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Abstract. Unital quantales constitute a significant subclass within quantale

theory, which play a crucial role in the theoretical framework of quantale re-

search. The main purpose of this article is to investigate the construction of
unital quantales from a given quantale. Using Q-algebras, we prove that every

quantale is embedded into a unital quantale, which generalizes the work of

Paseka and Kruml for the construction of unital quantales. Based on which,
we further show that every quantale can be transformed into a unitally non-

distributive quantale, which expands the foundational work of Guriérrez Gar-

ćıa and Höhle for unitally non-distributive quantales. Finally, we provide a
variety of methods for constructing unital quantales from some special quan-

tales.

1. Introduction

Quantales were introduced to develop a framework for non-commutative spaces
and quantum mechanics (see [20]). The literature on quantales often emphasizes
that these structures are required to have units. Quantales characterized by unit,
as a valued domain, have wide applications in theoretical computer science, logic,
quantitative domain, enriched category, many-valued topological space and fuzzy
algebra (see [1, 6, 11, 14, 21, 30, 31]). In [18], Paseka and Kruml investigated the
construction of unital quantales from a given quantale, and they proved that every
quantale Q can be extended to a unital quantale Q[e]. Based on such a result,
Paseka and Kruml further showed that every quantale is embedded into a simple
quantale (see [18]). Girard quantales introduced by Yetter are an important class
of quantales, which provide an algebraic semantics for linear logic (see [30]). By
unital quantales Q[e], one can see that every quantale can also be embedded into
a Girard quantale (see [9, 22]). Moreover, Han and Zhao used unital quantales
Q[e] to prove that the category of unital quantales is a reflective subcategory of
the category of quantales (see [10]), and then Pan and Han used unital quantale
Q[e] to give the concrete form of free Q-algebras over sets (see [16]). Besides the
method provided by Paseka and Kruml, are there any other methods to construct
unital quantales from a given quantale? This question is the main motivation of
this article.

In order to investigate the question posed by Hofmann and Clementino during
the XIV Portuguese Category Seminar celebrated at Coimbra, Portugal in October
2023 (see [3]), Guriérrez Garćıa and Höhle presented a new class of quantales, called
unitally non-distributive quantales. In [8], Guriérrez Garćıa and Höhle showed that
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under mild conditions, quantales on non-distributive lattices can be extended to
unitally non-distributive quantales by addition of an isolated unit. Here, we have
a natural question to ask whether every quantale can be extended to a unitally
non-distributive quantale. In order to answer this question, we also need to con-
sider a new method of constructing unital quantales. Therefore, investigating the
construction of unital quantales will be the main task of the present article. Let 0
and 1 respectively denote the bottom element and the top element in a complete
lattice. In the following, we shall review some basic concepts and results needed in
this article.

Definition 1.1. (Rosenthal [22]) A quantale is a complete lattice Q with a semi-
group multiplication & that distributes over arbitrary joins, that is,

a&(
∨
i∈I

bi) =
∨
i∈I

(a&bi) and (
∨
i∈I

bi)&a =
∨
i∈I

(bi&a)

for all a ∈ Q, {bi}i∈I ⊆ Q.

In fact, quantales can be seen as non-commutative complete residuated lattices.
The study of such partially ordered algebraic structures goes back to a series of
papers by Ward and Dilworth in the 1930s (see [4, 28, 29]). By the completeness of
quantale Q, the semigroup multiplication & gives rise to a pair of binary operations
 and → satisfying

a ≤ b→ c⇐⇒ a&b ≤ c⇐⇒ b ≤ a c (1.1)

for all a, b, c ∈ Q. Note that every complete lattice Q can give rise to a quantale
(Q,&a) where a ∈ Q and &a is a semigroup multiplication determined by

∀x, y ∈ Q, x&ay =

{
0, if x = 0 or y = 0,
a, otherwise.

(1.2)

A quantale Q is said to be unital provided that there exists an element e ∈ Q
such that q&e = q = e&q for all q ∈ Q. Q is said to be commutative provided
that a&b = b&a for all a, b ∈ Q. An element x of Q is called two-sided (non-zero)
provided that x&1 ≤ x and 1&x ≤ x (x 6= 0). Q is called two-sided if every element
of Q is two-sided. A non-zero element x of Q is called a zero-factor provided that
there exists a non-zero element y of Q such that x&y = 0 or y&x = 0. A subset S
of Q is called a subquantale if S is closed under joins and &.

The following construction corresponds to the extension of a non-unital C∗-
algebra to a unital C∗-algebra (see [19]).

Theorem 1.2. (Paseka and Kruml [15, 18]) Let Q be a quantale, Q[e] = {a∨k : a ∈
Q, k ∈ {0, e}}, where e is an arbitrary element such that e 6∈ Q. We define the
supremum on Q[e] with 0 ∨ e = e,

Q[e]∨
i∈I

(ai ∨ ki) =


(
Q∨
i∈I

ai) ∨ e, if ∃i ∈ I, ki = e,

Q∨
i∈I

ai, otherwise

25 Dec 2024 06:12:03 PST
240723-HanShengwei Version 2 - Submitted to Canadian Math. Bull.https://doi.org/10.4153/S0008439525000104 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525000104


CONSTRUCTION OF UNITAL QUANTALES 3

and the semigroup multiplication &′ on Q[e] as follows

(a ∨ k′)&′(b ∨ k′′) =


a&b, if k′ = 0, k′′ = 0,
(a&b) ∨ a, if k′ = 0, k′′ 6= 0,
(a&b) ∨ b, if k′ 6= 0, k′′ = 0,
((a&b) ∨ a ∨ b) ∨ e, if k′ 6= 0, k′′ 6= 0.

Then (Q[e],&′) is a unital quantale with unit e, and the inclusion map i : Q→ Q[e]
is an embedding of quantales in which i(a) = a ∨ 0.

Note that each element a ∈ Q is identified with the formal join a ∨ 0. The
research on unital quantales Q[e] can be found in [10, 15, 18].

Definition 1.3. (Abramsky and Vickers [1], Paseka [17]) Let Q be a commutative
quantale. A right module over Q (a right Q-module for short) is a pair (M, ·), where
M is a complete lattice and · : M × Q → M is a map (called a module operator)
such that

(1) (
∨
S) · q =

∨
s∈S

s · q for all q ∈ Q,S ⊆M ;

(2) m · (
∨
T ) =

∨
t∈T

m · t for all m ∈M,T ⊆ Q;

(3) m · (p&q) = (m · p) · q for all p, q ∈ Q,m ∈M .

For the sake of shortness, from now on “Q-module” means “right Q-module”. If
Q is a unital quantale with unit e, then a Q-module (M, ·) is called unital provided
that m · e = m for all m ∈M .

Definition 1.4. (Solovyov [26], Wang and Zhao [27]) Let Q be a commutative
(unital) quantale. A (unital) Q-algebra is a triple (M, ·,⊗) such that

(1) (M, ·) is a (unital) Q-module;
(2) (M,⊗) is a quantale;
(3) (a⊗ b) · q = (a · q)⊗ b = a⊗ (b · q) for all q ∈ Q, a, b ∈M .

Note that every complete lattice M can give rise to a Q-module (M, ·) with
trivial module operator ·, that is, m · q = 0 for all m ∈ M, q ∈ Q. Thus, every
quantale (M,⊗) can give rise to a Q-algebra (M, ·,⊗).

For the notions and concepts, which are not explained, please refer to [2, 5, 7].

2. Constructing unital quantales from given quantales

As mentioned in the introduction, unital quantales play an important role in the
study of quantales. To investigate the different constructions of unital quantales
should be an interesting and meaningful work.

Let (M,⊗) and (N,⊗) be quantales, M ×N denote the Cartesian product of M
and N . Then (M ×N,⊗) is a quantale, where (m,n)⊗ (m′, n′) = (m⊗m′, n⊗n′).
It is easy to verify that (M × N,⊗) is a unital quantale if and only if both M
and N are unital quantales. Thus, we can not use this method to construct unital
quantales from non-unital quantales. In this section, we shall provide some new
methods of constructing unital quantales.

2.1. Constructing unital quantales by Q-algebras. Let Q be a commutative
(unital) quantale and (M, ·,⊗) be a (unital) Q-algebra. We define a semigroup
multiplication &· on M ×Q and a map ? : (M ×Q)×Q→M ×Q as follows

(m, q)&·(n, p) = ((m⊗ n) ∨ (m · p) ∨ (n · q), q&p) (2.1)
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and
(m, q) ? p = (m · p, q&p).

Note that if (M, ·,⊗) be a Q-algebra with trivial module operator, then (M ×
Q,⊗) = (M ×Q,&·).

Lemma 2.1. (Han and Zhao [11]) Let Q be a commutative (unital) quantale and
(M, ·,⊗) be a (unital) Q-algebra. Then

(1) (M ×Q, ?,&·) is a (unital) Q-algebra.
(2) the inclusion map M ↪→ M × Q, assigning m to (m, 0), is an embedding of

Q-algebras.

Corollary 2.2. Let Q be a commutative (unital) quantale and (M, ·,⊗) be a
(unital) Q-algebra. Then (M ×Q,&·) is a (unital) quantale and the inclusion map
M ↪→M ×Q is an embedding of quantales.

Lemma 2.3. Let Q be a commutative quantale without zero-factors. Then every
complete lattice M can give rise to a Q-module (M, ∗) with unital module operator
∗, that is,

∀m ∈M, q ∈ Q, m ∗ q =

{
0, if q = 0,
m, otherwise.

Thus, every quantale (M,⊗) can give rise to a Q-algebra (M, ∗,⊗).

Proof. Proof is straightforward. �

Theorem 2.4. Let K be a commutative unital quantale without zero-factors and
(M,⊗) be a quantale. Then (M ×K,&∗) is a unital quantale.

Proof. By Lemma 2.3, we have that (M, ∗,⊗) is a unital K-algebra with unital
module operator. It follows from Corollary 2.2 that (M×K,&∗) is a unital quantale.
Clearly, we see that ∀(m, k), (n, k′) ∈M ×K,

(m, k)&∗(n, k
′) = ((m⊗ n) ∨ (m ∗ k′) ∨ (n ∗ k), k&k′)

and (0, e) is the unit of (M ×K,&∗), where e is the unit of K. �

Let L be a complete lattice and let / be the totally below relation on L, i.e.
given α, β ∈ L, we write β / α if for any subset A ⊆ L with α ≤

∨
A there is an

element γ ∈ A such that β ≤ γ. An element α of L is called /-approximable if
α =

∨
{β ∈ L : β / α}. A lattice L is called strictly non-distributive if there exist

α, β, x ∈ L such that x∧(α∨β) 6≤ (x∧α)∨(x∧β) and x 6≤ α∨β (see [8]). Let L,M
be complete lattices such that L or M is strictly non-distributive. Then L×M is
also strictly non-distributive.

Example 2.5. (1) Let 3 = {0, e, 1} denote the three-element quantale with a semi-
group multiplication & determined by the table below.

& 0 e 1
0 0 0 0
e 0 e 1
1 0 1 1

Then 3 is a commutative unital quantale without zero-factors.
(2) Let 2 denote the two-element unital quantale. Then 2 has no zero-factors.
(3) Let K6 = {0, a, b, c, e, 1} be a complete lattice determined by Figure 1 and &

be a semigroup multiplication on K6 determined by the table below.
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Figure 1. The partial order on K6

& 0 a b c e 1
0 0 0 0 0 0 0
a 0 1 1 1 a 1
b 0 1 1 1 b 1
c 0 1 1 1 c 1
e 0 a b c e 1
1 0 1 1 1 1 1

It is easy to check that K6 is a commutative unital quantale without zero-
factors, and the underlying lattice of K6 is non-distributive, but not strictly
non-distributive. Further, one can see that the unit e is /-approximable.

(4) Let K8 = {0, a, b, c, d, e, f, 1} be a complete lattice determined by Figure 2 and
& be a semigroup multiplication on K8 determined by the table below.

•
�
� ••

@
@•

@
@

•

•
�

�
�

�
�•

• 0

d

e

a c

f

1

b

Figure 2. The partial order on K8

& 0 a b c d e f 1
0 0 0 0 0 0 0 0 0
a 0 b c a d e a d
b 0 c a b d e b d
c 0 a b c d e c d
d 0 d d d d e d d
e 0 e e e e e e e
f 0 a b c d e f 1
1 0 d d d d e 1 1

It is easy to check that K8 is a commutative unital quantale without zero-
factors, and the underlying lattice of K8 is strictly non-distributive such that
the unit f is /-approximable.

The results in Corollary 2.6 generalize the work of Paseka and Kruml for unital
quantales in [18].

Corollary 2.6. (1) Every quantale is embedded into a unital quantale.
(2) Let (M,⊗) be a quantale. Then (M×2,&∗) is isomorphic to the unital quantale

(M [e],&′).

Proof. The proof follows from Corollary 2.2, Theorem 2.4 and Example 2.5. �

In [8], Guriérrez Garćıa and Höhle showed that under mild conditions, quantales
on non-distributive lattices can be extended to unitally non-distributive quantales
by addition of an isolated unit. The following theorem indicates that every quantale
can be extended to a unitally non-distributive quantale. First, we recall the concept
of unitally non-distributive quantales.

A unital quantale Q is called unitally non-distributive if it satisfies the following
properties:

(1) the unit e is /-approximable.
(2) the unit e is non-distributive, that is, there exists a subset A of Q such that

e ∧ (
∨
A) 6≤

∨
a∈A(e ∧ a).

Note that K8 is a unitally non-distributive quantale and the unit f is strictly
non-distributive, that is, there exist α, β ∈ Q such that f∧(α∨β) 6≤ (f∧α)∨(f∧β)
and f 6≤ α ∨ β. In K6, the unit e is /-approximable, but it is not non-distributive.

Theorem 2.7. Every quantale can be embedded into a unitally non-distributive
quantale.
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Proof. Let (M,⊗) be a quantale. Then by Theorem 2.4 and Example 2.5 we have
that (M ×K8,&∗) is a unital quantale such that the unit (0, f) of (M ×K8,&∗)
is /-approximable and the unit (0, f) is non-distributive. Thus, (M × K8,&∗)
is unitally non-distributive. It follows from Corollary 2.2 that the inclusion map
M ↪→M ×K8 is an embedding of quantales. �

Proposition 2.8. Let Q be a commutative quantale and K be a commutative
unital quantale without zero-factors. If (M, ·,⊗) is a Q-algebra, then (M,�,⊗) is
a unital (Q×K)-algebra.

Proof. By Theorem 2.4, we have that (Q×K,&∗) is a commutative unital quantale.
Let (M, ·,⊗) be a Q-algebra. Then it follows from Lemma 2.3 that (M, ∗,⊗) is a
unital K-algebra with unital module operator. We define a map � : M×(Q×K)→
M as follows

∀m ∈M, (q, k) ∈ Q×K, m� (q, k) := (m · q) ∨ (m ∗ k).

Let m,n,mi ∈M, (q, k), (p, k′), (qi, ki) ∈ Q×K. Then by Lemma 2.3 we have

(
∨
imi)� (q, k) = ((

∨
imi) · q) ∨ ((

∨
imi) ∗ k)

= (
∨
imi · q) ∨ (

∨
imi ∗ k)

=
∨
i(mi · q) ∨ (mi ∗ k)

=
∨
imi � (q, k),

m� (
∨
i(qi, ki)) = m� (

∨
i qi,

∨
i ki)

= (m · (
∨
i qi)) ∨ (m ∗ (

∨
i ki))

= (
∨
i(m · qi) ∨ (m ∗ ki))

=
∨
im� (qi, ki),

(m⊗ n)� (q, k) = ((m⊗ n) · q) ∨ ((m⊗ n) ∗ k)
= (m⊗ (n · q)) ∨ (m⊗ (n ∗ k))
= m⊗ ((n · q) ∨ (n ∗ k))
= m⊗ (n� (q, k))
= (m⊗ (n · q)) ∨ (m⊗ (n ∗ k))
= ((m · q)⊗ n) ∨ ((m ∗ k)⊗ n)
= (m� (q, k))⊗ n,

m� ((q, k)&∗(p, k
′) = m� ((q&p) ∨ (p ∗ k) ∨ (q ∗ k′), k&k′)

= (m · ((q&p) ∨ (p ∗ k) ∨ (q ∗ k′))) ∨ (m ∗ (k&k′))
= (m · (q&p)) ∨ (m · (p ∗ k)) ∨ (m · (q ∗ k′)) ∨ (m ∗ (k&k′))
= ((m · q) · p) ∨ ((m ∗ k) · p) ∨ ((m · q) ∗ k′) ∨ ((m ∗ k) ∗ k′)
= (((m · q) ∨ (m ∗ k)) · p) ∨ (((m · q) ∨ (m ∗ k)) ∗ k′)
= ((m · q) ∨ (m ∗ k))� (p, k′)
= (m� (q, k))� (p, k′),

and m� (0, e) = m where e is the unit of K.
By the above description, we have that (M,�,⊗) is a unital (Q×K)-algebra. �

Corollary 2.9. (Pan and Han [16]) Let Q be a commutative quantale and (M, ·,⊗)
be a Q-algebra. Then (M,�,⊗) is a unital Q[e]-algebra.

Proof. Taking K = 2, by Corollary 2.6 and Proposition 2.8 we have that (M,�,⊗)
is a unital Q[e]-algebra. �
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CONSTRUCTION OF UNITAL QUANTALES 7

Let Q be a commutative quantale and K be a commutative unital quantale
without zero-factors. Then for a given Q-algebra (M, ·,⊗), using the following
methods we obtain two unital quantales ((M×Q)×K,&∗) and (M×(Q×K),&�).

(M, ·,⊗)

Q-algebra

(M,�,⊗)

(Q×K)-algebra

(M × (Q×K),&�)

Unital quantale

(M ×Q,&·)
Quantale

(M ×Q, ∗,&·)
K-algebra

((M ×Q)×K,&∗)
Unital quantale

?Cor. 2.2

Prop. 2.8 Cor. 2.2

Lem. 2.3 Cor. 2.2
??

-

--

-

Proposition 2.10. Let Q be a commutative quantale and K be a commutative
unital quantale without zero-factors. If (M, ·,⊗) is a Q-algebra, then ((M × Q) ×
K,&∗) ∼= (M × (Q×K),&�).

Proof. We define a map f : (M ×Q)×K →M × (Q×K) as follows

∀((m, q), k) ∈ (M ×Q)×K, f((m, q), k) = (m, (q, k)).

It is easy to show that f is an isomorphism of quantales, that is, ((M×Q)×K,&∗) ∼=
(M × (Q×K),&�). �

2.2. Constructing unital quantales by upper sets. In order to provide a uni-
fied semantics for a wide class of substructural logics, Rump and Yang introduced
the concept of quantum B-algebras (see [23, 24]). Quantum B-algebras can be
regarded as implicational subreducts of quantales. A quantum B-algebra is a poset
X with two binary operations → and  satisfying the following three conditions

y ≤ z =⇒ x→ y ≤ x→ z

x ≤ y → z ⇐⇒ y ≤ x z

x (y → z) = y → (x z)

for all x, y, z ∈ X. A quantum B-algebra X is called unital if there exists an
element u ∈ X such that u→ x = x = u x for all x ∈ X.

Note that by (1.1) we see that a quantale is a quantum B-algebra. Rump and
Yang used upper sets to build a relation between quantum B-algebras and quan-
tales. Let X be a quantum B-algebra, U(X) denote the set of all upper sets of
X. Then U(X) is a complete lattice with respect to set-theoretic union. For
A,B ∈ U(X), we define a semigroup multiplication � on U(X) as follows

A�B := {x ∈ X : ∃b ∈ B, b→ x ∈ A}. (2.2)

Note that A�B = {x ∈ X : ∃a ∈ A, a x ∈ B} = {x ∈ X : ∃a ∈ A, b ∈ B, s.t. a ≤
b→ x} = {x ∈ X : ∃a ∈ A, b ∈ B, s.t. b ≤ a x}.

Proposition 2.11. (Rump and Yang [24]) Let (X,→, ,≤) be a quantum B-
algebra. Then (U(X),�) is a quantale, called an upper-set quantale.

By upper-set quantales, Rump and Yang proved that the category of quantum
B-algebras and the category of logical quantales are dually equivalent (see [24]). In
[12], Han, Xu and Qin gave a sufficient and necessary condition for the upper-set
quantale U(X) to be a unital quantale. A subset E of a quantum B-algebra X is
called positive provided that E is an upper set of X, and x  y ∈ E ⇐⇒ x ≤
y ⇐⇒ x→ y ∈ E for all x, y ∈ X. Note that if a quantum B-algebra has a positive
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8 SHENGWEI HAN AND JIAXIN LV

subset, then it is unique (see Proposition 3.6 in [13]). A quantum B-algebra is
called positive if it has a positive subset. Clearly, a unital quantum B-algebra is
positive, but a positive quantum B-algebra is in general not unital (see [12]).

Proposition 2.12. (Han et al. [12]) Let (X,→, ,≤) be a quantum B-algebra.
Then (U(X),�) is a unital quantale if and only if X is positive.

Corollary 2.13. If a quantaleQ as a quantumB-algebra is positive, then (U(Q),�)
is a unital quantale.

Remark 2.14. (1) If a quantale (Q,&) is considered as a posemigroup, then A�B =
{x ∈ Q : ∃a ∈ A, b ∈ B, a&b ≤ x} for A,B ∈ U(Q).

(2) A quantale Q is unital if and only if Q as a quantum B-algebra is unital.
(3) One may ask such a question whenever a quantale as quantum B-algebra is

positive, it must be unital? In Example 2.15, we shall give a negative answer.

Example 2.15. Let Q = {0, a, b, 1} be a complete lattice determined by Figure 3
and & be a semigroup multiplication on Q determined by the table below.

•
�

�•
@
@•

@
@
�
�•

1

0

a b

Figure 3. The partial order on Q

& 0 a b 1
0 0 0 0 0
a 0 a 1 1
b 0 1 b 1
1 0 1 1 1

It is easy to verify that (Q,&) is a non-unital quantale, and {a, b, 1} is a positive
subset of Q. Thus, by Corollary 2.13 we have that (U(Q),�) is a unital quantale.

When quantales are considered as quantum B-algebras, we can use upper sets
to construct upper-set quantales. Further, if quantales are positive, then the corre-
sponding upper-set quantales are unital. When quantales are considered as partially
ordered semigroups (posemigroups for short), we can use lower sets to construct
lower-set quantales (see [11, 15]). A natural question is under what condition the
lower-set quantale L(Q) of a quantale Q is unital.

Let (S, ·,≤) be a posemigroup, L(S) denote the set of all lower sets of S. Then
L(S) is a complete lattice with respect to set-theoretic union. We now define a
semigroup multiplication ⊗ on L(S) as follows

A⊗B = {x ∈ S : ∃a ∈ A, b ∈ B, x ≤ a · b}. (2.3)

Proposition 2.16. (Krum and Paseka [15]) Let (S, ·,≤) be a posemigroup. Then
(L(S),⊗) is a quantale, called a lower-set quantale.

A subset K of a posemigroup (S, ·,≤) is called normal provided that K satisfies
the following three conditions:

(1) K is a lower set of S.
(2) k · q ≤ q and q · k ≤ q for all q ∈ S, k ∈ K.
(3) For any q ∈ S, there exist k, k′ ∈ K such that q = k · q and q = q · k′.

Note that if a posemigroup has a normal subset, then it is unique. To see this,
we let K and K ′ be two normal subsets. Then for k ∈ K there exists k′ ∈ K ′ such
that k = k′ ·k ≤ k′ ∈ K ′, which implies that k ∈ K ′, that is, K ⊆ K ′. Similarly, we
have K ′ ⊆ K. Thus, K = K ′. A posemigroup is called normal if it has a normal
subset. A unital posemigroup is normal, but the converse is in general not true (see
Example 2.18).
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Proposition 2.17. Let (S, ·,≤) be a posemigroup. Then (L(S),⊗) is a unital
quantale if and only if S is normal.

Proof. Let K be the unit of quantale (L(S),⊗). Then (↓ q) ⊗K =↓ q = K ⊗ (↓ q)
for all q ∈ S. By (2.3), we see that K is a normal subset of S, that is, S is normal.

Conversely, let K be the normal subset of S. Then it is easy to check that K is
the unit of quantale (L(S),⊗). �

Example 2.18. Let S = {0, a, b, c, d} be a poset determined by Figure 4 and & be
a semigroup multiplication on S determined by the table below.

•

•• •
@
@

�
�•
0

a

d

cb

Figure 4. The partial order on S

& 0 a b c d
0 0 0 0 0 0
a 0 a 0 0 a
b 0 0 b 0 d
c 0 0 0 c 0
d 0 a d 0 a

It is easy to verify that (S, ·,≤) is a non-unital posemigroup, and {0, a, b, c} is
a normal subset of S. Thus, by Proposition 2.17 we have that L(S),⊗) is a unital
quantale.

If quantales are considered as posemigroups, then we have the following inter-
esting result.

Proposition 2.19. Let (Q,&) be a quantale. Then (L(Q),⊗) is a unital quantale
if and only if Q is a unital quantale.

Proof. Let Q be a unital quantale with unit e. Then ↓e is the unit of (L(Q),⊗).
Conversely, let (L(Q),⊗) be a unital quantale with unit K. By Proposition 2.17,

we see that K is a normal subset of Q. We let e =
∨
K. It is easy to show that e

is the unit of Q, that is, Q is unital. �

2.3. Constructing unital quantales by adding elements. For some special
quantales, Guriérrez Garćıa and Höhle investigated the constructions of unital
quantales by addition of an isolated element (see [8]). Next, based on the work
of Guriérrez Garćıa and Höhle, we shall continue the research on the construction
of unital quantales.

Adding two elements to construct unital quantales. Let L be a complete
lattice, α ∈ L\{0, 1}. Then α is called isolated (see [8]) in L if there exist two
elements α− ≤ α and α+ ≥ α of L such that the following properties hold:

(↓α)\{α} =↓α− and (↑α)\{α} =↑α+.

Lemma 2.20. (Guriérrez Garćıa and Höhle [8]) Let L be a complete lattice, and
> and e be two different elements satisfying the condition L ∩ {>, e} = ∅. Then
for every γ ∈ L there exists a unique complete lattice-structure on Lγ = L ∪ {>, e}
satisfying the following conditions:

(1) Lγ is an extension of L.
(2) The element > is the universal upper bound of Lγ .
(3) The element e is isolated and satisfies the conditions e− = γ and e+ = >.
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Theorem 2.21. (Guriérrez Garćıa and Höhle [8]) Let (Q,&) be a quantale, γ ∈
Q\{1} and let Qγ = Q ∪ {>, e} be the extension of the underlying lattice by an
isolated element e in the sense of Lemma 2.20. Then there exists a unique quantale
structure on Qγ with unit e and subquantale Q if and only if Q satisfies the following
conditions for all α ∈ Q and β ∈ Q with β 6≤ γ:

(γ&α) ∨ (α&γ) ≤ α, (2.4)

1&α ≤ (β&α) ∨ α and α&1 ≤ (α&β) ∨ α. (2.5)

Remark 2.22. (1) If a quantale (Q,&) has an element γ satisfying (2.4) and (2.5),
thenQ can be extended to a unital quantaleQγ with unit e where the semigroup
multiplication &γ on Qγ is determined by

∀x, y ∈ Qγ , x&γy =



x&y, if x, y ∈ Q,
y, if x = e,
x, if y = e,
(1&y) ∨ y, if x = >, y ∈ Q,
x ∨ (x&1), if y = >, x ∈ Q,
>, if x = y = >.

(2) Since every non-top element γ of a two-sided quantale satisfies the properties
(2.4) and (2.5), every two-sided quantale Q can be extended to a unital quantale
Qγ .

Using a method similar to adding isolated elements, we shall give a new method
to construct unital quantales.

Lemma 2.23. Let L be a complete lattice, and ⊥ and e be two different elements
satisfying the condition L∩ {⊥, e} = ∅. Then for every γ ∈ L there exists a unique
complete lattice-structure on Lγ = L ∪ {⊥, e} satisfying the following conditions:

(1) Lγ is an extension of L.
(2) The element ⊥ is the universal lower bound of Lγ .
(3) The element e is isolated and satisfies the conditions e+ = γ and e− = ⊥.

Let (Q,&) be a quantale and γ be a non-zero element of Q. Define a semigroup
multiplication &γ as follows

∀x, y ∈ Qγ , x&γy =


x&y, if x, y ∈ Q,
y, if x = e,
x, if y = e,
⊥, if x = ⊥ or y = ⊥.

Theorem 2.24. Let γ be a non-zero element of a quantale Q and let Qγ = Q ∪
{⊥, e} be the extension of the underlying lattice by an isolated element e in the
sense of Lemma 2.23. Then (Qγ ,&γ) is a unital quantale with unit e if and only if
γ is the unit of Q.

Proof. The proof is similar to that of Theorem 2.21. �

Adding one element to construct unital quantales. Inspired by the work of
Guriérrez Garćıa and Höhle, we will consider the method of adding one element to

construct unital quantales. Let r be a non-zero element of quantale Q and Pr(Q)
4
=

{y ∈ Q | (r&y) ∨ (x&y) = y ∨ (x&y) and (y&r) ∨ (y&x) = y ∨ (y&x) for all x ∈
Q\{0}}.
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Proposition 2.25. Let Q be a quantale, r ∈ Q\{0}. Then we have

(1) Pr(Q) is a subquantale of Q.
(2) 1 ∈ Pr(Q)⇐⇒ r&1 = 1 = 1&r.
(3) if Q is a unital quantale with unit u, then u ∈ Pr(Q)⇐⇒ u = r.
(4) if Q is a unital quantale with unit u, then Pu(Q) = Q.

Proof. Proof is straightforward. �

Definition 2.26. A non-zero element r of quantale Q is called a weak unit if
Pr(Q) = Q.

Remark 2.27. (1) If Q is a quantale with & = &1 defined by (1.2), then every
non-zero element of Q is a weak unit.

(2) If Q is a quantale with & = &a and a 6= 1 defined by (1.2), then no element of
Q is a weak unit.

(3) If Q is a unital quantale, then by Proposition 2.25(3) we see that the unit is
the unique weak unit in Q. Conversely, if a quantale Q has a unique weak unit,
then Q is not necessarily a unital quantale (see Example 2.28).

Example 2.28. Let Q = {0, a, b, 1} be a complete lattice with 0 < a < b < 1 and
& be a semigroup multiplication on Q determined by the table below.

& 0 a b 1
0 0 0 0 0
a 0 b b b
b 0 b b b
1 0 b b 1

It is easy to verify that Q is a non-unital quantale and there is a unique weak
unit 1 in Q.

Let r be a non-zero element of quantale Q and e 6∈ Q. We denote by Qr the set
Q∪ {e} and define a partial order ≤r on Qr and a semigroup multiplication &e on
Qr as follows

≤r=≤ ∪{(e, x) | r ≤ x, x ∈ Q} ∪ {(e, e), (0, e)}

and

∀x, y ∈ Qr, x&ey =

 x&y, if x, y ∈ Q,
y, if x = e,
x, if y = e.

(2.6)

Proposition 2.29. Let Q be a quantale and r be a non-zero element of Q. Then
we have

(1) (Qr,≤r) is a complete lattice and e ∨ x = r ∨ x for all x ∈ Q\{0}.
(2) e is an isolated element in Qr and e+ = r, e− = 0.
(3) (Qr,≤r,&e) is a unital posemigroup if and only if x ≤ (x&r) ∧ (r&x) for all

x ∈ Q.

Proof. Proof is straightforward. �

Proposition 2.30. Let Q be a quantale and r be a non-zero element of Q. Then
(Qr,≤r,&e) is a unital quantale if and only if r is a weak unit of Q.
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Proof. Let (Qr,≤r,&e) be a unital quantale with unit e. Then by Proposition 2.29
we have that (r&y)∨(x&y) = (r∨x)&y = (e∨x)&ey = (e&ey)∨(x&ey) = y∨(x&y)
for all y ∈ Q, x ∈ Q\{0}. Similarly, we have (y&r) ∨ (y&x) = y ∨ (y&x). Thus, r
is a weak unit of Q.

Conversely, we let r be a weak unit of Q. By Proposition 2.29, it is easy to
check that the semigroup multiplication &e distributes over arbitrary joins, that is,
(Qr,≤r,&e) is a unital quantale. �

Corollary 2.31. If quantale Q has a weak unit r, then Q can be embedded into a
unital quantale Qr.

Example 2.32. (Guriérrez Garćıa and Höhle [8]) Let (G, ·, e) be a group with
| G |≥ 2. We provide G with the discrete order “ = ” and subsequently we
apply the MacNeille completion. This construction leads to a complete lattice
G∞ = G ∪ {⊥,>} by adding the universal bounds to the discretely ordered set G.
The binary operation ∗ on G∞ is determined by

∀x, y ∈ Q∞, x ∗ y =

 x · y, if x, y ∈ G,
⊥, if x = ⊥ or y = ⊥,
>, otherwise.

It is easy to check that (G∞, ∗) is a unital quantale and the unit e is an isolated
element of G∞ with e+ = >, e− = ⊥.

Proposition 2.33. Let Q be a unital quantale such that the unit e is an isolated
element and e− = 0. Then Q ∼= Kr for some quantale K with weak unit r if and
only if Q\{e} is a subquantale of Q.

Proof. Let K be a quantale with weak unit r. Then by Proposition 2.30 we have
that Kr is a unital quantale with unit e and K is a subquantale of Kr. Since
Q ∼= Kr, we have that Q\{e} ∼= K, which implies that Q\{e} is a subquantale of
Q.

Conversely, we let r = e+ and K = Q\{e}. Then by Proposition 2.29 we have
that r is a weak unit of K. Further, we see that Q = Kr. �

Corollary 2.34. Let Q be a unital quantale such that the unit e is an isolated
element and e− = 0. Then Q ∼= Kr for some quantale K with weak unit r if and
only if x&y = e implies that x = e = y for all x, y ∈ Q.

Remark 2.35. (1) Let (G∞, ∗) be the unital quantale in Example 2.32. Then
(G∞, ∗) is not of form Kr, that is, G∞ 6∼= Kr.

(2) Let Q = {0, a, 1} be a quantale with & = &1. Then 1 is a weak unit of Q. By
Proposition 2.30, we see that Q1 is a unital quantale determined by Figure 5
and the following table.

•
�
�•

@
@•

@
@

�
�•

1

0

a e

Figure 5. The partial order on Q1

& 0 a e 1
0 0 0 0 0
a 0 1 a 1
e 0 a e 1
1 0 1 1 1

Similarly, we can give another method of adding one element to construct unital
quantales. Let Q be a quantale with e 6∈ Q. For a non-top element r of Q, we
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denote by Qr the set Q ∪ {e} and define a partial order ≤r on Qr and a binary
operation &e on Qr as (2.6)

≤r=≤ ∪{(x, e) | x ≤ r, x ∈ Q} ∪ {(e, e), (e, 1)}.

Lemma 2.36. Let Q be a quantale and r be a non-top element of Q. Then we
have

(1) (Qr,≤r) is a complete lattice and e ∨ x = 1 for all x ∈ Q with x 6≤ r.
(2) e is an isolated element in Qr and e+ = 1, e− = r.
(3) (Qr,≤r,&e) is a posemigroup with unit e if and only if (x&r) ∨ (r&x) ≤ x ≤

(x&1) ∧ (1&x) for all x ∈ Q.

Theorem 2.37. Let (Q,&) be a quantale with non-top element r and let Qr be the
extension of the underlying lattice in the sense of Lemma 2.36. Then there exists
a unique quantale structure on Qr with unit e and subquantale Q if and only if Q
satisfies the following conditions for all x ∈ Q and y ∈ Q with y 6≤ r:

(r&x) ∨ (x&r) ≤ x,
1&x = (y&x) ∨ x and x&1 = (x&y) ∨ x.

Proof. The proof is similar to that of Theorem 2.21. �

Let Q be a quantale with > 6∈ Q and Q̂> denote the set Q ∪ {>}. We define a

partial order ≤> on Q̂> and a semigroup multiplication &> on Q̂> as follows

≤>=≤ ∪{(x,>) : x ∈ Q̂>}
and

∀x, y ∈ Q̂>, x&>y =

 x&y, if x, y ∈ Q,
y, if x = >,
x, if y = >.

Proposition 2.38. Let (Q,&) be a quantale. Then (Q̂>,&>) is a unital quantale
if and only if Q is a two-sided quantale.
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