ON THE CESÀRO-PERRON INTEGRAL

M.K. Bose and B. Ghosh

In the present paper a simple proof of a theorem of Sargent on $C_{\lambda}P$ -integral of Burkill is given.

1. Introduction

Sargent [3] has defined the $C_{\lambda}D$ -integral (λ being a non-negative integer) and has shown that the $C_{\lambda}D$ -integral is equivalent to the $C_{\lambda}P$ -integral of Burkill [1]. But there is a defect in the proof of the following theorem:

THEOREM 1.1. (Theorem VIII, Sargent [3], p.237). If f is $C_{\lambda}P$ -integrable on [a, b], then f is $C_{\lambda}D$ -integrable on [a, b] and

$$(C_{\lambda}D)\int_{a}^{b}f=(C_{\lambda}P)\int_{a}^{b}f.$$

(For definitions of $C_{\lambda}D$ -integrable and $C_{\lambda}D$ -integrable, see Section 2.)

Verblunsky [5] has given a correct proof of this theorem. But his proof is very long and difficult. Here we give a simple and short proof.

We use the notation |E| for the Lebesgue outer measure of a set E and f' for the derivative of the function f.

2. Preliminaries

Let the real valued function F be $C_{\lambda-1}P$ -integrable $(\lambda \geqslant 1)$ on [a, b].

DEFINITION 2.1: (Burkill [1], p.541). The λ th Cesàro mean of F on [a, b], $C_{\lambda}(F, a, b)$ is defined as follows:

$$C_{\lambda}(F, a, b) = \frac{\lambda}{(b-a)^{\lambda}} (C_{\lambda-1}P) \int_a^b (b-t)^{\lambda-1} F(t) dt.$$

If $\lambda = 0$, then $C_0(F, a, b)$ is defined to be equal to F(b).

Received 25 June 1990

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

DEFINITION 2.2: (Burkill [1], p.542). The function F is said to be C_{λ} -continuous at x if

$$\lim_{h\to 0} C_{\lambda}(F, x, x+h) = F(x).$$

DEFINITION 2.3: (Burkill [1], p.542). The upper right C_{λ} -derivate of F at x, $C_{\lambda}D^{+}F(x)$, is defined as follows:

$$C_{\lambda}D^{+}F(x)=\limsup_{h\to 0+}\frac{C_{\lambda}(F,\,x,\,x+h)-F(x)}{h/(\lambda+1)}.$$

The other derivates $C_{\lambda}D_{+}F(x)$, $C_{\lambda}D^{-}F(x)$, $C_{\lambda}D_{-}F(x)$ have the corresponding definitions. The upper and lower C_{λ} -derivatives $\overline{C_{\lambda}D}F(x)$, $\underline{C_{\lambda}D}F(x)$ are defined to be $\max\{C_{\lambda}D^{+}F(x), C_{\lambda}D^{-}F(x)\}$ and $\min\{C_{\lambda}D_{+}F(x), C_{\lambda}D_{-}F(x)\}$ respectively. If

$$\overline{C_{\lambda}D}F(x) = \underline{C_{\lambda}D}F(x),$$

then F is said to have a C_{λ} -derivative $C_{\lambda}DF(x)$, equal to their common value.

DEFINITION 2.4: (Sargent [3], p.221.) The function F is said to be $AC^*(C_{\lambda}$ -sense) above over a set $E \subset [a, b]$ if to every $\varepsilon > 0$, there exists a positive number δ such that for every set of non-overlapping open intervals $\{(a_r, b_r)\}$ having end points in E with

$$\sum_{r} (b_r - a_r) < \delta,$$

the relations

(1)
$$\sum_{a_r < x < b_r} \sup_{\{C_{\lambda}(F, a_r, x) - F(a_r)\} < \varepsilon$$

and

(2)
$$\sum_{r} \sup_{a_r < x < b_r} \{ F(b_r) - C_{\lambda}(F, b_r, x) \} < \varepsilon$$

hold.

If in the above definition the relations (1) and (2) are replaced by (1') and (2') as follows:

(1')
$$\sum_{a_r < x < b_r} \inf_{\{C_{\lambda}(F, a_r, x) - F(a_r)\} > -\varepsilon$$

(2')
$$\sum_{r} \inf_{a_r < x < b_r} \{ F(b_r) - C_{\lambda}(F, b_r, x) \} > -\varepsilon$$

then F is said to be $AC^*(C_{\lambda}$ -sense) below on $E \subset [a, b]$.

If F is both $AC^*(C_{\lambda}$ -sense) above and $AC^*(C_{\lambda}$ -sense) below over $E \subset [a, b]$, then F is said to be $AC^*(C_{\lambda}$ -sense) over E.

DEFINITION 2.5: (See Sargent [3], p.222.) The function F is said to be $ACG^*(C_{\lambda}$ -sense) on [a, b] if [a, b] is expressible as the union of a countable number of sets over each of which F is $AC^*(C_{\lambda}$ -sense).

DEFINITION 2.6: (Verblunsky [5], p.326.) The function F defined on a set E is said to be VB_{λ}^* on E, if there exists a constant K such that for any set of non-overlapping intervals $\{(a_i, b_i)\}$ whose end points are in E,

$$\sum_{i} \sup_{a_i < x < b_i} |C_{\lambda}(F, a_i, x) - F(a_i)|$$

$$+ \sum_{i} \sup_{a_i < x < b_i} |F(b_i) - C_{\lambda}(F, b_i, x)| < K.$$

DEFINITION 2.7: (Saks [2], p.224). A function G is said to fulfil the Lusin's condition (N) on a set E, if for every set $H \subset E$ of measure zero, G(H) is a set of measure zero.

DEFINITION 2.8: (Burkill [1], p.548). Let f be an extended real valued function on [a, b].

Then M is said to be a $C_{\lambda}P$ -major function of f on [a, b] if

- (i) M is C_{λ} -continuous on [a, b],
- (ii) M(a) = 0,
- (iii) $C_{\lambda}DM(x) > -\infty$ for all $x \in [a, b]$,
- (iv) $C_{\lambda}DM(x) \geqslant f(x)$ for all $x \in [a, b]$.

In a similar manner, a $C_{\lambda}P$ -minor function m of f on [a, b] is defined.

The function f is said to be $C_{\lambda}P$ -integrable on [a, b] if

- (i) it has at least one $C_{\lambda}P$ -major function M and at least one $C_{\lambda}P$ -minor function m and
- (ii) $\inf\{M(b)\}=\sup\{m(b)\}.$

If f is $C_{\lambda}P$ -integrable on [a, b], the common value $\inf\{M(b)\} = \sup\{m(b)\}$ is called the $C_{\lambda}P$ -integral of the function f on [a, b] and is denoted by

$$(C_{\lambda}P)\int_a^b f.$$

DEFINITION 2.9: (Sargent [3], p.232). The function f is said to be $C_{\lambda}D$ -integrable on [a, b] if there exists a function F on [a, b] such that

- (i) F is C_{λ} -continuous,
- (ii) F is $ACG^*(C_{\lambda}$ -sense)

and

(iii) $C_{\lambda}DF(x) = f(x)$ almost everywhere.

THEOREM 2.1. (Lemma 3, Verblunsky [5], p.328). If f is $C_{\lambda}P$ -integrable on [a, b] and

$$F(x) = (C_{\lambda}P) \int_{a}^{x} f,$$

then [a, b] is the union of closed sets on each of which F is VB_{λ}^* .

THEOREM 2.2. (Theorem 2, Sargent [4], p.120). If F is C_{λ} -continuous on [a, b], F(a) > 0 and F(b) < 0, then there is a point $c \in (a, b)$ such that F(c) = 0.

THEOREM 2.3. (Theorem 6.5, Saks [2], p.227). If a function G is derivable at every point of a measurable set D, then

$$|G(D)| \leqslant \int_{D} |G'|.$$

THEOREM 2.4. (Theorem II, Sargent [3], p.226). For F to be $AC^*(C_{\lambda}$ -sense) over a bounded closed set Q with complementary intervals $\{(a_n, b_n)\}$, it is necessary and sufficient that F should be absolutely continuous over Q and $C_{\lambda-1}D$ -integrable on each interval (a_n, b_n) , while

$$\sum_{n=1}^{\infty} \sup_{\substack{a_n < x < b_n}} |C_{\lambda}(F, a_n, x) - F(a_n)| < \infty$$

$$\sum_{n=1}^{\infty} \sup_{\substack{a_n < x < b_n}} |C_{\lambda}(F, b_n, x) - F(b_n)| < \infty.$$

3. Proof of Theorem 1.1

Let f be $C_{\lambda}P$ -integrable on the closed interval [a, b] with

$$F(x) = (C_{\lambda}P) \int_{a}^{x} f.$$

It is sufficient to prove that F is $ACG^*(C_{\lambda}$ -sense) on [a, b]. We first show that F satisfies Lusin's condition (N).

Consider a set $E \subset [a, b]$ with |E| = 0. For arbitrary $\varepsilon > 0$, let M and m be a pair of $C_{\lambda}P$ -major and minor functions of f on [a, b] with $H(b) < \varepsilon$ where H = M - m. For every natural number n, let E_n denote the set of points x of E such that

$$rac{\lambda+1}{h}\left[C_{\lambda}(M,\,x,\,x+h)-M(x)
ight]>-n, \ rac{\lambda+1}{h}\left[C_{\lambda}(m,\,x,\,x+h)-m(x)
ight]< n,$$

whenever $0 < |h| \le 1/n$. Then the sequence $\{E_n\}$ is expanding and $E = \bigcup_{n=1}^{\infty} E_n$.

Again $E_n = \bigcup_{i=-\infty}^{\infty} E_n^i$, where

$$E_n^i = E_n \cap \left[\frac{i}{n}, \frac{i+1}{n}\right].$$

It is easy to show that if $\{(a_k, b_k)\}$ is a sequence of pairwise disjoint open intervals having end points in E_n^i with

$$\sum_{k} (b_k - a_k) < \frac{(\lambda + 1)\varepsilon}{n2^{|i|}},$$

then

$$\begin{split} \sum_{k} \sup_{a_{k} < x < b_{k}} |C_{\lambda}(F, a_{k}, x) - F(a_{k})| + \sum_{k} \sup_{a_{k} < x < b_{k}} |C_{\lambda}(F, b_{k}, x) - F(b_{k})| \\ < 2 \left[\frac{\varepsilon}{2^{|i|}} + \sum_{i} \{H(b_{k}) - H(a_{k})\} \right], \end{split}$$

and hence

(3)
$$\sum_{k} |F(b_k) - F(a_k)| < 2 \left[\frac{\varepsilon}{2^{|i|}} + \sum_{k} \{H(b_k) - H(a_k)\} \right].$$

Since $|E_n^i| = 0$, there exists a sequence $\{I_k^i\}$ of pairwise disjoint open intervals contained in [1/n, (i+1)/n] such that $\bigcup_i I_k^i$ covers $E_n^i \cap (i/n, (i+1)/n)$ and

$$\sum_{k} \left| I_{k}^{i} \right| < \frac{(\lambda + 1)\varepsilon}{n2^{|i|}}.$$

Then

$$|F(E_n^i)| \leqslant \sum_i |F(E_n^i \cap I_k^i)|.$$

We write $I_k^i = (a_k^i, b_k^i)$. Since $|F(E_n^i \cap I_k^i)|$ cannot exceed the oscillation of F on $E_n^i \cap I_k^i$ and since H is non-decreasing, from (3) it follows that

$$\left|F\left(E_{n}^{i}\right)\right|<2\left[\frac{\varepsilon}{2^{\left|i\right|}}+\sum_{k}\{H\left(b_{k}^{i}\right)-H\left(a_{k}^{i}\right)\}\right].$$

Therefore

$$|F(E_n)| \leqslant \sum_{i=-\infty}^{\infty} |F(E_n^i)|$$

$$\leqslant 2 \left[3\epsilon + \sum_{i=-\infty}^{\infty} \sum_{k} \{H(b_k^i) - H(a_k^i)\} \right]$$

$$\leqslant 6\epsilon + 2\{H(b) - H(a)\}$$

$$< 8\epsilon.$$

Since $\{E_n\}$ is expanding, it follows that

$$|F(E)| = \left|\bigcup_{n=1}^{\infty} F(E_n)\right| = \lim_{n} |F(E_n)| \leq 8\varepsilon,$$

and hence |F(E)| = 0. Thus F satisfies Lusin's condition (N).

Next we use Theorem 2.1, by which [a, b] is the union of closed sets Q_n on each of which F is VB_{λ}^* . We now fix Q_n . Let [c, d] be the smallest closed interval containing Q_n and let $\{(c_r, d_r)\}$ be the complementary intervals of Q_n . Since F is VB_{λ}^* on Q_n , it is VB on it and

(4)
$$\sum_{r} \sup_{c_r < x < d_r} |C_{\lambda}(F, c_r, x) - F(c_r)| + \sum_{r} \sup_{c_r < x < d_r} |C_{\lambda}(F, d_r, x) - F(d_r)| < \infty.$$

Let G(x) = F(x) on Q_n and linear on each closed interval $[c_r, d_r]$. Then G is VB on [c, d] and hence G' exists finitely almost every where on [c, d]. Since F is C_{λ} -continuous on [a, b], G is so on [c, d]. For any interval $[\alpha, \beta] \subset [c, d]$, let

$$D = \{x \in [\alpha, \beta] : G'(x) \text{ exists finitely}\}$$
$$H = [\alpha, \beta] - D.$$

and

Then |H| = 0. Again since F satisfies Lusin's condition (N) on [a, b], G does so on [c, d] and hence |G(H)| = 0. Now

$$|G(eta) - G(oldsymbol{lpha})| \leqslant |G[oldsymbol{lpha}, eta]| \qquad ext{(by Theorem 2.2)}$$
 $\leqslant |G(H)| + |G(D)|$
 $= |G(D)|$
 $\leqslant \int_{oldsymbol{lpha}}^{eta} |G'| \qquad ext{(by Theorem 2.3)}.$

This implies that G is absolutely continuous on [c, d]. Hence F is absolutely continuous on Q_n . Therefore by (4) and Theorem 2.4, F is $AC^*(C_{\lambda}$ -sense) on Q_n . Thus F is $ACG^*(C_{\lambda}$ -sense) on [a, b]. This completes the proof.

REFERENCES

 J.C. Burkill, 'The Cesàro-Perron scale of integration', Proc. London Math. Soc. 39 (1935), 541-552.

- [2] S. Saks, Theory of integral (Warsaw, 1937).
- [3] W.L.C. Sargent, 'A descriptive definition of Cesàro-Perron integrals', Proc. London Math. Soc. (2) 47 (1941), 212-247.
- [4] W.L.C. Sargent, 'Some properties of C_{λ} -continuous functions', J. London Math. Soc. 26 (1951), 116-121.
- [5] S. Verblunsky, 'On a descriptive definition of Cesàro-Perron integrals', J. London Math. Soc. 3 (1971), 326-333.

Department of Mathematics University of North Bengal Darjeeling - 734430 West Bengal India

https://doi.org/10.1017/S0004972700029336 Published online by Cambridge University Press