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Throughout the paper, rings are associative rings with identity. A ring is called right
duo if every right ideal is two-sided, and it is called right p.p. if every principal right ideal
is projective. A left duo (p.p.) ring is defined similarly, and a duo (p.p.) ring will mean a
ring which is both right and left duo (p.p.). There is a right p.p. ring that is not left p.p.
(see Chase [2]). Small [9] proved that right p.p. implies left p.p. if there are no infinite
sets of orthogonal idempotents, and Endo [5, Proposition 2] has shown the same
implication in the case where each idempotent in the ring is central. Since Courter [3,
Theorem 1.3] noted that every idempotent in a right duo ring is central, we can simply
speak of right duo p.p. rings. A typical example of a right duo ring which is not left duo is
the following. Let F be a field and F(x) the field of rational functions over F. Let
R = F(x) X F(x) as an additive group and define the multiplication as follows:

(fi(x), 81 N(fo(x), 82x)) = (H(x)fa(x), fi(x*)g2(x) + g1(x)fa(x))-
Then R is a local artinian ring with ¢(Rg) =2 and c(gR) = 3. Thus R is right duo but not
left duo.

Vasconcelos [13, Theorem 4.2] proved that a commutative ring R is semihereditary if
and only if R is p.p. and the weak dimension wD(R) of R is at most one. Recently
Tuganbaev [12, Proposition 3] generalized Camillo’s result {1] by showing that a duo ring
is both right and left semihereditary if each two-generated ideal is right projective. It
should be noted that Camillo’s theorem [1] was a generalization of a much older result.
Jensen [6, Lemma 3] claims that Dedekind [4] essentially proved a commutative integral
domain is a Priifer ring provided that every two-generated ideal is projective.

In this paper, we shall establish the following results.

THEOREM 1. Let R be a right duo ring. The following statements are equivalent:
(1) R is right semihereditary;
(2) every two-generated ideal is right projective;
(3) Ris p.p. and wD(R) =< 1.
THEOREM 2. Let R be a duo p.p. ring. If 1 is a finitely generated right projective ideal
then 1 is left projective and a direct summand of an invertible ideal.

A ring with no non-zero nilpotent elements is called reduced. Our results are based
on the following key lemma. We note that the right-duo assumption of R in the lemma is
essential: let R be the ring of 2 by 2 upper triangular matrices over a field; then R is
artinian hereditary indecomposable but not semiprime, and its quotient ring is R itself
which is not von Neumann regular.

LeEMMA 3. Let R be a right duo p.p. ring. Then
(1) R is reduced and has a right classical quotient ring Q that is von Neumann regular;

(2) if I is a right (projective) ideal that is n-generated i.e. I = i xR, I is a direct
summand of a n-generated essential right ( projective) ideal. =l
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Proof. (1) Let K be a nilpotent ideal. The right annihilator r(K) of K is essential as
a left ideal, for if L is a non-zero left ideal then there is an integer i such that K‘L # 0 and
K*'L =0. Hence r(K) is essential as a right ideal since R is right duo. But K - r(K) =0.
Therefore K =0 because R is right non-singular. Thus R is semiprime. Suppose that
a*=0. Then (aR)*> c a*R = 0. Hence a =0. Thus R is reduced.

Let a e R. We have r(a) =eR for some idempotent e that is central by [3]. Since
aRNeR =0, we have aR + eR =(a + )R and a + ¢ is regular (i.e. not a zero divisor).
Hence aR + eR is essential. The elements of the form a + e as above are regular, and
every regular element c is of this form with ¢ =a +e, where a =c and e =0. Because
¢R 2 Rc for every regular element ¢, we know that R satisfies the right Ore condition with
respect to its regular elements. Thus R has a right classical quotient ring Q. In the above
notation we have aQ + eQ = Q. Let x be an element of Q. Then x = ac™! for some a, ¢ in
R with c regular. With e as above we have xQ = aQ and aQ + eQ = Q. It follows that Q is
von Neumann regular.

(2) Suppose I= Z x;R. Let r(x;)=e¢;R with e; central idempotents. Then e =
i=1

e, - - e, is a central idempotent and Je = 0. It follows that the sum I + eR is direct. In fact
eR =r(I) and I + R is essential. Also I + ¢eR is generated by the n elements x; + e, for if
an ideal contains x; + e it also contains (x; + ¢)e = e and hence also x;.

Proof of Theorem 1. Clearly we have (1)=>(2), (3). The implication (2)=> (1)
follows from Lemma 3(1), [12, Corollary 2] and [10, Corollary 2], and (3)=> (1) follows
from Lemma 3(1), [11, Lemma 12(b)] and [10, Corollary 2].

There exists a ring R such that all 2-generated right ideals are projective but R has a
nonflat 3-generated right ideal. (See Jgndrup [7, p. 434, Example]. This example was
found jointly with P. M. Cohn, as mentioned in {7].) Hence the implications (2) => (1) and
(2) > (3) in Theorem 1 are false if one drops the assumption that R is right duo.

We need the following proposition to prove Theorem 2. Again, we can not remove
the right duo hypothesis of R. For example, take R to be any simple noetherian
non-artinian domain such as the first Weyl algebra, I any nonzero proper right ideal;
then I°=1 but I is not generated by an idempotent. The question is more interesting
perhaps and more relevant for two-sided ideals, and an easy example is to take

R= [; 2;]; then R is prime noetherian hereditary; set I = [25 2;

idempotent two-sided ideal with zero annihilator so not generated by an idempotent.

]; then I is an

ProposITION 4. Let R be a right duo ring with a finitely generated idempotent ideal A.
Then A = eR for some idempotent e.

Proof. Let A= f} x;R. Because A2=A, we know that each x; € f} x;A. So we get
i=1 i=1

equations of the form

x(l—ay)+x.ap+. .. +x,a,,=0, 1)
X182 -+ x2(1 - 022) +... +x,,a2,, = 0, (2)
X1+ X80+ ...+ x"(]. - a,m) =(. (n)

https://doi.org/10.1017/50017089500009253 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500009253

ON RIGHT DUO P.P. RINGS 223

Since R is right duo, we have a,,(1 —a,,) = (1 — a,,)b,, for some b,, e R, in fact b,, € A.
Now (1) multiplied by (1 — a,,,) minus (n) multiplied by b,, gives

xl(l_b11)+be12+. .. +x,,_1b1,,,_1=0, (1),

with b;; € A. Similarly, we get
X1by +x,(1 = b))+ ... +x,_4b5,-1=0, )
Xib, 11t x2b, gt +x,4(1-b,_y,,)=0, (n—1)

with b; € A. Continue this until we get x;(1—u;)=0 with u; € A. Using the same
method, we have

x(1—u)=0  foralliwithy eA.

Since R is right duo and A= 3 xR, we have A(l—-u;)...(1—-u,)=0. Let
i=1

(1-uy)...(1—u,)=1—e with ee A. In particular e(1—e)=0 so that e=e% Also
A(1 —e)=0; so that A = Re = eR, since e is central by [3].

Proof of Theorem 2. 1f I is, in addition, essential, we shall show that [ is invertible.

By Lemma 3(1), R has a right classical quotient ring Q that is von Neumann regular,
and then IQ is a finitely generated essential right ideal of the regular ring Q. Hence
IQ =fQ for some idempotent f € Q. Because IQ is essential, it follows that IQ = Q.
Hence I contains a regular element of R. Also any right R-module homomorphism from [/
to R can be extended to a right O-homomorphism from IQ to Q, i.e. from Q to Q. Thus
we can identify Homg(I, R) with the set I* ={q e Q|ql cR}. Because I is finitely
generated projective, we have 1€ II*. Let d be a regular element of R. Since R is a duo
ring, we have dR = Rd; so Rd™'=d~'R. Hence dI* c R if and only if I*d = R. We know
that I contains a regular element c. Let I =x,R +. .. + x,R. We do not know that the x;
are regular. With r(x;) = e;R as usual, it is easy to show that each ce; + x; is regular and
that 1 is generated by c and the ce; + x;. Thus [ is generated by regular elements. We have
I*I c R, and then II* c R. Therefore II* = R, and then I*[ is an idempotent ideal of R.
With I=x,R+...+x,R, we get I*=Ry, +...+ Ry, for some y,. Each yx;eR; so
Ryx;R = yx;R. So I*1 is finitely generated by yx;. By Proposition 4, I*I =eR for some
idempotent e. But I*I contains I and so is essential. Therefore I*I =R. Hence I is
invertible and in particular [ is left projective.

Now let I be a finitely generated right projective ideal. By Lemma 3(2), I is a direct
summand of a finitely generated essential right projective ideal K, say I +J = K with I +J
direct. From above K is invertible and left projective. Hence I is left projective.

The next lemma is known, but it is included here since it is unavailable in the
literature.

LEMMA 5. Let M be a finitely generated module. If there is an exact sequence
0->N—>P—>M—0, where N is finitely generated and P is finitely related, then M is
finitely related.

Proof. Let f:F— P be an onto homomorphism, where F is a finitely generated free
module with Ker(f) finitely generated. Assume N <P and let g =f|;-1n). We have a
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commutative diagram 0 — fT'(N)——> F— M — 0

ool

0 —— N¢ > P » M > 0
with exact rows, where g is onto, and both N and Ker(g) = Ker(f) are finitely generated.
So f~Y(N) is finitely generated, and hence M is finitely related.

Let I and J be two ideals in a ring. We always have an exact sequence of bimodules
0—>INJSIBIE1+7-0,

where a(x) =(x, —x) and B((x, y)) = x +y. We shall use this fact without reference.
A ring R is called z.c. (zero commutative) if /(a) = r(a) for all a € R. A reduced ring
is z.c..

THEOREM 6. Let R be a z.c. duo ring. If every n-generated ideal is finitely related as a
right module then every n-generated ideal is finitely related as a left module.

Proof. The ideal generated by a subset X c R is denoted by (X). Let a € R. Since
l(a)=r(a) and R is duo, gl(a) is finitely generated if and only if r(a)g is finitely
generated. It follows that z(a) is finitely related if and only if (a) is finitely related. This
proves the case when n = 1.

Suppose n>1. Now let I=(a,,...,a,), and assume that I'=(ay,...,a,_,) is
finitely related as a left module. We shall show that gI is finitely related.

Since Iy is finitely related, the exact sequence of bimodules

0—-I'N(a,)—>1 ®(a,)—>1-0

implies that I’ N (a,) is finitely generated as a right module by Rotman [8, Corollary
3.63]. Therefore I' N (a,) is finitely generated as a left module, since R is duo. Now the
result follows from Lemma 5.

COROLLARY 7. A z.c. duo ring is right coherent if and only if it is left coherent.
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