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Abstract

We use the framework of multivariate regular variation to analyse the extremal behaviour
of preferential attachment models. To this end, we follow a directed linear preferen-
tial attachment model for a random, heavy-tailed number of steps in time and treat
the incoming edge count of all existing nodes as a random vector of random length.
By combining martingale properties, moment bounds and a Breiman type theorem we
show that the resulting quantity is multivariate regularly varying, both as a vector of
fixed length formed by the edge counts of a finite number of oldest nodes, and also as
a vector of random length viewed in sequence space. A Pólya urn representation allows
us to explicitly describe the extremal dependence between the degrees with the help
of Dirichlet distributions. As a by-product of our analysis we establish new results for
almost sure convergence of the edge counts in sequence space as the number of nodes
goes to infinity.
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1. Introduction

Preferential attachment random graphs, as initially introduced in [2, 7], have become preva-
lent models for the evolution of stochastic networks. The key feature of this class of models is
that the current number of edges of a node affects the probability of a new node connecting to
it. This underlying ‘rich get richer’-dynamic is well-known to lead to a heavy-tailed behaviour
in the resulting limit distribution of edge counts per node, as the number of nodes goes to infin-
ity. To make this notion of heavy tails more precise, think of a simple preferential attachment
model which consists at time n= 0 of a single node, labelled by 1, and a single directed edge
from this node to itself, i.e. a loop. Now, at each following point n= 1, 2, . . . in time, we add
a new node, labelled by n+ 1, to the graph and attach one directed edge from this new node
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2 A. JANSSEN AND M. ZIEGENBALG

to itself or another already existing node. This node to connect to is chosen at random, with a
probability that depends on the number of incoming edges per node. More precisely, moving
from time n to n+ 1 we create a new node that connects to the node with label i≤ n+ 2 with
the probability

pi(n):= degin
i (n)+ β∑n+2

k=1 ( degin
k (n)+ β)

, (1.1)

where degin
i (n), i= 1, . . . , n+ 2 stands for the in-degree of node i at time n, i.e. the number

of incoming edges, and β > 0 denotes a so-called offset parameter. In this model, the resulting
empirical in-degree distribution at time n, given by its probability mass function

i �→ pn(i):=
∑n+1

k=1 1{degin
k (n)=i}

n+ 1
, n ∈N, 1≤ i≤ n+ 1, (1.2)

can be shown to converge as n→∞ to a limiting probability mass function i �→ p(i), i ∈N,

such that there exists a constant c > 0 for which

lim
i→∞

p(i)

i−(2+β)
= c; (1.3)

see [6]. We refer to Chapter 8 in [33] for a concise overview of preferential attachment models,
covering both the motivation and a rigorous treatment of their asymptotic behaviour. For related
work on limit theorems for degree counts, see [13, 20, 25, 31, 36]. In particular, we would
like to point out Deijfen et al. [13] who introduce additional randomness in the model by
considering a preferential attachment model, where, in each time step, a random heavy-tailed
number of additional edges is drawn from the new vertex. With this paper we are following a
similar idea, but instead we will evaluate the model after a random number of nodes has been
added. More details of our model will be given below.

Equation (1.3) implies that the limiting probability mass function of the in-degrees decays
like a power function. In network science, this property of a random graph is typically referred
to as ‘scale free’ and it is often pointed out that a similar power-law behaviour is visible in the
empirical degree distributions of real life networks; see [35] for a recent overview on the topic
or see the KONECT database [22] for an abundance of real life examples.

One way to illustrate this phenomenon in a data set is by looking at the empirical quantile
function of the in-degrees of an observed network. Figures 1 and 2 show so-called Zipf plots in
the form of the ordered observations of in-degrees on a log–log scale (where rank 1 corresponds
to the largest observation), for both a real data set and a simulated realisation of a preferential
attachment model. The power-law behaviour manifests itself in a clear linear trend in the largest
(and for the preferential attachment model, indeed all) observations.

However, this kind of asymptotic for the largest observations may not be sufficient to
describe the relevant aspects of the extremal behaviour of a preferential attachment model,
due to two shortcomings:

• Real networks are often evaluated after a random number of nodes have been added to
them. For example, if a social network is evaluated at a given date, a random number of
participants will have joined it by then. Now, the magnitude of an extremal event, such
as the size of the largest degree, primarily depends on the number of participants, and
so the distribution of largest degrees depends crucially on the random number of nodes
observed.
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Multivariate regular variation of preferential attachment models 3

FIGURE 1. Zipf plot for in-degrees in the network of links between German Wikipedia articles; see [22],
http://konect.cc/networks/wikipedia_link_de/.

• Neither the Zipf plot nor the asymptotic (1.3) provide any information about which nodes
will eventually have the largest in-degree. Typically these are the oldest ones, but the
exact order of the in-degrees is random and the individual magnitudes show an intricate
dependence structure.

As a more concrete example, the asymptotic (1.3) is not sufficient to give an estimate for
the probability that, say, the sum of the in-degrees of the four oldest nodes exceeds a certain
high threshold and that these four in-degrees are in descending order.

We will come back to this question in our Example 2 below and will more generally provide
an asymptotic analysis which allows us to address the two aforementioned shortcomings for
a common class of preferential attachment models by using the framework of multivariate
regular variation. To this end, we study a dynamic which is a generalisation of the two models
analysed in [27], i.e. linear directed preferential attachment models in which a new node creates
a fixed number of l ∈N outgoing edges, and where we allow for an arbitrary offset parameter
β ≥ 0 as in (1.1). We then follow our network for a random number of steps, and assume
that this number has a heavy-tailed distribution. It will turn out that both the index of regular
variation of this heavy-tailed distribution and the parameters β and l of the network dynamic
will influence the extremal behaviour of the in-degree vector.

As tools for our analysis, we extend approaches from [24, 27] to our more flexible class of
models and combine them with a generalisation of a Breiman type result from [37] in order to
derive the limiting quantities for the asymptotic behaviour of the network.

https://doi.org/10.1017/apr.2024.73 Published online by Cambridge University Press

http://konect.cc/networks/wikipedia_link_de/
https://doi.org/10.1017/apr.2024.73


4 A. JANSSEN AND M. ZIEGENBALG

FIGURE 2. A Zipf plot for in-degrees of a simulated preferential attachment model after 100 000 time
steps starting from one initial node with offset parameter β = 1. For nodes with large degrees (low rank)
it shows strong similarities to the real life network from Figure 1.

The article is structured as follows. In Section 2 we introduce our model and make a con-
nection to Pólya urns which allow us to apply martingale methods in order to derive an almost
sure limit of mixed powers of finitely many in-degrees as the number of nodes goes to infin-
ity (Proposition 1). Next, the concept of regular variation in Banach spaces is introduced in
Section 3 along with a Breiman type result (Theorem 3) that allows us to transfer the regular
variation of the observed number of nodes to regular variation of the in-degree vector. We first
restrict the analysis to a finite stretch of the in-degree vector, i.e. we only analyse an arbitrary
but fixed number of oldest nodes in the network and derive its regular variation (Theorem 4
and Corollary 1). In order to explicitly describe the extremal dependence structure we deduce
the form of the so-called spectral measure. Again by making use of the Pólya urn representa-
tion and its limiting beta distributions, we can show that the spectral measure can be explicitly
described with the help of Dirichlet distributions (Theorem 5 and Corollary 2). Subsequently,
in Section 4, we extend our analysis to sequence space, which allows us for example to keep
track of the extremal behaviour of the maximum degree of our network (Corollary 3). As an
auxiliary result we first derive almost sure convergence, as the number of nodes tends to infin-
ity, of the in-degree sequence in sequence space (Proposition 2). Finally, we arrive at a regular
variation result in sequence space (Theorem 6). Longer proofs and auxiliary results have been
deferred to Appendix A.
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Multivariate regular variation of preferential attachment models 5

2. Background on preferential attachment models

2.1. Model definitions

In this section we introduce our random graph model and give an equivalent formulation of
it that will turn out to be useful. Our model is a generalisation of the model considered in [27]
in that we allow for an arbitrary offset parameter β ≥ 0 in the linear preferential attachment
function.

2.1.1. The preferential attachment random graph Our object of interest is a graph G(n), n ∈
N0, randomly evolving in a discrete time setting and growing by one vertex in each step from
which a fixed amount l ∈N of edges originate. As per usual, a graph is defined as the tuple
G(n)= (V(n), E(n)) of its set of vertices and its set of edges. With N(0) we denote the initial
number of vertices and consequently with N(n)=N(0)+ n the number at time n. We will
simply number these vertices in their order of appearance, so V(n)= {1, . . . , N(0), N(0)+
1, . . . , N(0)+ n}, where the concrete numbering of the initial N(0) vertices is of no interest.
For the edges, we assume them to be directed and from now on we will only consider the in-
degrees degin

k (n), k ∈N(n), of the vertex k at time n (as the out-degree is not random). If vertex
k does not yet exist at time n, we set degin

k (n)= 0. Finally, we want to introduce weights Dk(n)
which will determine the probability of a vertex k to get a new edge attached to it at time n. We
deal with linear preferential attachment models and so let f :N0→R≥0 be an affine function
with f (x)= αx+ β, α, β ≥ 0 and apply it to the (random) in-degrees: Dk(n):= f ( degin

k (n)). As
the aforementioned probability shall be proportional to Dk(n), without loss of generality we can
restrict ourselves to weight functions f with α = 1, i.e. set Dk(n)= degin

k (n)+ β, k ∈N(n). By
choosing β = l the weight Dk(n), k > N(0) represents the total degree (in-degree+ out-degree)
of vertex k.

Next, we want to describe the random growth of the graph in more detail. At time 0
we start with an arbitrary but deterministic initial graph G(0) which is finite, meaning that
|V(0)| + |E(0)|<∞. When transitioning from time n to n+ 1 a new vertex is added to the
graph establishing a fixed number l ∈N of edges to already existing vertices in two possible
ways. The corresponding figures illustrate as an example how node 4 is added to an exist-
ing graph consisting of nodes 1, 2, 3 and edges (solid arrows) in each of the two models.
Dashed-dotted arrows show all possibilities for creating a new edge with the corresponding
probabilities. We consider two different models.

Model 0 (no loops): The first model does not allow for loops, i.e. an edge from a vertex to
itself. We sequentially add the l edges, immediately updating the weights of the corresponding
vertex. For an i ∈ {1, . . . , l} let K1, . . . , Ki−1 be the vertices chosen for the first i− 1 edges.
The probability to attach the ith edge to vertex k ∈ {1, . . . , N(n)} is then

Dk(n)+∑i−1
j=1 1{Kj=k}

(i− 1)+∑N(n)
i=1 Di(n)

,

which is the proportion of the weight of k to the total sum of weights at this particular moment.
Note that this formula does not consider the vertex N(n)+ 1 we are about to add.
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6 A. JANSSEN AND M. ZIEGENBALG

Model 1 (with loops): The second model allows for loops by a small modification of the
above probability formula. To this end, we set the weight of the new vertex DN(n)+1(n)= β.
Then, with the same notation as in Model 0, we allow the vertex k to range over {1, . . . , N(n)+
1} and use

Dk(n)+∑i−1
j=1 1{Kj=k}

(i− 1)+∑N(n)+1
i=1 Di(n)

as the probability for the ith edge to attach to it.

Thus, the difference between the two models is simply that in Model 1 the new vertex is
added to the graph before its edges are attached to already existing ones, whereas in Model 0
it is added afterwards.

2.1.2. An infinite-colour urn model In order to analyse the limiting behaviour of preferential
attachment models, it has proven to be beneficial to exploit a close relationship to generalised
Pólya urns that allows the transfer of methods and results from the latter setting to the former.
Both Pólya urns and preferential attachment models are random processes with reinforcement;
see [28] for an overview on the topic. Starting with [3], Pólya urns have been fruitfully used
to study the asymptotic behaviour of preferential attachment models; see also [4, 9, 15, 17,
27] and [34, Part II, Section 5] for related approaches. Our approach below is based on an
almost sure representation of one process by the other, given in Lemma 1, which allows us to
derive almost sure convergence statements, thereby complementing and extending results from
[24, 27].
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Urn model: The idea is that each colour k in an urn stands for a vertex of the random graph
and the number of balls of that colour is the corresponding weight Dk. Since the weights can
be any positive real number, we will also allow our urn to contain non-natural numbers of
balls. So let us consider an urn that at time 0 contains an arbitrary (natural) number of balls of
s different colours (representing the edges in the graph) plus β balls of each of those colours
(the weight functions offset). Then, in the time step n �→ n+ 1, we randomly draw a ball from
the urn, where the probability of a certain colour to be drawn, just like in a regular urn, is the
ratio of the number of balls of that colour to the total number of balls. Afterwards we return
the ball together with an additional one of the same colour. Furthermore, if n is a multiple of
l, we add β more balls of the new colour s+ n

l , a mechanic we will refer to as immigration.
So one can view l time steps in the urn model as one step for the graph. We will denote the
number of balls of colour k in the urn at time n by Ck(n).

We obtain the following lemma describing the aforementioned connection.

Lemma 1. Let j ∈ {0, 1}, l ∈N, β > 0 and in addition N(0) ∈N and (D1(0), . . . , DN(0)(0)) ∈
R

N(0)
≥0 . Then, there exists a probability space (�,A, P) which accommodates two stochastic

processes (Ci(n))i,n∈N and (Di(n))i,n∈N, such that

• (Di(n))i,n∈N has the same distribution as the random graph Model j described above
(where Di(n) denotes the weight of vertex i after n new vertices have been added) with
parameters l and β and a starting configuration given by N(0) vertices with weights
Dk(0), k= 1, . . . , N(0),

• (Ci(n))i,n∈N has the same distribution as the urn model described above (where Ci(n)
denotes the number of balls of colour i after n draws have been performed) with param-
eters l and β and a starting configuration given by s:=N(0)+ j colours, with Dk(0) balls
of colour k= 1, . . . , N(0) and, if j= 1, β balls of colour N(0)+ 1,

such that

(C1(n · l), . . . , Cr(n · l))= (D1(n), . . . , Dr(n))

for any n ∈N, r < s+ n.

Proof. Both the graph and the urn model for the first s+ n− 1 colours/vertices observed
after n steps in the respective model (where one step here means adding one ball of a certain
colour/one edge to a certain node) form a Markov chain, and it can be easily checked that
the transition probabilities for one step coincide. This ensures the existence of the underlying
probability space as stated; see [19, Section 1.1].

Remark 1. The urn model provides several advantages for analysing the random graph in our
context. First, it performs each step of adding an edge to the graph separately, i.e. in one
draw from the urn, and second, it ignores additional structure in the graph which we are not
interested in, such as the information related to which vertex is hanging on the other side of an
edge. Another benefit of the urn model is the elimination of the need to distinguish between
versions with and without loops when considering transition probabilities. We simply shift
the starting amount of colours in the urn by j, which corresponds either to adding the vertex
before attaching its edges or after. However, when we add the colour beforehand, it represents
a vertex that should not yet exist, which is why we exclude the case r= s+ n in Lemma 1. In
subsequent proofs, we will frequently alternate between the urn and graph models as permitted
by this lemma.
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8 A. JANSSEN AND M. ZIEGENBALG

A first observation we can make about the asymptotic behaviour of the individual
weights/ball counts is that they will all tend to infinity almost surely.

Lemma 2. Assume the graph/urn model of Lemma 1. Then, as n→∞, for arbitrary k the
weight Dk(n) of vertex k/ball count Ck(n) of colour k diverges to infinity almost surely.

Proof. We take the perspective of the urn model. Consider an arbitrary time n=m · l, m ∈
N, at which Ck(n) > 0, where such an n exists since we assumed β > 0. Let c denote the number
of balls of colours other than k at this time. Then the probability that no further ball of colour
k will be selected from here on is

∞∏
i=0

(
1− Ck(n)

c+ i+ β	 i
l


)
.

The statement follows if we can show that this probability is equal to 0 or equivalently that the
series

−
∞∑

i=0

ln
(

1− Ck(n)

c+ i+ β	 i
l


)

diverges to infinity. Since ln (1− x)∼−x as x→ 0, the said series converges if and only if
∞∑

i=0

Ck(n)

c+ i+ β	 i
l


does so. As this expression can be bounded from below by the divergent harmonic series, the
result follows.

2.2. The almost sure limit and its moments

By Lemma 2 all weights Dk(n) diverge to infinity as time progresses, raising the question
about the asymptotic behaviour of

Dr(n):= (D1(n), . . . , Dr(n)),

for an arbitrary but fixed length r ∈N after suitable rescaling when n→∞. The following
result shows the almost sure convergence and characterises the limiting vector in terms of its
mixed moments.

Proposition 1. Assume the graph/urn model of Lemma 1. Throughout this proposition the
times n or m are assumed to be greater than or equal to (r− s)∨ 0 (in the random graph
setting) or l times this number (in the urn setting). Define the generalised binomial coefficient(

x

y

)
:= �(x+ 1)

�(y+ 1)�(x− y+ 1)
∀x, y ∈R

and let k1, . . . , kr ∈R≥0, k:=∑r
i=1 ki.

(1) There exists a normalising sequence c(n, k)∼ nk·l/(l+β) such that, with respect to the
natural filtration Fn:= σ (Ck(m), m≤ n, k≤ s+ 	 n

l 
), the process

( 1

c(n, k)

r∏
i=1

(
Di(n)+ ki − 1

ki

)
,Fn·l

)
n

(2.1)

is a positive martingale.
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(2) In particular, the above process is almost surely convergent with limit

r∏
i=1

ζ
ki
i

�(ki + 1)
∈ L1(P), (2.2)

where ζi = limn→∞ n−l/(l+β)Di(n).

(3) The limit in (2) closes the martingale to the right, i.e.

E

( r∏
i=1

ζ
ki
i

�(ki + 1)

∣∣∣Fn·l
)
= 1

c(n, k)

r∏
i=1

(
Di(n)+ ki − 1

ki

)
for every n ∈N.

Most notably this means (with c(n, 0)= 1)

E

( r∏
i=1

ζ
ki
i

)
=

r∏
i=1

[
�(ki + 1) · c((i− s)∨ 0, k1 + . . .+ ki−1)

c((i− s)∨ 0, k1 + . . .+ ki)

·
{(Di(0)+ki−1

ki

)
if i≤N(0)(

β+ki−1
ki

)
if i > N(0)

]
(2.3)

The proof of this proposition is deferred to Appendix A.1.

3. Regular variation of the finite-dimensional weight vector

The starting point for the asymptotic analysis in Section 2.2 was to let the time index n
go to infinity and derive properties of the almost sure limit of the weight vector after proper,
time-dependent standardisation. In this section, we will take a different approach by focusing
on the random vector

Dr(N):= (D1(N), . . . , Dr(N)), (3.1)

of the weights of the oldest r nodes (including the ones already existing at time 0) evaluated
at a random time N (where we set Dk(N)= 0 if node 1≤ k≤ r does not yet exist at time N)
and how the extremes of this random vector can be described. We can think of N being the
random number of steps that our network has already gone through at the time of observation.
The extremal behaviour of Dr(N) will thus both depend on the value of N and the network
dynamics. In order to further analyse the behaviour, we first introduce a suitable framework.

3.1. Background on multivariate regular variation

When dealing with extremes of random vectors X we typically deem an outcome extreme
if its norm ||X|| exceeds a high threshold and we seek a stabilising behaviour after suitable
normalisation if the threshold goes to infinity. This leads to the definition of multivariate regular
variation, where the concept can be formalised in several slightly different ways. While the
original definition was based on vague convergence, see [12, 30], we will employ the more
flexible concept of M-convergence, see [16, 21, 23], which will allow us to extend our results
to the sequence space in Section 4.

Definition 1. Let (B, || · ||) be a separable Banach space and set B∗:= B \ {0}. Write B(B∗) for
the Borel σ -algebra on B∗ and let M(B∗) denote the space of measures on B(B∗) which are
finite on sets bounded away from 0, i.e. sets A such that infa∈A ||a||> 0. Furthermore, write
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10 A. JANSSEN AND M. ZIEGENBALG

C(B∗) for the set of all non-negative, bounded and continuous functions f on B∗ for which there
exists an ε > 0 such that f vanishes on Bε(0):= {b ∈ B:‖b‖< ε}.

We say a random variable X with values in B is multivariate regularly varying in B∗ if there
exists a non-trivial measure μ ∈M(B∗), also called the limit measure, such that

P(X/t ∈ ·)
P(||X||> t)

t→∞→ μ( · ) in M(B∗), (3.2)

where

μt→μ in M(B∗) ⇔ μt(f ):=
∫

f dμt→
∫

f dμ= :μ(f ) ∀f ∈ C(B∗). (3.3)

The mode of convergence defined in (3.3) is called M-convergence.

Remark 2. Definition 1 implies that, for any multivariate regularly varying X on B \ {0}, the
random variable ||X|| is (univariate) regularly varying on R>0 with some index α, meaning
that

lim
t→∞

P(||X||> λt)

P(||X||> t)
= λ−α ∀ λ > 0.

For the remainder of this Section 3, we will focus on the special case B=R
n which also

justifies the naming of multivariate regular variation. However, in preparation for Section 4,
where we will consider the weight sequence as a whole, we will need to use the more general
concept of a separable Banach space. This means that the choice of the norm matters in general
(how much so, we will see in Section 4), while in R

n, at least for qualitative considerations, it
does not.

The limit measure μ has a certain structure implied by the multiplicative standardisation
used in (3.2).

Theorem 1. (Theorem 3.1 in [16].) Let X be a multivariate regularly varying random variable
with limit measure μ. Then there exists an α > 0 such that for all λ > 0 and A ∈B(B∗) we have

μ(λA)= λ−αμ(A).

We call α the index of regular variation or tail index. To read α directly from the limit
measure one may find the second of the following alternative characterisations of multivariate
regular variation useful.

Theorem 2. (Corollary 4.4 in [23].) Let X be a random variable in a separable Banach space
B. Each of the following statements is equivalent to X being multivariate regularly varying
with index α.

(a) There exist a non-trivial measure μ and an increasing function b(t) such that

tP(X/b(t) ∈ ·) t→∞→ μ in M(B∗) and
b(λt)

b(t)
t→∞→ λ

1
α ∀λ > 0.

(b) There exists a probability measure S on the unit sphere S||·||:= {x ∈ B:||x|| = 1}, also
called the spectral measure, such that

P(X/t ∈ ·)
P(||X||> t)

t→∞→ (να ⊗ S) ◦ h−1 in M(B∗),

https://doi.org/10.1017/apr.2024.73 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.73


Multivariate regular variation of preferential attachment models 11

where να is a measure on R>0 determined by its values on the right-unbounded inter-
vals να(t,∞):= t−α and h:R>0 × S||·|| → B with h(x, y)= x · y is the polar coordinate
transformation.

Note that, despite the suggesting notation here, limit measures coming from different nor-
malising functions b(t) may differ up to a multiplicative factor. To obtain the limit measure
from (3.2) in Definition 1 one may choose the normalising function b(t):= F←||X||(1− t−1),
where F←||X||(u):= inf{x ∈R:P(||X|| ≤ x)≥ u} stands for the generalised inverse of the distri-
bution function of ||X||.

3.2. Main result

In this section we will start with our analysis of the asymptotic behaviour of the weight
vector in the framework of multivariate regular variation. To this end, consider first for fixed
n, r ∈N the random vector Dr(n)= (D1(n), . . . , Dr(n)), where we set Dk(n)= 0 if k > N(0)+
n. One immediately finds a deterministic upper bound for the �1-norm of the vector in

||Dr(n)||1 ≤ ||Dr(0)||1 + n · (l+ β),

which in view of Remark 2 rules out multivariate regular variation of Dr(n). We thus need
the number of nodes in the system to be random in order to witness heavy-tailed behaviour
of the weight vector. Viewing the number of nodes or, equivalently, the number of completed
steps in the evolution of a network as random is also reasonable from a modelling perspective.
We typically do not observe a network after an a priori known number of steps, especially
if new nodes are added according to some random arrival process instead of regularly over
time. The results in Section 2.2 imply that the number of nodes is the driving factor behind an
extremal behaviour of node weights. Our approach is thus to assume a heavy-tailed behaviour
of N, which we choose to be (univariate) regularly varying, and interpret very large real life
networks as the extremal realisations of N. Many typical regularly varying distributions are
continuous, such as the Pareto or Student-t distributions. However, if we round any regularly
varying random variable Y to 	Y
, the result remains regularly varying, leading to a wide
variety of possible distributions for N ∈N0.

Now, an often observed principle in extreme value theory is derived from Breiman’s lemma
and applies in settings in which, roughly speaking, a system consists of a heavy-tailed compo-
nent and a light-tailed one. Then, the heavy-tailed component will typically drive the extremal
behaviour of the system and determine its index of regular variation, while the light-tailed one
may well have an impact on the extremal dependence, in terms of the form of the spectral
measure. It turns out that in our case a similar Breiman result, more precisely an extension of
Theorem 3 in [37] adapted to Banach space-valued processes, applies as well.

Theorem 3. Let (Xt)t∈R≥0 be an at least one-sidedly continuous stochastic process with values
in a separable Banach space (B, || · ||) and let T be a positive random variable, such that the
following conditions are satisfied.

(1) T is regularly varying with index α > 0, i.e. for some scaling function b(t) we have

t · P
( T

b(t)
> λ

)
t→∞→ λ−α = να((λ,∞)) ∀λ > 0.

(2) (Xt) and T are independent, i.e. σ (T)⊥ σ (Xt, t≥ 0).

(3) Xt converges to some X∞ ∈ B∗ almost surely as t→∞.
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12 A. JANSSEN AND M. ZIEGENBALG

(4) For some α′ > α, the following moment condition holds:

sup
t≥0

E
(||Xt||α′

)
<∞.

Then T · XT is multivariate regularly varying in B∗ with index α and

tP
(T · XT

b(t)
∈ ·

)
t→∞→ [να ⊗ P(X∞ ∈ ·)] ◦ h̃−1 in M(B∗), (3.4)

where h̃:R>0 × B→ B, h̃(x, y)= x · y.
The proof of this theorem is deferred to Appendix A.2.
Using this we can now state and prove our findings.

Theorem 4. Consider a preferential attachment random graph with the notation as intro-
duced in the last sections. In particular denote with l and β the number of edges added with
each new vertex and the weight functions offset, respectively. For fixed n, r ∈N, let Dr(n):=
(D1(n), . . . , Dr(n)) be the corresponding weight vector and let N be a positive integer-valued
random variable. If the assumptions

(1) N and (Dr(n))n∈N are independent and

(2) N is regularly varying with index α > 0

are satisfied, then Dr(N) is multivariate regularly varying with index α · l+β
l for all r ∈N.

Proof. In order to apply Theorem 3 consider the process (Xt),

Xt:= 0, t < 1, Xt:= 1

t
·Dr(

⌈
t

l+β
l
⌉

), t≥ 1,

and the random variable T with

T:=N
l

l+β .

Then T · XT =Dr(N). Therefore, all we need to do is to check the conditions from Theorem 3
and determine the index of regular variation.

Conditions (1) and (2): The independence follows immediately from assumption 1. As for
the regular variation we consider the equivalent formulation of assumption 2,

P(N > xλ)

P(N > x)
→ λ−α, x→∞,

which implies

P(T > xλ)

P(T > x)
= P(N > x(l+β)/lλ(l+β)/l)

P(N > x(l+β)/l)
→ λ−α· l+β

l , x→∞,

i.e. T is regularly varying with index α · l+β
l .

Condition (3): After the transformation t′:= tl/(l+β) we apply Lemma 1 to

Xt′ = 1

tl/(l+β)
Dr(�t�)=

(�t�
t

) l
l+β 1

�t�l/(l+β)
Dr(�t�), t≥ 1,
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and the almost sure convergence follows.
Condition (4): Because of the definition of (Xt) we will only consider t≥ 1 and we set again

t′:= t
l

l+β . For q ∈N we have by Lemma 1 and the moment bounds from Lemma 7 from the
Appendix that

E(||Xt′ ||q1)= 1

tql/(l+β)
E([D1(�t�)+ . . .+Dr(�t�)]q)

= 1

tql/(l+β)
E([C1(l · �t�)+ . . .+Cr(l · �t�)]q)

≤C · �t�
ql/(l+β)

tql/(l+β)
≤C · 2 ql

l+β

for some C > 0, which completes the verification of the conditions of Theorem 3.
For the actual in-degree vector without the weight functions offset, we obtain the following

corollary.

Corollary 1. Under the same assumptions as in Theorem 4, the vector Dr(N)− β is multivari-
ate regularly varying with the same index of regular variation and the same limit measure as
Dr(N).

Proof. This is a consequence of Lemma 3.12 from [18].

3.3. Characterisation of the spectral measure

Having verified the multivariate regular variation of the vector Dr(N), the natural next step is
to characterise its spectral measure S. Over the next few lemmas we shall once more switch into
the urn perspective for this purpose. Because of the close relation to Pólya urns the following
beta and beta-related distributions will come up, which we repeat here for convenience and
since there exist different parameterisations in the literature.

Definition 2

(1) A random variable on [0, 1] is said to follow a beta distribution Beta(a, b), with
parameters a, b > 0, if it has a density function

f (x)= 1

B(a, b)
xa−1(1− x)b−1 · 1[0,1](x),

where B(a, b)= �(a)�(b)
�(a+b) is the beta function.

(2) A random vector with values in the standard (r− 1)-simplex in R
r≥0, i.e. the set

�r−1:= {x= (x1, . . . , xr) ∈Rr≥0 : x1 + . . .+ xr = 1}, is said to follow a Dirichlet dis-
tribution Dir(a1, . . . , ar) with parameters a1, . . . , ar > 0 if it has a density function

f (x)= 1

B(a1, . . . , ar)

r∏
i=1

xai−1
i · 1�r−1 (x),

where B(a1, . . . , ar):= �(a1)···�(ar)
�(a1+...+ar) is the multivariate beta function.

(3) A random vector with values in the standard (r− 1)-simplex in R
r≥0 is said to fol-

low a generalised Dirichlet distribution GDir(a1, b1, . . . , ar−1, br−1) with parameters
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14 A. JANSSEN AND M. ZIEGENBALG

a1, b1, . . . , ar−1, br−1 > 0 if it has a density function

f (x)= 1∏r−1
i=1 B(ai, bi)

xbr−1−1
r

r−1∏
i=1

(
xai−1

i

( r∑
j=i

xj

)bi−1−(ai+bi)) · 1�r−1 (x),

where b0 is arbitrary.

Remark 3. The generalised Dirichlet distribution boils down to the standard version if its
parameters satisfy bi−1 = ai + bi. Its density function then depends only on the parameters
a1, . . . , ar−1 and br−1 which can be viewed as the parameters a1, . . . , ar of the standard
Dirichlet distribution. These two distributions are also connected to the beta distribution
through a stick breaking experiment, in which a random vector is constructed by breaking
independent, beta-distributed fractions of a unit length stick for a fixed number of times, and
the lengths of the resulting pieces form the components of the random vector. In general,
this approach leads to a generalised Dirichlet distribution with parameters equal to those of the
beta-distributed fractions in the order in which they were broken off (see [10]). To obtain a stan-
dard Dirichlet vector, the beta distributions must satisfy the parameter constraints mentioned
above.

We begin with a well-known result for traditional multi-colour Pólya urns, i.e. our urn model
but without immigration. The proof can be found in [5].

Lemma 3. Consider an urn with balls of r ∈N different colours and starting amounts ar =
(a1, . . . , ar) ∈Rr

>0. Let (X(n))n∈N be the sequence of colours drawn in each time step by fol-
lowing a traditional multi-colour Pólya urn scheme, where we add one ball of the drawn colour
in each step. Then, for each colour i, the proportions of ball counts

ai +∑n
k=1 1{i}(X(k))∑r
j=1 aj + n

, i= 1, . . . , r

converge, for n→∞, almost surely to some random variable Yi such that

Yr:= (Y1, . . . , Yr)
d=Dir(a1, . . . , ar).

Notation 1. In order to describe the spectral measure it is convenient to look at the projection
of the limiting vector from Proposition 1(2), i.e.

ζ r:= (ζ1, . . . , ζr)= ( lim
n→∞ n−l/(l+β)Di(n))1≤i≤r,

on the �1-unit sphere along with some derived proportions. We are specifically interested in
two orderings of this vector: forwards,

Sr:= (S1, . . . , Sr):= (ζ1, . . . , ζr)/(ζ1 + . . .+ ζr), with

Bk:= Sk

Sk + . . .+ Sr
= ζk

ζk + . . .+ ζr
, 1≤ k≤ r,

and backwards,

Sr↓ = (Sr, . . . , S1), with B↓k := Sk

S1 + . . .+ Sk
= ζk

ζ1 + . . .+ ζk
, 1≤ k≤ r.
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In order to apply Lemma 3 to our problem we need to observe that once all colours we want
to consider are present in the urn (which is at time nr

0 = l(r− s)∨ 0), these colours, considered
separately from the rest of the urn, will behave just like they would in a traditional multi-colour
Pólya urn. We thus obtain the following mixture distribution for Sr.

Theorem 5. Let r ∈N, Cr(n):= (C1(n), . . . , Cr(n)), n ∈N, be the vector of the first r colours
in the urn model after n steps with s initial colours from Lemma 1 and let Sr be, as in Notation
1, the �1-projection of the limiting vector in the corresponding random graph model.

(1) The limiting vector Sr follows a mixture of Dirichlet distributions, i.e.

Sr d=
∑

c ∈Rr≥0

P(Cr(nr
0)= c) ·Dir(c1, . . . , cr).

(2) For the vector obtained by inverting the order of components in Sr we additionally have

Sr↓
d=GDir(ar, br, . . . , a2, b2),

where

(ak, bk)=
{

(Ck(0),
∑k−1

i=1 Ci(0)) if 2≤ k≤ s,

(β,
∑s

i=1 Ci(0)+ (l+ β)(k− 1− s)+ l) if k > s.

The proof relies on the following lemma.

Lemma 4. Let Bk, B↓k , 1≤ k≤ r, be as in Notation 1. We have:

(1) B↓1 ≡ 1, B↓k
d=
{

Beta(Ck(0),
∑k−1

i=1 Ci(0)) if 2≤ k≤ s,

Beta(β,
∑s

i=1 Ci(0)+ (l+ β)(k− 1− s)+ l) if k > s;

(2) the B↓1 , . . . , B↓r are independent;

(3) both (B1, . . . , Br) and (B↓1 , . . . , B↓r ) are independent of ζ1 + . . .+ ζr.

The proof of this lemma is deferred to Appendix A.4.
Proof of Theorem 5.

(1) We start by conditioning the urn model on its composition at time nr
0, which is how the

mixture distributions in the statement arise. Given that Cr(nr
0)= (c1, . . . , cr) ∈Rr≥0, let

ti be the random time where for the ith time a ball from one of the colours 1 to r is
chosen. At these times the vector of ratios of balls of each colour to the total number
of balls with colours 1 to r behaves just like in a traditional multi-colour Pólya urn
and therefore, by Lemma 3, converges almost surely to a Dirichlet distribution with
c1, . . . , cr as parameters. At the same time, however, it converges (conditionally on
Cr(nr

0)= (c1, . . . , cr)) to Sr, and so the statement follows.

(2) We write

Sr↓ =
(

B↓r , (1− B↓r )B↓r−1, . . . ,

(
r∏

i=2

(1− B↓i )

)
B↓1

)
,

and since, by Lemma 4, the B↓i are independent and have beta distributions, we can apply
Remark 3 to arrive at the generalised Dirichlet distribution with the given parameters.
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16 A. JANSSEN AND M. ZIEGENBALG

With these tools, we are now equipped to characterise the spectral measure.

Corollary 2. The spectral measure of regular variation for the random vectors (D1(N),
. . . , Dr(N)) and (Dr(N), . . . , D1(N)), with respect to the norm || · ||1, coincides with the
distribution of Sr and Sr↓, respectively, from Theorem 5.

Proof. We restrict ourselves to the forwards case, i.e. focus on (D1(N), . . . , Dr(N))=
Dr(N). By (3.4) for the limit measure μ provided in Theorem 3 and with X∞ given by ζ r

we get

μ= (να ⊗ P(ζ r ∈ ·)) ◦ h̃−1,

with h̃:R>0 ×R
r≥0→R

r≥0, h̃(x, y)= x · y and ζ r = (ζ1, . . . , ζr). On the other hand, by
Theorem 2(b) the corresponding spectral measure S(A), for an S-continuity Borel set A⊂ S‖·‖,
is given by

S(A)= lim
t→∞

P

(
Dr(N)
‖(Dr(N)‖1 ∈ A, ‖(Dr(N)‖1 > t

)
P(‖(Dr(N)‖1 > t)

= μ({x ∈Rr≥0:‖x‖1 > 1, x/‖x‖1 ∈ A})
μ({x ∈Rr≥0:‖x‖1 > 1}) .

Now,

μ({x ∈Rr:‖x‖1 > 1, x/‖x‖1 ∈ A}
=

∫
R

r≥0

∫
R>0

1{x·‖y‖1>1}1{ y
‖y‖1 ∈A} να(dx) P(ζ r ∈ dy)

=
∫
R

r≥0

‖y‖α11{ y
‖y‖1 ∈A} P(ζ r ∈ dy)

=E(‖ζ r‖α1 ) · P
( ζ r

‖ζ r‖1 ∈ A
)
,

where the last equality follows from the independence of ‖ζ r‖1 = ζ1 + . . .+ ζr and ζ r

‖ζ r‖1 =
f (B1, . . . , Br) (statement (3) in Lemma 4), with f = (f1, . . . , fr) given by

fi(B1, . . . , Br)= Bi

i−1∏
j=1

(1− Bj), i= 1, . . . , r.

Going back to determining S, we thus get

S(A)= E(‖ζ r‖α1 ) · P( ζ r

‖ζ r‖1 ∈ A)

E(‖ζ r‖α1 )
= P

( (ζ1, . . . , ζr)

ζ1 + . . .+ ζr
∈ A

)
= P(Sr ∈ A),

and the statement follows.

We conclude this section with an example that demonstrates how the previous results can be
applied to approximate the probabilities of extremal events, starting with a general approach
and followed by a specific numerical example.

Example 1. We can use the limit/spectral measure to approximate conditional probabilities
given large exceedances of the weight vector. A simple special case is to condition on
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{‖Dr(N)‖1 > t} for some large t. Let A be a set in B(Rr≥0 \ {0}) bounded away from 0 and
with μ(∂A)= 0. Then we have, using Theorem 2(b) (and the polar coordinate function h as
defined there),

P(Dr(N) ∈ tA | ‖Dr(N)‖1 > t)= P(Dr(N)/t ∈ A∩ {x:‖x‖1 > 1})
P(‖Dr(N)‖1 > t)

≈ (να ⊗ S) ◦ h−1(A∩ {x:‖x‖1 > 1}),
which does not depend on t anymore. So, as long as we know that our r vertices of inter-
est have received a large amount of edges, we can approximate above probability using the
limit/spectral measure.

Next, let us assume that A only contains information about the proportions of the
D1(N), . . . , Dr(N), i.e. that A is of the form {r · θ | (r, θ ) ∈ (1,∞)× A∗} with A∗ ∈B(S‖·‖1 );
then

P(Dr(N) ∈ tA | ‖Dr(N)‖1 ≥ t)≈ (να ⊗ S) ◦ h−1(A∩ {x:‖x‖1 > 1})
= (να ⊗ S) ◦ h−1({r · θ :r > 1, θ ∈ A∗})
= S(A∗).

So, given that the total weight of our vector Dr(N) is large, the proportions of its compo-
nents follow roughly a mixture of Dirichlet distributions or a reversed generalised Dirichlet
distribution.

Example 2. Following up on Example 1, let us consider a concrete extremal event. We want to
determine the probability that the first four vertices are extreme with respect to the || · ||1-norm,
while also being in descending order, i.e. with

A= {r · θ | (r, θ ) ∈ (1,∞)× A∗} for A∗:= {(x1, x2, x3, x4) ∈ S‖·‖1 | x1 ≥ x2 ≥ x3 ≥ x4}
we want to approximate

P(D4(N) ∈ tA, ||D4(N)||1 > t)= P(||D4(N)||1 > t) · P(D4(N) ∈ tA | ||D4(N)||1 > t).

The second factor can be approximated by the spectral measure as explained in Example 1.
For the first one, we get, using Theorem 3,

P(||D4(N)||1 > t)

P(Nl/(l+β) > t)
= u(t) · P

( ||D4(N)||1
b(u(t))

>
t

b(u(t))

)
t→∞→ E

(||ζ 4||α·
l+β

l
1

)
,

where u(t):= P(N
l

l+β > t)−1 and b:= u← is the generalised inverse of the monotone function u
with b(u(t))∼ t; see [11] B1.9 10. Overall, we obtain for large t,

P(D4(N) ∈ A, ||D4(N)||1 > t)≈ P(Nl/(l+β) > t) ·E(||ζ 4||α·
l+β

l
1

) · S(A∗). (3.5)

To get an impression of the quality of the approximation, we present the results of a small
simulation study. The random value of N in our simulations is given by 	Y
, where Y follows
a Pareto(α) distribution with α= 1, i.e. P(N ≥ k)= k−1, k ∈N. Table 1 shows values of the
above approximation (3.5) for different choices of model parameters l and β and threshold t,
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TABLE 1. Comparison of the left- and right-hand sides of (3.5) for several parameter constellations. The
left-hand side was approximated by empirical probabilities based on 107 realisations of the network.

l β t Empirical probability Approximation

1 1 150 0.00968% 0.00949%
3 1 500 0.06325% 0.06215%
3 3 500 0.01272% 0.01255%

where E
(||ζ 4||α·

l+β
l

1

)
follows from (2.3) and S(A∗) has been evaluated by numerical integration

with respect to the density of the generalised Dirichlet distribution. Since no closed expressions
exist for the true probabilities, we replace them by empirical probabilities derived from 107

realisations of the network.

4. Generalisation to sequence spaces

4.1. Motivation and framework

Example 2 has shown that the results developed in the previous section allow us to approx-
imate probabilities of extreme events—but with the restriction that those extreme events may
only depend on a fixed number r of the first nodes in the graph. For several natural applications
this approach is then not sufficient, as we would for example like to approximate probabilities
of events involving the maximum degree of all existing nodes. In this section, we will extend
our scope to include the asymptotic behaviour of the entire weight process rather than just its
first r vertices. We will thus again work in the framework of regular variation as in Section 3.1,
but with a suitably adjusted Banach space B for sequences. The regular variation of random
sequences has previously been studied in [32]. In order to find an appropriate B we start with
the space of all finite sequences:

c00:= {x= (xn)n∈N ∈RN | ∃N ∈N ∀k≥N:xk = 0}.
At any time n our weight process as well as the urn process can be represented as elements of
this space:

D(n):= (D1(n), . . . , DN(0)(n), DN(1)(n), . . . , DN(n)(n), 0, . . . ),

C(n):= (C1(n · l), . . . , Cs(n · l), Cs+1(n · l), . . . , Cs+n(n · l), 0, . . . ).

A crucial assumption in Theorem 3 is the almost sure convergence of the process and so we
set B equal to the completion of c00 with respect to a norm ‖ · ‖ on R

N, i.e.

B= c‖·‖:=
{
x ∈RN | ‖x‖<∞ and ∃ xn ∈ c00, n ∈N: lim

n→∞‖x− xn‖ = 0
}
.

In contrast to the previously studied finite-dimensional setting, different norms on sequence
spaces are no longer equivalent, which means that in order to study regular variation we have
to find a suitable norm ‖ · ‖ for our model, where we restrict ourselves to the �p-norms. Then,
by construction, B is a separable Banach space which allows us to employ the framework from
Section 3.1 again.
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4.2. The Breiman conditions in sequence space

Our goal is to establish a result similar to Theorem 4 again by virtue of Breiman’s lemma.
To this end, we need to check that conditions (3) and (4) of Theorem 3 are satisfied, which is
shown in the following proposition.

Proposition 2. Assume the graph/urn model of Lemma 1 and let

ζ := (ζi)i∈N =
(

lim
n→∞

Di(n)

nl/(l+β)

)
i∈N

,

cf. Proposition 1(2). Furthermore, let p ∈ [1,∞].

• If p >
l+β

l , then:

(1) ζ ∈ c||·||p almost surely since both

(a) ||ζ ||p <∞ almost surely and

(b)
D(n)

nl/(l+β)
→ ζ almost surely in c||·||p as n→∞;

(2) supnE

(∥∥∥ D(n)

nl/(l+β)

∥∥∥α

p

)
<∞ for every α > 0.

• If p <
l+β

l then:

(3)
D(n)

nl/(l+β)
�→ ζ almost surely in c||·||p as n→∞.

The proof of this proposition is deferred to Appendix A.5.

Remark 4. Proposition 2 generalises the convergence results of Theorem 2 in [27] from weak
to almost sure convergence and allows for general l and β.

4.3. Regular variation in sequence space

Theorem 6. Consider a preferential attachment random graph with the notation as introduced
in the last sections. Let D(n):= (D1(n), D2(n), . . . ) be the corresponding weight sequence at
time n ∈N and let N be a positive integer-valued random variable. Let p ∈ ( l+β

l ,∞] and || · ||
be a norm such that there exists some C > 0 with || · || ≤C|| · ||p. If the conditions

(1) N and (D(n))n are independent and

(2) N is regularly varying with index α > 0

are satisfied, then D(N) is multivariate regularly varying in c||·|| with index α · l+β
l .

Proof. Note first that our assumptions guarantee that the convergence results of
Proposition 2 hold analogously with the norm ‖ · ‖p replaced by ‖ · ‖. Thus, the assumptions
of Theorem 3 are met and the proof is completely analogous to the proof of Theorem 4.

This result finally allows us to derive (univariate) regular variation of the maximum degree
of a preferential attachment model.
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Corollary 3. Under the assumptions of Theorem 6 the maximum degree supi∈N Di(N) is
regularly varying with index α · l+β

l .

Proof. This follows from Theorem 6 applied to ‖ · ‖∞ and Remark 2.

5. Conclusion

In this article, we proposed a novel approach to modelling large networks with power-law
behaviour. Where previous limit results mainly focused on the limiting empirical degree dis-
tribution as the number of nodes goes to infinity, we provide a new perspective by stopping the
preferential attachment process after a heavy-tailed number of steps, allowing us to consider
the joint extremal behaviour of individual vertices. We proved multivariate regular variation
under several model specifications, including the initial edge count per node and the offset
parameter β, and analysed both the finite- and infinite-dimensional cases, where we identified
the index of regular variation and characterised the spectral measure. From the limit results, it
can be seen that the tail index of the individual nodes is influenced both by the tail index α of
the number of steps, as well as by the parameters β and l of the preferential attachment model.
In contrast, the extremal dependence structure depends on β and l, as well as the initial edge
count. Taken together, these results provide a better understanding of the origins of power-law
behaviour in random networks and enable us to estimate probabilities of extremal events.

Appendix A. Auxiliary results and deferred proofs

A.1. Proof of Proposition 1 and uniform integrability

For the proof of several lemmas and other auxiliary results we make use of a corollary to
Stirling’s formula, which can be found as Corollary 6.1.46 in [1] and reads as follows.

Lemma 5.

lim
n→∞ nb−a �(a+ n)

�(b+ n)
= 1 ∀a, b ∈R.

This allows us to estimate binomial coefficients by their respective powers and vice versa.

Lemma 6. Under the assumptions of Proposition 1, we have

r∏
i=1

Dki
i (n)

�(ki + 1)
∼

r∏
i=1

(
Di(n)+ ki − 1

ki

)
almost surely

and there exist constants C1, C2 > 0 independent of n such that almost surely

C1 ·
r∏

i=1

(
Di(n)+ ki − 1

ki

)
≤

r∏
i=1

Dki
i (n)≤C2 ·

r∏
i=1

(
Di(n)+ ki − 1

ki

)
. (A.1)

Proof. Remember from Lemma 2 that almost surely Di(n)→∞ as n→∞. Thus, by
Lemma 5, we can find, for each i= 1, . . . , r, constants 0 < Ci

1 < Ci
2 (depending on ki) such

that

Ci
1

(
Di(n)+ ki − 1

ki

)
=Ci

1
�(Di(n)+ ki)

�(ki + 1)�(Di(n))
≤ Dki

i (n)

�(ki + 1)
≤Ci

2

(
Di(n)+ ki − 1

ki

)
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holds for all n≥ (r− s)∨ 0. Combining those constants leads to (A.1).

Now to Proposition 1. The following proof adapts a martingale approach from [24]
(Theorem 2.1).

Proof of Proposition 1.

(1) We call the total ball count at time m in the corresponding urn model

Sm:= z+m+ β ·
⌊m

l

⌋
with z:=

N(0)∑
i=1

Ci(0)+ j · β.

Only one colour obtains a new ball at a time, so

E

( r∏
i=1

(
Ci(m+ 1)+ ki − 1

ki

)∣∣∣Fm

)

=
r∑

j=1

E

( r∏
i=1
i �=j

(
Ci(m)+ ki − 1

ki

)(
Cj(m)+ kj

kj

)
· 1{Cj(m+1)=Cj(m)+1}

∣∣∣Fm

)

+E

( r∏
i=1

(
Ci(m)+ ki − 1

ki

)
· 1⋂r

j=1{Cj(m+1)=Cj(m)}
∣∣∣Fm

)
,

and using the transition probabilities of the urn model this equals

r∑
j=1

r∏
i=1
i �=j

(
Ci(m)+ ki − 1

ki

)
·
(

Cj(m)+ kj − 1

kj

)
· Cj(m)+ kj

Cj(m)
· Cj(m)

Sm

+
r∏

i=1

(
Ci(m)+ ki − 1

ki

)
·
(

1−
r∑

j=1

Cj(m)

Sm

)

=
r∏

i=1

(
Ci(m)+ ki − 1

ki

)( r∑
j=1

Cj(m)+ kj

Sm
+ 1−

r∑
j=1

Cj(m)

Sm

)

=
r∏

i=1

(
Ci(m)+ ki − 1

ki

)
Sm + k

Sm
.

Now consider times m= n · l. These are the critical times when a new colour is migrated
into the urn (a new vertex is added to the graph). In between nothing of interest happens
and we can iterate the above calculation l times to obtain

E

( r∏
i=1

(
Ci((n+ 1) · l)+ ki − 1

ki

)∣∣∣Fn·l
)
=

r∏
i=1

(
C(n · l)+ ki − 1

ki

) l−1∏
i=0

Sn·l+i + k

Sn·l+i
.

In the next step we see that
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l−1∏
i=0

Sn·l+i + k

Sn·l+i
=

l−1∏
i=0

z+ n · l+ i+ β · n+ k

z+ n · l+ i+ β · n =
l−1∏
i=0

z+k+i
l+β
+ n

z+i
l+β
+ n

=
(l−1∏

i=0

�( z+k+i
l+β
+ n+ 1)

�( z+i
l+β
+ n+ 1)

)/(l−1∏
i=0

�( z+k+i
l+β
+ n)

�( z+i
l+β
+ n)

)
= :

c(n+ 1, k)

c(n, k)
,

and the martingale property follows. Lastly, we apply Lemma 5 to each factor of c(n,k)
to get

c(n, k)=
l−1∏
i=0

�( z+k+i
l+β
+ n)

�( z+i
l+β
+ n)

∼
l−1∏
i=0

nk/(l+β) = nk·l/(l+β). (A.2)

(2) Doob’s martingale convergence theorem (see Chapter XI.14 in [14]) guarantees the exis-
tence of an almost sure limit of the martingale given in (2.1) and that this limit is in
L1(P). Lemma 6 in combination with (A.2) then ensures the almost sure convergence
of the sequence n−kil/(l+β)Di(n)ki to a limit ζ

ki
i ∈ L1(P), and a further application of

Lemma 6 implies that the expression in (2.2) is indeed the limit of the process (2.1).

(3) Doob’s martingale convergence theorem (Chapter XI.14 in [14]) yields that (2.2) is
the right closure to the martingale (2.1) if the latter is uniformly integrable. To show
this uniform integrability we show that the process is L1+ε-bounded for any ε > 0. To
this end, set pi:= ki(1+ ε) and p:= k(1+ ε)= p1 + . . .+ pr. By Lemma 6 there exist
constants C1, C2 > 0 independent of n such that

[ 1

c(n, k)

r∏
i=1

(
Di(n)+ ki − 1

ki

)]1+ε ≤C1 ·
∏r

i=1 Dpi
i (n)

np·l/(l+β)

≤C2 · 1

c(n, p)

r∏
i=1

(
Di(n)+ pi − 1

pi

)
.

Since the right-hand side is a multiple of a martingale, it has bounded expectation and
the uniform integrability of (2.1), and thus the first part of (3), follows.
This now allows us to iteratively trace back the expectation of

∏r
i=1 ζ

ki
i to the times

at which colour i, 1≤ i≤ r, was first introduced to the urn, that is, ni
0:= l(i− s)∨ 0,

and the number of balls was still deterministic, namely either β if i > N(0) or Di(0) if
i≤N(0):

E

( r∏
i=1

ζ
ki
i

�(ki + 1)

)
=E

(
E

( r∏
i=1

ζ
ki
i

�(ki + 1)

∣∣∣Fnr
0

))

=E

( 1

c(nr
0/l, k1 + . . .+ kr)

r∏
i=1

(
Di(nr

0/l)+ ki − 1

ki

))
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= c(nr
0/l, k1 + . . .+ kr−1)

c(nr
0/l, k1 + . . .+ kr)

·
{(Dr(0)+kr−1

kr

)
if r≤N(0)(

β+kr−1
kr

)
if r > N(0)

·E
(
E

( 1

c(nr
0/l, k1 + . . .+ kr−1)

r−1∏
i=1

(
Di(nr

0/l)+ ki − 1

ki

)∣∣∣Fnr−1
0

))

=
r∏

i=2

c(ni
0/l, k1 + . . .+ ki−1)

c(ni
0/l, k1 + . . .+ ki)

· 1

c(n1
0/l, k1)

r∏
i=1

{(Di(0)+ki−1
ki

)
if i≤N(0),(

β+ki−1
ki

)
if i > N(0).

We end this section with a uniform integrability property that will turn out to be useful on
multiple occasions.

Corollary 4. Under the assumptions of and with the notation from Proposition 1 the process(
n−

k·l
l+β

∏r
i=1 Dki

i (n)
)

n is uniformly integrable.

Proof. This follows from the uniform integrability of the martingale (2.1) shown in
Proposition 1(1) and (3) together with Lemma 6.

A.2. Proof of Theorem 3

We adapt the proof from Theorem 3 in [37] to the case of a general separable Banach space.
By our additional assumption about the continuity of (Xt) we are able to straighten a previously
not properly addressed subtlety in the proof about the application of Egorov’s theorem.

Proof of Theorem 3. By a Portmanteau theorem for M-convergence, see Theorem 2.1 in
[23], it is sufficient to show

lim
t→∞ tEf

(XTT

b(t)

)
=

∫ ∞
0

Ef (X∞y) να(dy) <∞, (A.3)

for all non-negative, bounded and uniformly continuous functions f on B whose support is
bounded away from 0, i.e. there exists an ε0 > 0 such that f (x)= 0 for all x ∈ Bε0 (0). Without
loss of generality, we will assume that f is bounded by 1. In order to show (A.3), we write, for
η, M > 0,

∣∣∣tEf
(XTT

b(t)

)
−

∫ ∞
0

Ef (X∞y)να(dy)
∣∣∣

≤
∣∣∣tE(

f
(XTT

b(t)

)
1{M≥T/b(t)≥η}

)
−

∫ M

η

Ef (X∞y)να(dy)
∣∣∣

+ tE
(

f
(XTT

b(t)

)
1{T/b(t)<η}

)
+

∫ η

0
Ef (X∞y)να(dy)

+ tE
(

f
(XTT

b(t)

)
1{T/b(t)>M}

)
+

∫ ∞
M

Ef (X∞y)να(dy)

= :I1(t, η, M)+ I2(t, η)+ I3(t, M).

(i). We start by showing I1(t, η, M)→ 0, t→∞. To this end, first fix some ε > 0. By
Egorov’s theorem there exists a measurable set Aε with P(Ac

ε) < ε such that Xt→ X∞
for t→∞ uniformly on Aε . At this point we use the one-sided continuity of (Xt) as a
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sufficient condition to ensure the measurability of Aε . This allows us to bound I1(t, η, M)
separately on Aε and Ac

ε :

I1(t, η, M)≤ tE
(

f
(XTT

b(t)

)
1Ac

ε∩{M≥T/b(t)≥η}
)
+

∫ M

η

E

(
f (X∞y)1Ac

ε

)
να(dy)

+ tE
(∣∣∣f(XTT

b(t)

)
− f

(X∞T

b(t)

)∣∣∣1Aε∩{M≥T/b(t)≥η}
)

+
∣∣∣tE(

f
(X∞T

b(t)

)
1Aε∩{M≥T/b(t)≥η}

)
−

∫ M

η

E

(
f (X∞y)1Aε

)
να(dy)

∣∣∣
= :I1

a (t, η, M)+ I1
b (t, η, M)+ I1

c (t, η, M)+ I1
d (t, η, M).

Starting with I1
a (t, η, M), we use that Ac

ε ∈ σ (Xt, t≥ 0) which therefore is independent
of T:

lim sup
t→∞

I1
a (t, η, M)≤ lim sup

t→∞
tP

(
Ac

ε ∩
{ T

b(t)
≥ η

})
≤ ε · η−α .

Second,

I1
b (t, η, M)≤ P(Ac

ε)
∫ M

η

να(dy)≤ ε · (η−α −M−α).

For I1
c (t, η, M), we note that b(t)→∞ for t→∞, yielding an arbitrarily large lower

bound for T on the set {T/b(t)≥ η}. Then, intersecting with Aε we obtain that
b(t)−1T||XT − X∞|| · 1Aε∩{M≥T/b(t)≥η} uniformly tends to 0 and combining this with the
uniform continuity of f we find a c(t) with c(t)→ 0 for t→∞ such that, for t→∞,

I1
c (t, η, M)≤ c(t) · tP

(
Aε ∩

{
M ≥ T

b(t)
≥ η

})
≤ c(t) · tP

( T

b(t)
≥ η

)
→ 0.

Finally, for I1
d (t, η, M) we observe that

y �→ E(f (X∞y)1Aε )1[η,M](y)

is bounded and has support bounded away from 0. Even though it is not continuous in y,
a standard approximation argument by continuous functions combined with dominated
convergence gives

tE
(

f
(X∞T

b(t)

)
1Aε∩{M≥T/b(t)≥η}

)

=
∫ M

η

E(f (X∞y)1Aε )tPT/b(t)(dy)→
∫ M

η

E(f (X∞y)1Aε )να(dy)

for t→∞, where we used regular variation of T in combination with Fubini’s theorem,
as T is independent of X∞. Thus, Id(t, η, M)→ 0 for t→∞. From the above and since
we can choose ε > 0 arbitrarily small, we see that I1(t, η, M)→ 0, t→∞.

(ii). We split up I2(t, η) into

tE
(

f
(XTT

b(t)

)
1{T/b(t)<η}

)
+

∫ η

0
Ef (X∞y)να(dy)= :I2

a (t, η)+ I2
b (η).
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Then, using Markov’s inequality as well as the independence of (Xt)t≥0 and T , we arrive
at the upper bound

I2
a (t, η)≤ tP

(∥∥∥XTT

b(t)

∥∥∥ > ε0,
T

b(t)
< η

)

= tP
(∥∥∥XTT

b(t)
1{T/b(t)<η}

∥∥∥ > ε0

)
≤ ε−α′

0 tE
(∥∥∥XTT

b(t)
1{T/b(t)<η}

∥∥∥α′)
= ε−α′

0

∫
(0,η)

E||Xb(t)y||α′yα′ tP(T/b(t) ∈ dy)

≤ ε−α′
0 sup

t≥0
E||Xt||α′ tE

(( T

b(t)

)α′
1{T/b(t)<η}

)
.

By Karamata’s theorem applied to truncated moments of regularly varying random
variables, see Proposition 1.4.6 in [21], we get

tE
(( T

b(t)

)α′
1{T/b(t)<η}

)

= tP(T > b(t))
E

(
Tα′1{T<ηb(t)}

)
(b(t))α′P(T > b(t))

→ α

α′ − α
ηα′−α .

Thus, for t→∞, η→ 0, I2
a (t, η)→ 0.

In order to bound I2
b (η), we first note that E||X∞||β is finite for all α < β < α′ because

(||Xt||β )t is uniformly integrable (as supt E
[
(||Xt||β )

α′
β
]
<∞ and α′

β
> 1) and the Vitali conver-

gence theorem implies that ||Xt||β converges in L1 to ||X∞||β and so do the expected values.
Then, again by Markov’s inequality, we get∫ η

0
Ef (X∞y)να(dy)≤

∫ η

0
P(‖X∞‖> ε0/y)να(dy)

≤
∫ η

0
E
(‖X∞‖β)ε−β

0 yβνα(dy)

≤E
(‖X∞‖β)ε−β

0
α

β − α
ηβ−α .

Again, with η→ 0 we have shown that I2
b (η)→ 0 and therefore I2(t, η)→ 0, and also that the

right-hand side in (A.3) is finite, since
∫∞
η

Ef (X∞y)να(dy)≤ η−α .

(iii). Finally, regarding I3(t, M) we note that

lim sup
t→∞

I3(t, M)≤ lim sup
t→∞

tP(T > Mb(t))+
∫ ∞

M
να(dy)≤ 2M−α,

and so limM→∞ lim supt→∞ I3(t, M)= 0. This finishes the proof of (A.3).

Remark 5. One could do without the continuity assumption of (Xt) provided the measurability
of all sets in the proof is ensured. In particular, this refers to the Aε from Egorov’s theorem.
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A.3. Moment conditions The following statement extends Lemma 4.1 in [26] to arbitrary
values of β ≥ 0.

Lemma 7. Assume the urn model of Section 2.1.2, fix k ∈N and let

Uk(n):=C1(n)+ . . .+Ck(n)

denote the total number of balls of colours 1 to k at time n. Then for every q ∈N there exist
c, C > 0 such that, for all n ∈N0,

cnql/(l+β) <E(Uk(n)q) < Cnql/(l+β). (A.4)

Proof. Let k ∈N be fixed throughout this proof. Note first that Uk(n), n ∈N0, is deter-
ministic until there are at least k+ 1 different colours in the urn, i.e. for n≤ n0 with

n0:= l(k+ 1− s)∨ 0,

and set

np:= n0 + p, p ∈N.

It is then sufficient to show (A.4) for n= np, p ∈N, as for those finitely many n≤ n0 there exist
trivial bounds. Let hp =U(k+1)∨s(n0)+ p+ β	 p

l 
 be the (deterministic) total number of balls
at time np and define

Mp,q:=
q−1∏
i=0

(i+Uk(np)), p ∈N0, q ∈N. (A.5)

We start the proof by showing that

EMp,q =M0,q ·
p−1∏
i=0

(
1+ q

hi

)
. (A.6)

Given the value Uk(np−1), there are only two possible values for Uk(np), which are Uk(np−1)+
1 and Uk(np−1): either we draw a ball of colours 1 to k or we do not. Using this, we get

E(Mp,q|Uk(np−1))= Uk(np−1)

hp−1

q−1∏
i=0

(i+Uk(np−1)+ 1)+ hp−1 −Uk(np−1)

hp−1
Mp−1,q

= Uk(np−1)

hp−1

q∏
i=1

(i+Uk(np−1))+ hp−1 −Uk(np−1)

hp−1
Mp−1,q

= Uk(np−1)

hp−1

Mp−1,q(Uk(np−1)+ q)

Uk(np−1)
+ hp−1 −Uk(np−1)

hp−1
Mp−1,q

=Mp−1,q

(
1+ q

hp−1

)
.

By iterating this calculation p times, one obtains (A.6).
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Now, by definition of hp, p ∈N, we have

U(k+1)∨s(n0)+ p+ β
(p

l
− 1

)
≤ hp ≤U(k+1)∨s(n0)+ p+ β

p

l
.

Setting x:= l
l+β

and y:= (U(k+1)∨s(n0)− β) l
l+β

(which is non-negative as for each colour there
are at least β balls) for brevity, this is equivalent to

y+ p

x
≤ hp ≤ y+ p+ βx

x
. (A.7)

For the upper bound in (A.4) use (A.6) and (A.7) to get

EMp,q ≤M0,q ·
p−1∏
i=0

(
1+ qx

y+ i

)
=M0,q · �(y)

�(qx+ y)
· �(qx+ y+ p)

�(y+ p)
.

Thus, using Lemma 5, there exist C̃, C > 0 such that

EUk(np)q ≤EMp,q ≤M0,q · �(y)

�(qx+ y)
· �(qx+ y+ p)

�(y+ p)

≤ C̃(y+ p)qx < Cnqx
p =Cnql/(l+β)

p

for all p ∈N, proving the upper bound.
For the lower bound, use Jensen’s inequality, (A.6), (A.7), Lemma 5 and similar reasoning

as above to see that there exist c̃, c > 0 such that

EUk(np)q =EMq
p,1 ≥ (EMp,1)q

≥
⎛
⎝M0,1 ·

p−1∏
i=0

(
1+ x

y+ i+ βx

)⎞⎠
q

=Mq
0,1

(
�(y+ βx)

�(x+ y+ βx)

)q (
�(x+ y+ βx+ p)

�(y+ βx+ p)

)q

≥ c̃(y+ βx+ p)qx > cnqx
p = cnql/(l+β)

p ,

for all p ∈N, which finishes the proof.

A.4. Proof of Lemma 4

(1) We adapt the proof of Lemma 3.3 from [24]. By definition, B↓k = ζk/(ζ1 + . . .+ ζk) and
so the statement follows immediately for k= 1. Thus, keep k > 1 fixed in the following.
We disregard all colours in the urn model but 1 through k and further simplify the model.
To find the distribution of B↓k it is sufficient to view all balls of colours 1 to k− 1 as being
‘black’ and those of colour k as being ‘white’. At the time nk

0, when the last relevant
colour is added to the urn, the number wk of white and bk of black balls is deterministic
and given by

(wk, bk)=
{

(Ck(0),
∑k−1

i=1 Ci(0)) if 1 < k≤ s,

(β,
∑s

i=1 Ci(0)+ (l+ β)(k− 1− s)+ l) if k > s.
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Now at each time either the number of black and white balls does not change or a
new ball is added to one of them. Conditionally on the latter, the transition probabil-
ities are the same as in a traditional Pólya urn and therefore Lemma 3 yields that the
vector (B↓k , 1− B↓k ) has a Dirichlet distribution, whose marginals are known to be beta
distributions with the given parameters.

(2) We provide an alternative construction for Cr(n) to help us derive the desired indepen-
dence properties. We start with the usual setup of an urn with s different colours and
starting amounts C0(0), . . . , Cs(0). From there on, instead of picking a ball directly, in
each time step we flip a sequence of independent Bernoulli coins, determined below,
until we observe heads for the first time. Then we add a new ball of one colour, based on
which flip resulted in heads, and proceed to the next time step. The individual coins may
have different success probabilities, i.e. probabilities of showing heads. More precisely,
for the ball to be selected at time n, let m be the currently largest numbered colour in the
urn. If m > r the first flip in a time step always represents the colours > r. If that coin
flip shows heads we add a new ball to one of those (which one specifically is irrelevant
to us). If it shows tails, however, we start traversing the remaining r colours in back-
wards order. This means we start by flipping for colour r, then either add a new ball to
it if the flip showed heads or otherwise continue to r− 1 and so on. If m≤ r we skip
the flips for colours m+ 1, m+ 2, . . . ,‘> r’. To also incorporate the migration of new
colours in this model, after every lth time step, we add additional β balls to colour m+ 1
or if m≥ r to the ‘> r’ category. Next, for this process to have the same distribution as
(Cr(n))n∈N0 , we need to find suitable success probabilities pi(n) when flipping for colour
i in time step n �→ n+ 1. To this end, we write

Uk(n):=
k∑

i=1

Ci(n), k≥ 1,

for brevity and set

if i≤ r: pi(n)= Ci(n)

C1(n)+ . . .+Ci(n)
= 1− Ui−1(n)

Ui(n)
,

and p>r(n)= Cr+1(n)+ . . .+Cm(n)

C1(n)+ . . .+Cm(n)
= 1− Ur(n)

Um(n)
.

To verify that this yields exactly the same transition probabilities as in the urn model,
write (with Fn = σ (Ci(t): t≤ n, i, t ∈N)) for colours i≤ r,

P(Ci(n+ 1)−Ci(n)= 1|Fn)= Ci(n)

Um(n)
= Ur(n)

Um(n)

Ur−1(n)

Ur(n)
. . .

Ui(n)

Ui+1(n)

Ci(n)

Ui(n)

= (1− p>r(n)) · (1− pr(n)) · . . . · (1− pi+1(n)) · pi(n)

and for colour ‘> r’,

P([Um(n+ 1)−Ur(n+ 1)]− [Um(n)−Ur(n)]= 1|Fn)= Um(n)−Ur(n)

Um(n)
= p>r(n).

So we conclude that the two processes indeed have the same transition probabilities and
proceed to show the independence of the B↓i .
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For that let (Yi
j )
∞
j=1 be the random variables which contain the outcome of the jth flip for

colour i, i= 1, . . . , r. Define Ti
j to be the step in the above urn model when coin Yi

j is flipped,

noting that Ti
j , j > 0, is random but almost surely finite by Lemma 2. The success probability

pi(n) at time n= Ti
j is dependent on prior flips and given by

Ci(n)

C1(n)+ . . .+Ci(n)
= Ci(Ti

1)+∑j−1
k=1 Yi

k

Ui(Ti
1)+ j− 1

for colours i≤ r, as Ui(Ti
1) balls of colours 1 to i and Ci(Ti

1) balls of colour i are present when
we first flip the coin for this colour, and at the jth flip a further j− 1 balls of colours 1 to i
have already been added to the urn, with

∑j−1
k=1 Yi

k of them to colour i. Therefore, the pi(n) at
time n= Ti

j are completely determined by deterministic starting values Ui(Ti
1), Ci(Ti

1) and the

previous flips for colour i and the sequences (Y1
j )j, . . . , (Yr

j )j are jointly independent.

With this, the independence of the B↓i follows since, for j→∞,

Ci(Ti
1)+∑j−1

k=1 Yi
k

Ui(Ti
1)+ j− 1

= Ci(Ti
j )

C1(Ti
j )+ . . .+Ci(Ti

j )
→ B↓i for i= 2, . . . , r.

(3) In addition to the sequences introduced in (2), let (Y>r
j )∞j=1 be the random variables

which contain the outcome of the jth flip for colour ‘ > r’ and let T>r
j , j > 0, be the step

in the urn model when coin Y>r
j is flipped. The first flip T>r

1 takes place at time nr+1
0 with

U(r+1)∨s(n
r+1
0 ) total balls in the urn, and with U(r+1)∨s(n

r+1
0 )−Ur(nr+1

0 ) of them of colour
‘ > r’, both numbers being deterministic. After nr+1

0 , the coin for colour ‘ > r’ is flipped in
every consecutive step of the urn model. Thus, at the jth flip for this colour, the total num-
ber of balls has grown to U(r+1)∨s(n

r+1
0 )+ j− 1+ β	 j−1

l 
 (where the last summand is due to

the immigration), and the number of colour ‘ > r’ has grown to U(r+1)∨s(n
r+1
0 )−Ur(nr+1

0 )+∑j−1
k=1 Y>r

k + β	 j−1
l 
. Therefore, the success probability p>r(n) at time n= T>r

j is given by

U(r+1)∨s(n
r+1
0 )−Ur(nr+1

0 )+∑j−1
k=1 Y>r

k + β	 j−1
l 


U(r+1)∨s(n
r+1
0 )+ j− 1+ β	 j−1

l 

,

and the sequence (Yr>
j )∞j=1 is independent of the sequences introduced in (2).

Observe that

1

jl/(l+β)
Ur(nr+1

0 + j)= 1

jl/(l+β)
(Ur(nr+1

0 )+
j∑

k=1

(1− Y>r
k ))

j→∞→ ζ1 + . . .+ ζr,

and by independence of the coin flip sequences the limit ζ1 + . . .+ ζr is thus independent of
(B↓1 , . . . , B↓r ) and thus independent of (B1, . . . , Br) as well.

A.5. Proof of Proposition 2

We start by showing (2).
(2) Case α ≤ p: Let α′ > p≥ α, then by Hölder’s inequality

sup
n

E

(∥∥∥ D(n)

nl/(l+β)

∥∥∥α

p

)
≤ sup

n

(
E

(∥∥∥ D(n)

nl/(l+β)

∥∥∥α′

p

)) α
α′ =

(
sup

n
E

(∥∥∥ D(n)

nl/(l+β)

∥∥∥α′

p

)) α
α′
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and this case follows whenever there is a bound for the next one.
Case α > p: Because of the inverse Minkowski’s inequality (see, e.g., III 2.4 Theorem 9 in

[8]), p-quasinorms with 0 < p < 1 are concave on R
d
≥0. We can thus apply Jensen’s inequality

to

E

(∥∥∥ D(n)

nl/(l+β)

∥∥∥α

p

)
=E

(∥∥∥( D(n)

nl/(l+β)

)α∥∥∥ p
α

)
≤

(N(n)∑
i=1

(
E

Dα
i (n)

nα·l/(l+β)

) p
α
) α

p
.

An application of Proposition 1(1) and Lemma 6 yields that there exists a C > 0 such that the
right-hand side is bounded above by

C ·
( N(n)∑

i=1

(
c(n, α)−1

E

(
Di(n)+ α − 1

α

)) p
α
) α

p

.

Now, each base in the summands on the right is the expectation of a closed martingale and by
Proposition 1(3),(N(n)∑

i=1

(
c(n, α)−1

E

(
Di(n)+ α− 1

α

)) p
α
) α

p

=
(N(n)∑

i=1

(Eζ α
i )

p
α

) α
p

. (A.8)

By (2.3) and Proposition 1(1) we have, for any fixed k ∈R≥0 and all i > N(0),

E(ζ k
i )=C(k)c((i− s), k)−1 ∼C(k)(i− s)−k·l/(l+β), (A.9)

where C(k) denotes a constant that does not depend on i. Thus, the limit as n→∞ of the
right-hand side of (A.8) is finite if and only if

α · l
l+ β

· p

α
> 1 ⇔ p >

l+ β

l
,

which is guaranteed by our assumption.

(1) (a) Assume first that l+β
l < p <∞. Use monotone convergence to get

E(‖ζ‖pp)=E

∞∑
i=1

ζ
p
i =

∞∑
i=1

Eζ
p
i . (A.10)

Again from (A.9), this sum is finite under our assumption that p > (1+ β)/l and so
‖ζ‖pp <∞ almost surely. Furthermore, since ‖ζ‖∞ ≤ ‖ζ‖p, the result also follows for
p=∞.

(1) (b) Next we prove the almost sure convergence in c||·||p . We need to show that

∥∥∥ D(n)

nl/(l+β)
− ζ

∥∥∥p

p
=
∞∑

i=1

∣∣∣ Di(n)

nl/(l+β)
− ζi

∣∣∣p→ 0, n→∞ almost surely.

By Scheffé’s theorem the above convergence follows from componentwise convergence,
i.e.

Di(n)

nl/(l+β)
→ ζi, n→∞ almost surely, (A.11)
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for all i ∈N in combination with convergence of the norms, which is

N(n)∑
i=1

Di(n)p

npl/(l+β)
→
∞∑

i=1

ζ
p
i , n→∞. (A.12)

Proposition 1(2) implies (A.11), so we are left to show (A.12). To this end, introduce

the random variables Xi(n):= c(n, p)−1
(

Di(n)+ p− 1
p

)
, which form, for each i ∈N, a

martingale, according to Proposition 1(1). Their cumulative sums form submartingales,
since

E

(N(n)∑
i=1

Xi(n)
∣∣∣F(n−1)l

)
=

N(n)∑
i=1

E(Xi(n)|F(n−1)l)≥
N(n−1)∑

i=1

Xi(n− 1), i ∈N.

By Lemma 6 there exists, for each k ∈N, a C such that

E

((N(n)∑
i=1

Xi(n)
)k)≤CE

(N(n)∑
i=1

Di(n)p

npl/(l+β)

)k
.

By (2) with α = pk, we observe that the right-hand side is bounded uniformly in n.
This means the submartingale is uniformly integrable and therefore convergent almost
surely and in L1 (Chapter XI.14 in [14]). To derive the limit we first note that, by
Proposition 1(2),

lim
n→∞

N(n)∑
i=1

Xi(n)−
l∑

i=1

ζ
p
i

�(p+ 1)
= lim

n→∞

N(n)∑
i=l+1

Xi(n)≥ 0

for all l ∈N. Let l→∞ to conclude that

lim
n→∞

N(n)∑
i=1

Xi(n)−
∞∑

i=1

ζ
p
i

�(p+ 1)
≥ 0.

This implies that

E
(∣∣∣ lim

n→∞

N(n)∑
i=1

Xi(n)−
∞∑

i=1

ζ
p
i

�(p+ 1)

∣∣∣)

= E
(

lim
n→∞

N(n)∑
i=1

Xi(n)−
∞∑

i=1

ζ
p
i

�(p+ 1)

)

= lim
n→∞

N(n)∑
i=1

E(Xi(n))−
∞∑

i=1

E
( ζ

p
i

�(p+ 1)

)
= 0,

where we used the L1-convergence of our submartingale together with (A.10) in the
penultimate step and Proposition 1(2) in the last step. Thus,

lim
n→∞

N(n)∑
i=1

c(n, p)−1
(

Di(n)+ p− 1
p

)
=
∞∑

i=1

ζ
p
i

�(p+ 1)
almost surely. (A.13)
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Returning to the original process, we can use Proposition 1(1) and Lemma 6 to find a
C > 0 such that

Di(n)p

npl/(l+β)
≤C · c(n, k)−1

(
Di(n)+ p− 1

p

)

for all i= 1, . . . , N(n), and thus apply Pratt’s lemma [29] to finally arrive at (A.12) and
therefore conclude (1)(b).

(3) For p ∈ (1,∞) the p-norm on R
d among all vectors of equal �1-norm is minimised if

each component takes the same value. Let c be the cumulated starting weight of the
initial N(0) vertices. Then

∥∥∥ D(n)

nl/(l+β)

∥∥∥p

p
= 1

np·l/(l+β)

N(n)∑
i=1

Dp
i (n)≥ (N(0)+ n) · ( c+n(l+β)

N(0)+n )p

np·l/(l+β)
∼C · n1− p·l

l+β

for some C > 0 and, since by assumption p <
l+β

l , the right-hand side diverges to ∞.
Being almost surely unbounded, the sequence D(n)/nl/(l+β) thus fails to converge.
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