A REMARK ON THE GENERALIZED NUMERICAL RANGE OF A NORMAL MATRIX

by YIK-HOI AU-YEUNG and FUK-YUM SING

(Received 1 April, 1976)

1. Introduction. Let A be an $n \times n$ complex normal matrix and let $\mathcal{W}(A) = \{ \text{diag } UAU^* : U \text{ is unitary} \}$ where U^* is the conjugate transpose of U. It is known that $\mathcal{W}(A)$ may not be convex [1, 3] and it is convex when A is Hermitian [1, 2]. In this note we show that $\mathcal{W}(A)$ is convex if and only if the eigenvalues of A are collinear (i.e. there exist complex numbers $\alpha \ (\neq 0)$ and β such that $\alpha A + \beta I$ is Hermitian).

Hence for most normal matrices A, $\mathcal{W}(A)$ is not convex.

2. Generalized numerical range.

LEMMA 1. Let $Q = \begin{pmatrix} U & a \\ b^* & \mu \end{pmatrix}$ be an $(n+1) \times (n+1)$ unitary matrix, where U is an $n \times n$ matrix. Then there exists a real number γ such that $U + \gamma ab^*$ is unitary.

Proof. Using the property that $Ub + \bar{\mu}a = 0$ and $b^*b + \mu\bar{\mu} = 1$, we can show that $(U + \gamma ab^*)$ $(U + \gamma ab^*)^* = UU^* + [\gamma^2(1 - \mu\bar{\mu}) - \gamma(\mu + \bar{\mu})]aa^*$. Since $1 - \mu\bar{\mu} \ge 0$, it is possible to find γ so that $[\gamma^2(1 - \mu\bar{\mu}) - \gamma(\mu + \bar{\mu})]aa^* = aa^*$ (when $\mu\bar{\mu} = 1$, a = 0). Since $UU^* + aa^* = I_n$, where I_n is the $n \times n$ identity matrix, the lemma is proved.

PROPOSITION 2.

Let
$$B = \begin{pmatrix} \lambda_1 \\ \lambda_n \\ \lambda_{n+1} \end{pmatrix}$$
 and $A = \begin{pmatrix} \lambda_1 \\ \lambda_n \end{pmatrix}$.

If $\mathscr{W}(B)$ is convex and λ_{n+1} is a vertex of the convex hull of the points $\lambda_1, \ldots, \lambda_{n+1}$, then $\mathscr{W}(A)$ is convex.

Proof. For any $n \times n$ unitary matrices U_1 and U_2 and $0 \le \alpha \le 1$ we can find unitary matrix $Q = \begin{pmatrix} U & a \\ b^* & u \end{pmatrix}$ such that

$$\operatorname{diag}\left\{\alpha \begin{pmatrix} U_1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & \lambda_{n+1} \end{pmatrix} \begin{pmatrix} U_1^* & 0 \\ 0 & 1 \end{pmatrix} + (1-\alpha) \begin{pmatrix} U_2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & \lambda_{n+1} \end{pmatrix} \begin{pmatrix} U_2^* & 0 \\ 0 & 1 \end{pmatrix} \right\} = \operatorname{diag} QBQ^*.$$

Hence we have

$$b^*Ab + \lambda_{n+1}\mu\bar{\mu} = \lambda_{n+1},\tag{1}$$

diag
$$(\alpha U_1 A U_1^* + (1 - \alpha) U_2 A U_2^*) = diag(U A U^* + \lambda_{n+1} a a^*).$$
 (2)

From (1), since λ_{n+1} is a vertex and $b^*b + \mu \overline{\mu} = 1$, it follows that if $b^* = (b_1, \dots, b_n)$, we have

Glasgow Math. J. 18 (1977) 179-180.

 $b_i = 0$ for all *i* such that $\lambda_i \neq \lambda_{n+1}$. This implies that $b^*A = \lambda_{n+1}b^*$ and $Ab = \lambda_{n+1}b$. We can then obtain

$$(U + \gamma ab^*)A(U + \gamma ab^*)^*$$

= $UAU^* + \lambda_{n+1} [\gamma^2(1 - \mu\bar{\mu}) - \gamma(\mu + \bar{\mu})]aa^*$
= $UAU^* + \lambda_{n+1}aa^*$,

where γ is chosen as in Lemma 1. From (2) we see that $\mathcal{W}(A)$ is convex.

THEOREM 3.

Let
$$A = \begin{pmatrix} \lambda_1 \\ \ddots \\ \lambda_n \end{pmatrix}$$
, where $n \ge 3$.

Then $\mathcal{W}(A)$ is convex if and only if $\lambda_1, \ldots, \lambda_n$ are collinear.

Proof. First we prove sufficiency. When the eigenvalues of A are collinear, $\alpha A + \beta I$ is Hermitian for some complex numbers $\alpha \neq 0$ and β . Since $\mathscr{W}(\alpha A + \beta I)$ is convex, it follows that $\mathscr{W}(A)$ is also convex. To prove necessity we use induction on n. The case n = 3 is proved in [1]. Suppose $\mathscr{W}(A)$ is convex and the eigenvalues of A are $\lambda_1, \ldots, \lambda_n$ where n > 3. If the eigenvalues are not collinear, we take a vertex, say λ_1 . By Proposition 2 and the induction assumption, $\lambda_2, \lambda_3, \ldots, \lambda_n$ are collinear. Consider a vertex on this line segment, say λ_2 . By the same argument, $\lambda_1, \lambda_3, \ldots, \lambda_n$ are collinear. We must have then $\lambda_3 = \lambda_4 = \ldots = \lambda_n$. (For if $\lambda_i \neq \lambda_j$ for some $i, j \ge 3$, then $\lambda_1, \lambda_i, \lambda_j$ are not collinear.) This implies λ_3 is a vertex and hence $\lambda_1, \lambda_2, \lambda_4$ are collinear, which gives a contradiction. Therefore the eigenvalues must be collinear.

From Theorem 3 we have immediately the following result.

COROLLARY 4. If $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$ is a normal matrix and $\mathcal{W}(A)$ is convex, then $\mathcal{W}(A_1)$ and $\mathcal{W}(A_2)$ are convex.

REFERENCES

1. P. A. Fillmore and J. P. Williams, Some convexity theorems for matrices, *Glasgow Math. J.* 12 (1971), 110–116.

2. A Horn, Doubly stochastic matrices and the diagonal of a rotation matrix, Amer. J. Math. 76 (1954), 620-630.

3. L. E. Lerer, On the diagonal elements of normal matrices (Russian), Mat. Issled. 2 (1967), 156-163.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF HONG KONG

180