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The nonlinear development of a low frequency beam-cyclotron instability in a
collisional plasma composed of magnetized ions and electrons and unmagnetized,
negatively charged dust is investigated using one-dimensional particle-in-cell simula-
tions. Collisions of charged particles with neutrals are taken into account via a
Langevin operator. The instability, which is driven by an ion E × B drift, excites
a quasi-discrete wavenumber spectrum of waves that propagate perpendicular to the
magnetic field with frequency of the order of the dust plasma frequency. In the linear
regime, the unstable wavelengths are of the order of the ion gyroradius. As the wave
energy density increases, the dominant modes shift to longer wavelengths, suggesting
a transition to a Hall-current-type instability. Parameters are considered that reflect
the ordering of plasma and dust quantities in laboratory dusty plasmas with high
magnetic field. Comparison with the nonlinear development of this beam cyclotron
instability in a collisionless dusty plasma is also briefly discussed.
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1. Introduction
Dusty plasmas are plasmas containing solid, charged particles of micron to

sub-micron size. Typically in low temperature plasmas, where the dominant charging
process is the collection of electrons and ions, the dust is negatively charged owing
to the higher mobility of the electrons. The physics of dusty plasmas has application
to a wide range of space and astrophysical environments as well as various laboratory
plasmas. In many of these environments, the plasma is immersed in a magnetic field.
While most laboratory experiments on dusty plasmas have been performed without
magnetic fields, there have been a number of experimental investigations on the
dynamics of the dust in magnetized plasmas (e.g. Konopka et al. 2000; Kaw et al.
2002; Samsonov et al. 2003; Schulze et al. 2007; D’yachkov, Petrov & Fortov 2009;
Karasev et al. 2009). More recently, new dusty plasma devices with high magnetic
field have been developed, such as the Magnetized Dusty Plasma Experiment (MDPX)
at Auburn University, designed to investigate the properties of a dusty plasma under
conditions where some or all of the charged particle species are magnetized (Thomas,
Merlino & Rosenberg 2012).
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In a device such as MDPX, there can be a component of electric field E
perpendicular to the magnetic field B, which, for example, electrostatically confines
the dust (see Thomas et al. 2014). Motivated by this, we consider a possible
instability that may occur under conditions where the ions (and electrons) are
magnetized and acquire E × B drifts relative to the dust which is unmagnetized.
In this case, theories have shown that an ion E × B drift, U⊥, could excite
low frequency dust-acoustic-type waves (e.g. Shukla, Salimullah & Sorasio 2002;
D’Angelo 2003; Rosenberg & Shukla 2007; Rosenberg 2014). In this paper we
focus on a particular type of ion cross-field drift driven instability, namely, a
beam-cyclotron-type instability for purely perpendicular propagation (Rosenberg 2014).
This instability excites a spectrum of dust waves at quasi-discrete wavenumbers where
roughly k⊥U⊥∼mωci, where k⊥ is the perpendicular wavenumber, m is an integer and
ωci is the positive ion gyrofrequency. The instability is a low frequency analogue of
the ‘standard’ beam-cyclotron instability in a plasma containing magnetized electrons
and unmagnetized ions (e.g. Gary & Sanderson 1970; Lampe et al. 1971, 1972). In
the standard beam-cyclotron instability, an electron E × B drift excites ion waves at
discrete wavenumbers where k⊥U⊥ ∼ mωce, where ωce is the electron gyrofrequency.
The standard beam-cyclotron instability has relevance to Hall thrusters, where the
instability has been referred to as a high frequency or E×B electron drift instability
(e.g. Adam, Heron & Laval 2004; Ducrocq et al. 2006; Cavalier et al. 2011, 2013;
Boeuf 2017). For the low frequency analogue instability in a dusty plasma, where
the ion E × B drift excites dust waves at quasi-discrete wavenumbers, collisional
effects are generally significant and can affect the linear growth rates and nonlinear
development of the instability.

Section 2 discusses the dispersion relation for the linear instability, and our set
of reduced parameters for the numerical simulations. Section 3 gives the simulation
approach and presents the results of the numerical simulations. Most of this section
focuses on simulations in a collisional plasma, but a brief comparison with the
collisionless case is also discussed. Section 4 gives a summary and discussion.

2. Dispersion relation and parameters
2.1. Linear dispersion relation

The model plasma is composed of singly charged positive ions, negatively charged
dust of uniform radius R (thus uniform mass and charge) and neutrals. The condition
of equilibrium charge neutrality is ni = ne + Zdnd, where nα is the number density
of species α, with the subscripts i, e, d and n referring to ions, electrons, dust and
neutrals, respectively, and Zd is the charge state of the dust.

We consider a slab geometry, with an external magnetic field B in the z direction,
and an electric field E in the y direction. The ions and electrons are magnetized and
have an E×B drift, U⊥= (cE/B)x. This is the laboratory frame that will be used for
the simulations. It is assumed that the dust collision frequency is much larger than
the dust gyrofrequency so that the dust grains are unmagnetized. We will assume that
the ratio of the ion plasma frequency to the ion gyrofrequency is somewhat greater
than one.

To obtain an analytic expression for the growth rate for the dust beam-cyclotron
instability, we consider the reference frame where the ions and electrons are stationary
and the dust moves in the x-direction with speed U⊥. In this frame, one can view
the instability as a dust beam exciting ion Bernstein waves with frequencies near
harmonics of the ion gyrofrequency ωci. (Note that in the laboratory or simulation
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frame, the ion drift excites dust waves; the ion Bernstein waves are Doppler shifted
to low frequency by the ion drift and can couple to dust-acoustic-type waves.) We use
Maxwellians for the electron and ion distribution functions and a shifted Maxwellian
for the dust, and model collisions roughly using a number conserving Krook collision
term (see e.g. Opher, Morales & Leboeuf 2002). Then the linear dispersion relation for
electrostatic waves with wavevector k= (kx, 0, kz) is given by (e.g. Kindel & Kennel
1971; Ossakow et al. 1975; Alexandrov, Bogdankevich & Rukhadze 1984; Rosenberg
2010)

1+ χe + χi + χd = 0, (2.1)

where

χj =
1

k2λ2
Dj

[
1+

+∞∑
s=−∞

ζj,0Z(ζj,s)Γs(bj)

] [
1+

+∞∑
s=−∞

iνj
√

2kzvj

Γs(bj)Z(ζj,s)

]−1

, (2.2a)

χd =
1

k2λ2
Dd
[1+ ζdZ(ζd)]

[
1+

iνd
√

2kvd

Z(ζd)

]−1

. (2.2b)

Here λDα = (Tj/4πnαZ2
αe2)1/2 is the Debye length of species α, Z is the plasma

dispersion function (Fried & Conte 1961), the subscript j= e, i and

ζj,s =
ω+ iνj − sωcj
√

2kzvj

, (2.3a)

ζd =
ω− kxU⊥ + iνd
√

2kvd

. (2.3b)

Here vα = (Tα/mα)
1/2 is the thermal speed, ρj = vj/ωcj is the gyroradius of particle

species j, bj= k2
xρ

2
j , and Γs(bj)= Is(bj) exp(−bj), with Is the modified Bessel function

of order s, and να denotes the collision rates of charged particles with neutrals. In the
following we consider perpendicular propagation with kz = 0. Therefore, k= kx.

Because ω�ωce, we retain only the zeroth-order harmonic for the electrons. With
be� 1, the electron susceptibility becomes

χe =
ω2

pe

ω2
ce

(
1+

iνe

ω

)
. (2.4)

Because we are considering parameters where ωpi/ωci is of the order of a few, we
neglect χe in the following, which is reasonable as long as νe/ωce� (ωci/ωpi)

2(ni/ne),
which would generally be satisfied in order for the electrons to be magnetized.

The ion susceptibility is

χi =
1

k2λ2
Di

[
1− Γ0(bi)−

∞∑
s=1

2ω̄2Γs(bi)

ω̄2 − s2

] [
1−

iνiΓ0(bi)

ω̄
−

∞∑
s=1

2ω̄iνiΓs(bi)

ω̄2 − s2

]−1

. (2.5)

Here ω̄ = (ω + iνi)/ωci. In the limit that kρi > 1, we take Γs(bi) ∼ 1/
√

2πbi as a
rough approximation. Using the following sum identity for the cotangent (Gradshteyn
& Ryzhik 1980):

π cot(πz)=
1
z
+ 2z

∞∑
s=1

1
z2 − s2

, (2.6)
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we approximate (2.5) as

χi ≈
1

k2λ2
Di

[
1−

πω̄ cot(πω̄)
√

2πbi

] [
1−

πiν̄i cot(πω̄)
√

2πbi

]−1

. (2.7)

Here ν̄i = νi/ωci is the inverse of the ion Hall parameter. (See also Wong (1970) and
Lampe et al. (1972) for the magnetized electron susceptibility in an analysis of the
beam-cyclotron instability in a collisionless electron-ion plasma.)

For cold dust, the dust susceptibility is

χd =−
ω2

pd

(ω− kU⊥)(ω− kU⊥ + iνd)
. (2.8)

We neglect dust collisions in the following analysis, assuming νd is much smaller than
the maximum growth rate of the instability.

A resonance occurs when the real frequency ωr ∼ mωci and the Doppler-shifted
frequency, |ωr− kU⊥|, is in the dust-acoustic frequency regime, and leads to enhanced
growth of dust waves with a growth rate γ . We take ω̄∼m+ iν̄i+ iγ̄ , where γ̄ =γ /ωci.
Assuming (ν̄i + γ̄ )π< 1, the ion susceptibility becomes very roughly

χi ≈
1

k2λ2
Di

[
1+

1
√

2πbi

im(ν̄i + γ̄ )

(ν̄i + γ̄ )2

]
. (2.9)

For a collisional dusty plasma, typically νi � γ since growth rates are in the
dust plasma frequency range. Using (2.8) and (2.9) in (2.1) yields the approximate
dispersion relation

1−
ω2

pd

(ω− kU⊥)2
+

1
k2λ2

Di

[
1+

im
√

2πbiν̄i

]
≈ 0. (2.10)

Taking ω=ωr + iγ , with γ < |ωr − kU⊥| yields roughly

ωr − kU⊥ ≈−
ωpdkλDi

(1+ k2λ2
Di)

1/2
, (2.11a)

γ ≈
mωci

νi

1
√

8πbi

ωpdkλDi

(1+ k2λ2
Di)

3/2
. (2.11b)

It can be seen that (2.11a) is the dispersion for a Doppler-shifted dust-acoustic wave,
while (2.11b) shows that the growth rate increases as the ion Hall parameter increases.

The dispersion relation (2.1) admits a Hall-current-type instability in the long
wavelength limit where bi� 1 and ωr ∼ kU⊥�ωci. In this case, the ion susceptibility
has the form of (2.4) with the replacement of the subscripts e→ i. Thus the dispersion
relation, again assuming cold dust, becomes approximately

1+
ω2

pi

ω2
ci

(
1+

iνi

ω

)
−

ω2
pd

(ω− kU⊥)2
≈ 0. (2.12)

In the limit that (ωpi/ωci)
2
� 1, this yields for the Doppler-shifted frequency and

growth rate (see also Rosenberg 2016):

|ωr − kU⊥| ∼ωpd
ωci

ωpi

(√
1+C2 + 1
2(1+C2)

)1/2

, (2.13a)
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P 50 mTorr
B 0.5 T
ni 5× 108 cm−3

mi 40mp

Te 3 eV
Ti 0.03 eV
R 0.1 µm
Zd 400
nd 5× 105 cm−3

md 5× 109mp

Td Te/6∼ 0.5 eV
λDi ∼58 µm
ρi ∼0.22 mm

TABLE 1. ‘Nominal’ parameters.

γ ∼ |ωr − kU⊥|

(√
1+C2 − 1
√

1+C2 + 1

)1/2

, (2.13b)

where C= νi/kU⊥. Including the dust collision rate reduces the growth rate in (2.13b)
by a factor of approximately νd/2.

2.2. Parameters
We consider a set of nominal parameters which may be possible in MDPX shown
in table 1 for an argon plasma containing dust of uniform radius R. Here, P is the
argon gas pressure, nα,mα, Tα, λDα and ρα are the density, mass, temperature, Debye
length and gyroradius of species α, with α = e, i, d corresponding to electrons, ions
and negatively charged dust, respectively, Zd is the dust charge state and mp is the
proton mass. With these parameters, the ratio of the ion plasma frequency to the
ion gyrofrequency is βi = ωpi/ωci ∼ 2/BT where BT is the magnetic field strength in
units of 1 T. Taking the ion collision rate with neutrals to be νi ∼ σinnnvi, where
nn is the neutral density, vi = (Ti/mi)

1/2 and σin ∼ 5 × 10−15 cm2, we have that
νi/ωpi ∼ 0.05. Then the ion Hall parameter, Hi ∼ 10BT . With B = 0.5T , Hi ∼ 5, so
the ions are magnetized and the electrons are strongly magnetized. On the other
hand, the dust would be unmagnetized. Taking the dust–neutral collision rate to be
νd ∼ (4

√
8π/3)R2nnvn(mn/md) ∼ 240 s−1, we find this is much larger than the dust

gyrofrequency ωcd ∼ 3.8 rad s−1. The dust is also ‘warm’, in the sense that the ratio
of the dust-acoustic speed, cd = λDiωpd to the dust thermal speed vd = (Td/md)

1/2,
cd/vd ∼

√
10, is not � 1. We will consider the case where the perpendicular ion

drift U⊥i, which is due to an E × B drift, is equal to the ion thermal speed vi.
For the above parameters, this implies that the electric field perpendicular to B is
approximately E⊥ ∼ 1.3 V cm−1, which appears reasonable for a low temperature rf
or dc dusty plasma.

Because it is time consuming to run a simulation with the possible laboratory
parameters shown in table 1, we consider whether we can model the linearly unstable
spectrum with a ‘reduced’ set of dimensionless parameters. These are given in
table 2, along with the dimensionless parameters corresponding to the ‘nominal’
parameters in table 1. Here θ is the angle between k and B, which is 90◦ for purely
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‘Nominal’ ‘Reduced’

Te/Ti 100 100
Te/Td 6 100
Zd 400 25
nd/ni 1× 10−3 1.6× 10−2

mi/mp 40 1
md/mp 5× 109 4× 105

ωpi/ωci 4 4
νi/ωpi 0.05 0.05
νd/ωpd 0.045 0.045
ωpd/ωpi 0.001 0.005
U⊥i/vi 1 1
θ 90◦ 90◦

TABLE 2. Dimensionless parameters.

perpendicular propagation. For both the nominal and reduced parameters, we have
that Zdnd/ni= 0.4; in addition the ratio of the dust-acoustic speed to the dust thermal
speed, cd/vd ∼ωpdλDi/vd ≈

√
10. The normalized ion and dust collision rates, and the

ion Hall parameter Hi = ωci/νi = 5 are the same for both parameter sets. The ratio
ωpd/ωpi � 1 for both sets of parameters, and the ordering ωpd � νi � ωpi holds for
both sets as well.

Figure 1 shows the solution of (2.1) for both sets of dimensionless parameters
in table 2 in the frame where the dust is stationary and the ions have an E × B
drift, U⊥i = vi. The solid curves correspond to the nominal parameters, while the
dotted curves correspond to the reduced parameters. (For the nominal parameters,
the electrons have an E × B drift, U⊥e = 1.04vi and collisions with neutrals are
included with a rate νe/ωpi = 14. For the reduced parameters, the electrons have
U⊥e = 0 and νe = 0. The electron susceptibility is basically negligible, since for
purely propagation it is proportional to ω2

pe/ω
2
ce which is <10−2 for both sets of

parameters.) The peaks in the growth rate at wavenumbers satisfying the resonance
condition kU⊥,i ∼ mωci correspond to the dust beam-cyclotron instability, while the
much smaller peak at small k corresponds to the Hall-current instability. It should be
noted that ion collisional effects lead to a broadening of the peaks in the growth rate
of the beam-cyclotron instability, and a reduction in the magnitude of the growth rate
(see (2.11b)). On the other hand, the growth rate of the Hall-current instability (2.12)
can increase with the ion collision frequency.

Because the linearly unstable spectra in figure 1 for the nominal and reduced
parameter sets are nearly the same, we use the reduced parameters in table 2 for the
simulations.

We note that when the dust temperature is large, it appears that only the Hall-current
instability may persist. Figure 2 shows the solution of (2.1) for U⊥i/vi = 1 with the
reduced parameters in table 2, but with a dust temperature Td = 20Ti.

3. Simulations
3.1. Approach

The simulations results described below were performed with a one-dimensional
electrostatic particle-in-cell (PIC) code with periodic boundary conditions including a
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FIGURE 1. Solution of the kinetic dispersion relation (2.1), for parameters in table 2. Real
frequency for nominal parameters (blue solid curve) and reduced parameters (cyan dotted
curve). Growth rate for nominal parameters (solid red curve) and reduced parameters
(dotted magenta curve).

FIGURE 2. Solution of the kinetic dispersion relation (2.1), for reduced parameters in
table 2, but with Td= 20Ti. Real frequency (cyan curve) and growth rate (magenta curve).

constant electric field E in the y direction and a constant magnetic field B in the z
direction. The plasma species in the PIC simulation consists of singly charged ions
that execute an E× B drift, U⊥i in the x direction and multiply charged, heavy dust
grains that are stationary in the simulation reference frame at time = 0. The electrons
are modelled as an immobile charge neutralizing fluid, consistent with the arguments
used to ignore χe in the discussion on linear theory.

The ions and dust are treated as particles, and both are assumed to collide with the
neutral background with a collision frequency νi for the ions and νd for the dust. Both
species are modelled as drifting Maxwellians, and a Langevin scattering operator with
a constant collision frequency is used to model the collisional effects (Gillespie 1993).
Given the desired ion drift U⊥i, the z-directed magnetic field B, and the collision
frequency νi, the required y-directed electric field E calculated to be

E=
[

1+
ν2

i

ω2
ci

]
U⊥iB

c
. (3.1)
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Since ν2
i /ω

2
ci� 1 will be assumed throughout, the ions execute an approximate E×B

drift.
Once the ion and dust charge densities are calculated at each time step, the Poisson

equation can be solved using a standard spectral method (Birdsall & Langdon 1985)
to obtain the self-consistent wave potential φ.

Quantities in the simulation are normalized to ion quantities at the beginning of
the simulation, but with the temperature given by the neutral temperature Tn which is
assumed constant. It is assumed that the initial ion temperature at t = 0 is Ti0 = Tn.
Thus, temperatures and drift speeds are normalized to Ti0 and the associated initial ion
thermal speed vi0= (Ti0/mi)

1/2. Length scales are normalized to the ion Debye length
λDi0 evaluated at Ti0 and the initial ion density ni0. For the parameters we are using,
with ωpi/ωci = 4, the ion gyroradius is related to the ion Debye length via ρi = 4λDi.
In addition, ρi0 is the ion gyroradius evaluated at Ti0. The time scales are normalized
to the ion plasma frequency ωpi evaluated with ni0. The wave electrostatic potential
energy eφ is normalized to Ti0 (in energy units), and the wave electric field Ẽ is
normalized to Er = Ti0/eλDi0. The magnetic field is normalized to Br = ωpimic/e. Put
differently, the normalized magnetic field is ωci/ωpi. For both runs, the system length
is 512λi0 and is divided into 512 computational cells. To reduce the numerical noise,
the ions and dust are modelled assuming approximately 8 million macro-particles for
each species. Finally, it is worth noting that the assumption of ωpd/ωpi= 0.005 in the
reduced parameter set (table 2) allows for a reduction in run time by a factor of 5
compared to the nominal value of 0.001.

3.2. Results

Collisional case
Figure 3 shows the wave energy density versus time for a simulation run with initial

conditions corresponding to the parameters in table 2. As can be seen, there appears
to be at least two phases in the nonlinear development: there is a faster linear growth
phase from tωpi ∼ 3000–7000 which saturates at moderate wave energy density, and
then a slower linear growth phase from tωpi ∼ (1.7−2.3) × 104 which saturates at a
wave energy density which is nearly an order of magnitude larger than that achieved in
the first phase. Figure 4 shows the ion and dust temperatures, Ti and Td, respectively,
as a function of time. These temperatures are computed by first calculating the x-
directed kinetic energy density and bulk momentum density for each species as a
function of position. From there the pressure in each cell can be obtained, and then
the temperature. The results shown in figure 4 are the averages at a given time over
all cells. While not shown, there is little change in the ion average velocity in the
x-direction.

As can be seen, Ti remains fairly constant, while Td increases by a factor of
approximately 4–5 at saturation of the first phase of the nonlinear development.
Then Td decreases slightly, remaining approximately 3–4 times larger than the initial
dust temperature, until about tωpi ∼ 2 × 104 where it then increases up to about 50
times the initial dust temperature at saturation of the second phase in the nonlinear
development. It should be noted that as Td increases while Ti remains constant, the
dust-acoustic speed csd∼ωpdλDi can become comparable or even smaller than the dust
thermal speed, which implies that the usual dust acoustic waves with unmagnetized
ions can be heavily damped.

Figures 3 and 4 suggest that, in the first phase, the dust beam cyclotron instability
is excited, with a faster growth rate. Then, owing to an increase in dust temperature,
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FIGURE 3. Average wave electric field energy density versus time for the collisional case
simulation.

(a)

(b)

FIGURE 4. Temperature versus time for collisional case simulation: (a) ion temperature,
(b) dust temperature.

the Hall-current instability becomes more dominant and is excited with a slower
growth rate, saturating as Td gets sufficiently large. The power in the different
modes at different times seem to corroborate this general picture. Figures 5(a)
and 5(b) show the wave power as a function of kρi at two different times. The power
|Ek|

2 is normalized such that the sum over all k modes is equal to |Ẽ2/E2
r | × 512.

Figure 5(a) shows that the dominant modes at a time during the first growth phase
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(a)

(b)

FIGURE 5. Power in waves as a function of kρi0, for collisional case, at time (a)
tωpi = 5500 (b) tωpi = 2× 104.

(at tωpi = 5500) seem to be relatively discrete, short wavelength modes, with peaks
very roughly in the ranges kρi ∼ 1.5–1.8, kρi ∼ 2–2.5 and kρi ∼ 2.7–3.2. These
wavenumber ranges are reasonably consistent with the three dominant peaks in linear
growth rate shown in figure 1. The growth rates estimated from the simulations for
these wavenumber regimes, in the time interval tωpi = 5000–6500, are approximately
1/2 the peak growth rates shown in figure 1, basically an average growth rate
over those wavelength intervals. Figure 5(b) shows that the dominant modes in the
second growth phase, at tωpi = 2× 104, have much longer wavelength, with roughly
kρi ∼ 0.1–0.2, which corresponds to that for the Hall-current instability in figure 2.
The growth rate estimated from the simulation for this wavenumber regime, in the
time interval tωpi= 18 000–21 000, is comparable to the maximum growth rate shown
in figure 2.

The above scenario suggests that as Td increases due to wave trapping, the shorter
wavelength modes would be damped by dust Landau damping. The condition for dust
to be trapped is (Lampe et al. 1971)

2Zdeφtr =
md

2

(
Ud −

ωtr

ktr

)2

, (3.2)

where ktr is the wavenumber of the mode that does the trapping. For Ud = 0, and
taking ω∼ kλDiωpd, this condition can be written as

eφtr

Ti0
∼

1
4

Zdnd

ni
. (3.3)

For the parameters we are using, this implies that dust trapping could occur for
eφ/Ti0 ∼ 0.1. However, dust–neutral collisions may lead to some de-trapping. The
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(a) (d)

(b) (e)

(c) (f)

FIGURE 6. Phase space plots and spatial structure of the wave potential for two different
times in the collisional case simulation: tωpi = 7000 (a–c), and tωpi = 22 000 (d–f ). The
ion phase space plots are shown in (a,d), the dust phase space plots in the middle row
and the wave potential in (c, f ). Note that ρi = 4λDi for the parameters used.

effect of dust collisions would be expected to be significant if νd is comparable to
the bounce frequency, νbd, of a dust particle in the wave. Taking νbd = (Zdek2φ/md)

1/2

(Nishikawa & Wakatani 1990) we have that

νbd

ωpd
∼

(
ni

Zdnd

)1/2

kλDi

(
eφ
Ti0

)1/2

. (3.4)

Thus, for the reduced parameter set we are using, we have that νbd/νd ∼ 35kλDi
(eφ/Ti0)

1/2. Figures 6(a–c) and 6(e–f ) show the spatial structure of the wave potential
φ and the ion and dust phase space plots at two different times, respectively:
tωpi= 7000 which is near saturation of the first growth phase, and tωpi= 22 000 which
is near saturation of the second growth phase. Taking the dominant mode to be in the
range of kλDi ∼ 0.5 (i.e. kρi ∼ 2) at time tωpi = 7000, we estimate that νbd/νd ∼ 4–5
so dust collisions may play a role in de-trapping of the dust. However, as the wave
energy decreases during the time interval from approximately tωpi ∼ (1–1.5) × 104

(see figure 3), dust collisions may play a greater role in de-trapping which may
explain why Td remains relatively constant during this time. At tωpi = 22 000, the
dominant mode is in the range kλDi ∼ 0.04 (i.e. kρi ∼ 0.16), while |eφ/Ti0| ∼ 5, so
νbd/νd ∼ 2–3 and dust collisions may again play a role in de-trapping. As the wave
energy continues to increase, Td increases substantially, to approximately 10–20 times
the initial dust temperature, where only the long wavelength Hall-current instability
appears to persist. While the concept of ‘temperature’ is very rough for a particle
distribution that is not a smooth Maxwellian, as indicated in dust phase space plot in

https://doi.org/10.1017/S0022377818001198 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818001198


12 M. Rosenberg, K. Quest and B. Kercher

figure 6(e), this interpretation appears reasonably consistent with linear theory based
on solving (2.1) with the reduced parameters in table 2, but with a dust temperature
Td = 20Ti, as shown in figure 2.

The ion temperature appears to remain relatively constant throughout the simulation
run, which suggests that ion collisions may play a role in de-trapping. For the dust
beam-cyclotron instability, in which the unstable wavelengths are of the order of the
ion gyroradius, it may be the case that ions can only remain in resonance with the
wave for a time scale of the order of ω−1

ci , owing to the presence of the magnetic
field (see (Forslund, Morse & Nielsen 1971) for the beam-cyclotron instability in an
electron–ion plasma). Thus, the linear growth of waves could be modified when ω−1

ci
is greater than the trapping time of an ion in the wave, which is given by the inverse
of the ion bounce frequency, ν−1

bi ∼ (eφk2/mi)
−1/2 (Forslund et al. 1971). This implies

that roughly eφ/Ti0>(kρi)
−2 is required. Estimating this condition at tωpi= 7000 from

figure 6(c), taking the dominant wavenumber to be kλDi ∼ 0.5 (i.e. kρi ∼ 2), we find
that it may be marginally satisfied at locations where |φ| is maximal. However, ion
collisions can lead to de-trapping. The ratio of the ion bounce frequency in the wave,
νbi, to the ion collision frequency νi, is roughly νbi/νi ∼ 20kλDi(eφ/Ti0)

1/2. Taking
kλDi ∼ 0.5 and |eφ/Ti0| ∼ 0.1 we find that νbi/νi ∼ 2–3 so that collisions can play a
role in de-trapping. During the second growth phase, the wavelength of the dominant
waves are much larger than the ion gyroradius, so the ions may become trapped in
the wave. However, estimating νbi/νi at tωpi = 22000 from figure 6( f ), taking kλDi ∼

0.04 and |eφ/Ti0| ∼ 5, we find that νbi/νi ∼ 2 so that ion collisions play a role in
de-trapping.

Collisionless case
We briefly compare the nonlinear development of the dust beam cyclotron instability

in a collisional plasma with that in a collisionless plasma. This is mainly in order
to show differences in the wave spectra, and to make connection with prior work
on the development of the beam-cyclotron instability in a plasma with magnetized
electrons and unmagnetized ions (e.g. Lampe et al. 1971, 1972). The latter papers
reported that there are two growth phases: a faster growth phase corresponding
to the beam-cyclotron instability, and a slower growth phase corresponding to an
ion-acoustic instability. It was reported in Lampe et al. (1971) that when the energy
density in the waves excited in the first phase is sufficiently large, the resonance
peaks in the beam-cyclotron growth curve are smeared out and the instability goes
over to a nonmagnetized ion-acoustic instability. In our case, the ions take the place
of electrons, and the dust takes the place of the ions; we expect that the trends in
the nonlinear development of the dust beam cyclotron instability may be similar to
that in Lampe et al. (1971).

Figure 7 shows the wave energy density versus time for a simulation run with initial
conditions corresponding to the parameters in table 2, but with νi = νd = 0. There
appear to be two phases in the nonlinear development: a fast growth phase from about
tωpi∼ 600–1000 and then a slower growth phase from tωpi∼ (1–6)× 103. This second
growth phase saturates at a wave energy density which is approximately 30 times
larger than that achieved in the first phase. The first growth phase is much faster
than in the collisional case, as would be expected. Figure 8 shows the ion and dust
temperatures, Ti and Td, respectively, as a function of time. In this collisionless case,
both Ti and Td increase substantially, as contrasted with the collisional case where
Ti remains fairly constant. These trends are similar to those reported in Lampe et al.
(1971, 1972) for the analogous beam-cyclotron instability in an electron–ion plasma.
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FIGURE 7. Average wave electric field energy density versus time for the collisionless
case simulation.

(a)

(b)

FIGURE 8. Temperature versus time for collisionless case simulation: (a) ion temperature,
(b) dust temperature.

Figure 9 shows the power in different modes at two different times: tωpi = 800
during the first growth phase, and tωpi= 4000 during the second growth phase. As can
be seen from figure 9(a), in the first growth phase, modes are excited at wavenumbers
satisfying the resonance condition kU⊥,i∼mωci. As compared with the collisional case,
the wavenumbers are discrete, compared with the broadening of the peaks due to
ion collisions in the collisional case. This is consistent with the solution of (2.1) for
the reduced parameters in table 2 but with νd = νi = 0 (figure not shown). During
the second growth phase, the dominant modes shift to longer wavelengths, as can be
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(a)

(b)

FIGURE 9. Power in waves as a function of kρi0, for collisionless case, at time (a)
tωpi = 800 (b) tωpi = 4000.

seen in figure 9(b). If the second growth phase corresponds to the excitation of a
nonmagnetized dust-acoustic instability (in analogy with the beam-cyclotron instability
in an electron–ion plasma (Lampe et al. 1971, 1972)), one would expect this shift to
longer wavelengths as Td increases, since dust Landau damping would be weaker at
smaller k.

4. Summary and discussion
We have presented one-dimensional PIC simulations of the nonlinear development

of a dust beam-cyclotron instability in a collisional plasma. The instability is
driven the ion cross-field E × B drift U⊥ ∼ vi. In the parameter regime we are
considering, the electron dynamics does not contribute to the instability, but just
provides charge neutrality. It was found that there are at least two phases in the
nonlinear development: a fast growth phase of waves with wavelengths comparable
to the ion gyroradius, and a slower growth phase of modes with much longer
wavelengths. The behaviour suggests that in the first phase, the dust beam-cyclotron
instability generates quasi-discrete short wavelength waves around k⊥ρi ∼ m, where
the integer m denotes a harmonic of the ion gyrofrequency. These waves grow to a
moderate level of wave energy density and then trap the dust, leading to a moderate
increase in the dust temperature. In the second phase, the presence of dominant long
wavelength modes suggests that a Hall-current-type instability grows. These waves
saturates at an energy density much larger than in the first phase, with a concomitant
increase in dust temperature which suggests the saturation may be due to dust Landau
damping.

We have also briefly compared the simulation results in the collisional case with
a simulation run without collisions mainly in order to show differences in the wave
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spectra. The simulation showed trends that appear similar to those reported for the
analogous beam cyclotron instability in a collisionless electron–ion plasma in Lampe
et al. (1971, 1972). In the collisionless case, there are two growth phases, a fast
phase and a slower phase. In the fast phase, the dominant modes are discrete short
wavelength modes that satisfy the resonance condition k⊥ρi ∼m. In the slower phase,
the dominant modes appear to shift to longer wavelength, but yet much shorter
wavelength than in the collisional case. Future work should investigate in more detail
the behaviour of the instability as the dusty plasma parameters vary from low to high
collisionality, i.e. from large to smaller (but still >1) ion Hall parameters.

A limitation of the present work is that it is a one-dimensional simulation.
While previous linear theory (Rosenberg 2014) has shown that growth of the low
frequency beam-cyclotron instability in a dusty plasma appears to maximize for
purely perpendicular propagation, there is also finite growth at oblique angles. Future
work should investigate the effect of this angular dependence on wave saturation
levels. Moreover, and probably more important for experiments in high magnetic
field devices such as MDPX, there can be electric fields along the magnetic field
which lead to ion drifts along B, in addition to ion cross-field drifts. In order to
help interpret possible wave experiments in MDPX for example, future work should
comprise two-dimensional simulations taking into account ion drifts both along and
across the magnetic field.
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