTH(r). While both share
the same starting point – Townsend’s pioneering proposal of (1.5) – we showed that VTD(r)

corresponds to 3V11(r) whereas VTH(r) corresponds to V(r).
A distinctive feature of one-dimensional spatial energy-density functions is that they

satisfy the crucial requirement that allows for a one-to-one correspondence with eddy sizes
(cf. property (iii) discussed in § 1). Their spectral counterparts, on the other hand, do not
satisfy this requirement and thus do not allow for a one-to-one correspondence with eddy
sizes. This property makes one-dimensional spatial energy-density functions particularly
attractive for the analysis of empirical data. In § 6, we discuss illustrative examples of such
analysis. Some of the notable findings from this analysis include: a new spatial region of
V11(r1) ∝ r−1

1 scaling (figure 4); a new scaling regime of V33(r1) ∝ r−1
1 (figure 5d); and a

potential solution to the puzzlingly large sizes of VLSMs.
In closing, we wish to draw attention to a critical unfinished task. The fact that in

Townsend’s formalism V(r), V11(r) and V22(r) are all not guaranteed to be non-negative
is a drawback that is shared by other functions proposed in the literature (Davidson &
Pearson 2005; Hamba 2015). To our knowledge, no function satisfying the non-negative
property has been rigorously developed. As such, there is no proposal that strictly satisfies
all three properties necessary for a spatial energy-density function. We submit that finding
such a function may yield promising dividends.

Funding. This work was supported by the Okinawa Institute of Science and Technology Graduate University.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Deriving V(r) for homogeneous isotropic turbulence using Townsend’s
approach
Here, we derive (2.4) for V(r) starting with Townsend’s main result, (1.5). First, we note
that (1.5) needs two modifications: (i) the minus sign should not be there as it would lead
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to negative energy; (ii) we introduce an additional factor of 1/2 since the resulting function
should represent the turbulent kinetic energy-density function and integrate to (1/2)〈u2〉.
Now, because (1.5) is expressed in per unit range of d(log r), we multiply (1.5) (with the
above-mentioned modifications) by d(log r) to obtain the contributions to (1/2)〈u2

1〉 from
eddies of size in the range (r, r + dr)

r
∂

∂r

1
4

[S11(r)]d(log r) = ∂

∂r

1
4

[S11(r)]dr. (A1)

To derive a three-dimensional spatial energy-density function, (A1) can be easily
extended to include the contributions to 〈(1/2)u2

2〉 and 〈(1/2)u2
3〉. Summing them up,

contributions to (1/2)〈u2〉 from eddies of size in the range (r, r + dr) can be expressed as

V(r)dr = 1
4

∂

∂r
Sii (r)dr, (A2)

with summation over repeating indices implied. Using the relation

Sii (r) = 2Qii (0) − 2Qii (r), (A3)

equation (A2) can be written as

V(r) = − ∂

∂r

1
2

Qii (r), (A4)

which is (2.4).
We note that the starting point of the derivation discussed above is Townsend’s proposal,

(1.5). We have attempted to demonstrate in a clear manner how it leads to V(r). But, if we
consider (1.5) itself, Townsend’s reasoning is not entirely clear. Thus, in this manuscript,
we derive (2.4) using a different approach (cf. § 2).

Appendix B. Some kinematic relationships between spatial energy-density functions
(isotropic turbulence)
In the spectral space, kinematic relationships between E(k) and its one-dimensional
variants are well known. In the same vein, the following kinematic relationships between
V(r) and its one-dimensional variants can be readily established

V(r) = 1
r3

∂

∂r
[r4V11(r)], (B1a)

V22(r) = 1
2r2

∂

∂r
[r3V11(r)], (B1b)

V(r) = V11(r) + 2V22(r), (B1c)
∂

∂r
[r3V(r)] = 2

r

∂

∂r
[r4V22(r)]. (B1d)

Appendix C. Relationships between one-dimensional spatial and spectral energy-
density functions
For analysis of empirical data, it is useful to obtain relationships between the spectral and
spatial variants of the one-dimensional energy-density functions. In the direction r = r1 ê1,
the spectral one-dimensional energy-density functions are defined as
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E11(k1) = 1
π

ˆ ∞

0
dr1 Q11(r1 ê1) cos(k1r1), (C1a)

E22(k1) = 1
π

ˆ ∞

0
dr1 Q22(r1 ê1) cos(k1r1), (C1b)

E33(k1) = 1
π

ˆ ∞

0
dr1 Q33(r1 ê1) cos(k1r1), (C1c)

and the inverse cosine transform transforms are

Q11(r1 ê1) = 2
ˆ ∞

0
dk1 E11(k1) cos(k1r1), (C2a)

Q22(r1 ê1) = 2
ˆ ∞

0
dk1 E22(k1) cos(k1r1), (C2b)

Q33(r1 ê1) = 2
ˆ ∞

0
dk1 E33(k1) cos(k1r1). (C2c)

From the inverse transform pairs, it can be readily confirmed that

V11(r1) =
ˆ ∞

0
dk1k1 E11(k1) sin(k1r1), (C3a)

V22(r1) =
ˆ ∞

0
dk1k1 E22(k1) sin(k1r1), (C3b)

V33(r1) =
ˆ ∞

0
dk1k1 E33(k1) sin(k1r1), (C3c)

and the associated forward transforms are

k1 E11(k1) = 2
π

ˆ ∞

0
dr1V11(r1) sin(k1r1), (C4a)

k1 E22(k1) = 2
π

ˆ ∞

0
dr1V22(r1) sin(k1r1), (C4b)

k1 E33(k1) = 2
π

ˆ ∞

0
dr1V33(r1) sin(k1r1). (C4c)

Appendix D. Transport equation for V(r, t)

In the manuscript, we focused on kinematics of spatial energy-density functions. To study
the dynamics, we can analyse their transport equations (Davidson & Pearson 2005;
Hamba 2015). As an illustration, here, focusing on homogeneous isotropic turbulence,
we follow the approach of Davidson & Pearson (2005) to derive and analyse the transport
equation for V(r, t), where t is the time. (In the manuscript, we did not explicitly note the
dependence on time as our focus was on kinematics.)

Our starting point is the transport equation for (1/2)Qii (r, t), which is the Kármán–
Howarth equation (Davidson 2004)

∂

∂t

1
2

Qii (r, t) = ∂

∂r
Γ (r, t) + ν

r2
∂

∂r
r2 ∂ Qii

∂r
, (D1)

where

Γ (r, t) =
ˆ r

0
ds

1
12s2

∂

∂s

1
s

∂

∂s
[s4S3(s, t)], (D2)
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and the third-order structure function is defined as S3(r, t) := 〈[�υ(r, t)]3〉. Combining
(D1) with (2.4)

V(r, t) = − ∂

∂r

1
2

Qii (r, t), (D3)

yields the transport equation for V(r, t)

∂

∂t
V(r, t) = ∂

∂r
ΠV (r, t) + 2ν

∂

∂r

1
r2

∂

∂r
[r2V(r, t)], (D4)

where we have defined the spatial energy flux ΠV (r, t) as

ΠV (r, t) := − 1
12r2

∂

∂r

1
r

∂

∂r
[r4S3(r, t)]. (D5)

The spectral counterpart to (D4) is (Davidson 2004)
∂

∂t
E(k, t) = − ∂

∂k
ΠE (k, t) − 2νk2 E(k, t), (D6)

where ΠE (k, t) is the spectral kinetic energy flux. In analogy with the spectral energy
transfer TE (k, t) = −∂ΠE/∂k, we can define the spatial energy transfer density function

TV (r, t) := ∂ΠV

∂r
. (D7)

It has the conservative property that
´∞

0 dr TV = 0.
It is instructive to consider the transfer of energy from eddies of size � r to eddies of

size � r . To do this, we integrate (D4) over r → s ∈ [r, ∞] for some arbitrary r

∂

∂t

ˆ ∞

r
ds V(s, t) =

ˆ ∞

r
ds

∂

∂s
ΠV (s, t) + 2ν

ˆ ∞

r
ds

∂

∂s

1
s2

∂

∂s
[s2V(s, t)]

= −
ˆ r

0
ds

∂

∂s
ΠV (s, t) −

ˆ ∞

r
ds D(s, t), (D8)

where we have defined the dissipation density as

D(r, t) := −2ν
∂

∂r

1
r2

∂

∂r
[r2V(r, t)]. (D9)

Equation (D8) can be interpreted as follows: the loss of energy from eddies of size � r is
due to the transfer to eddies of size � r (via ΠV (r, t)) and direct loss to viscous dissipation
(via D(r, t)). In other words, equation (D4) embodies an energy cascade in the real space.

We can also analyse the inertial range. Integrating (D4) yieldsˆ r

0
ds

∂

∂t
V(s, t) = ΠV (r, t) + 2ν

r2
∂

∂r
[r2V ] − lim

r→0

2ν

r2
∂

∂r
[r2V ]. (D10)

Next, recall that when the turbulence is locally isotropic, the velocity derivative moments
are related by 〈

∂ui

∂x j

∂ui

∂x j

〉
= − 1

r2
∂

∂r

(
r2 ∂ Qii

∂r

)∣∣∣∣
r=0

= 〈ω2〉, (D11)

where 〈ω2〉 is the mean enstrophy. This standard result can then be expressed in terms of
the spatial energy density V as

lim
r→0

2ν

r2
∂

∂r
[r2V(r, t)] = ν〈ω2〉 = ε. (D12)
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Finally, substituting (D12) into (D10) we arrive at the integrated form of the transport
equation ˆ r

0
ds

∂

∂t
V(s, t) = ΠV (r, t) + 2ν

r2
∂

∂r
[r2V ] − ε. (D13)

Now, focusing on the inertial-range eddies, we invoke the standard assumptions that the
turbulence is locally stationary (so the time-derivative term on the left-hand size is zero)
and that the viscous term is negligible. This yields the scale invariance of the spatial energy
flux in the inertial range

ΠV (r, t) = ε. (D14)
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