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FATOU-JULIA THEORY ON TRANSCENDENTAL SEMIGROUPS

KIN-KEUNG POON

In this paper, we shall study the dynamics on transcendental semigroups. Several
properties of Fatou and Julia sets of transcendental semigroups will be explored.
Moreover, we shall investigate some properties of Abelian transcendental semigroups
and wandering domains of transcendental semigroups.

1. INTRODUCTION

The development of complex dynamics took nearly a century, from the work of Fatou
[7, 8] and Julia [12, 13] appearing in 1918-1922 to the recent studies on the dynamics
of transcendental meromorphic functions [2, 3, 4]. Nowadays, complex dynamics has a
new significant development with the explosion of popular interest in the beautiful fractal
objects that form the subject matter of the theory. The computer-generated images of
Julia and Mandelbrot sets [14] bombard mathematicians to investigate the nature of
both the Fatou and Julia sets of a given complex function.

Complex dynamics is the subject that studies the behaviour of an iteration sequence
{fn{zo)}, where z0 € C and / " = fn~l o f with f°{z) = z. For a given analytic function
/ , the set F(f) is defined to be the maximum open set of z where the family {fn(z)} is
normal and J{f) — C\F(f). They are called the Fatou and Julia sets of / respectively.
The theory is a study of the properties of the sets F(f) and J(f). Although the theory
has been developed for nearly 80 years, there are many open problems which have not
yet been resolved. In the past few decades, there were some significant breakthroughs in
the subject. Sullivan [16] obtained the solution to the important problem concerning the
non-existence of a wandering domain of the Fatou components of rational functions. By
further classifying the periodic domains, together with the theorems of Siegel and Arnold
concerning the existence of rotation domains [15], a rather complete description of the
dynamics for rational functions has been derived. For the dynamics of transcendental
entire functions, although the basic properties of the Fatou and Julia sets are similar to
the rational functions, they actually possess some rather different dynamical behaviours.

Received 9th March, 1998
The author thanks Professor Chung-Chun, Yang for his kindly guidance for the previous years. Thanks
also to the Baptist University for providing me a good opportunity to work here, especially for my
previous teachers who give me much support and encouragement.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 SA2.00+0.00.

403

https://doi.org/10.1017/S000497270003238X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003238X


404 K-K. Poon [2]

In contrast to the rational functions case, recently Baker [1] has given an example to
show that certain transcendental entire functions can have wandering domains. Due to
the existence of an essential singularity at infinity, transcendental entire functions may
have a Baker domain in which the iteration sequence {/"} converges to the point of
infinity.

A natural generalisation of complex dynamics is to investigate the dynamics of a
sequence of different functions by means of composition. There are two main streams of
study. One is by Chinese mathematicians Zhou and Ren (see [18, 19] for details), who
published a series of papers on random iterations. The other one is by A. Hinkkanen and
G. J. Martin [10, 11] concerning semigroups of rational functions. Our work follows the
idea of Hinkkanen and extends the study to transcendental semigroups.

2. DEFINITIONS AND BASIC PROPERTIES ON TRANSCENDENTAL SEMIGROUPS

Before going to the details, we begin with some definitions and notations on tran-
scendental entire functions. Given a transcendental entire function / , we say that

1. a is a critical value (algebraic singularity) of / if there exists a zo G C such

that f(zo) = a and f'(zo) = 0. In this case, ZQ is called a critical point of

/•
2. a is an asymptotic value (transcendental singularity) of / if there exists a

curve F tending to infinity such that f(z) —> a as z —> oo along F.

NOTATION. Denote the set of singular points of f~x by Sing(/~1), which is the set of all
critical values and asymptotic values of / , and all its finite limit points.

DEFINITION: A transcendental entire function / is said to be of finite type if the set

Sing(/~1) has only finitely many elements, that is, / has only finitely many critical and

asymptotic values.

Now, we give the definition of transcendental semigroup.

DEFINITION: A transcendental semigroup G is a semigroup generated by a family
of transcendental entire functions {/i, . . . , / „ , . . . } with the semigroup operation being
the composition of functions. We denote the semigroup by:

In this way, ft 6 G is a transcendental entire function and G is close under compo-
sition. Hence h can be written as

h = fh °fh°-°fik-

A semigroup G = (/i, • • • , /„) generated by finitely many functions is called finitely
generated. From now on, transcendental semigroup mean non-empty finitely generated
transcendental semigroup unless otherwise specified.
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Based on the Fatou-Julia theory of a complex function, we can define the set of
normality of a transcendental semigroup G.

DEFINITION: Let G be a transcendental semigroup. The set of normality or the
Fatou set F(G) of G is the largest open subset of C on which the family of transcendental
entire functions in G is normal. Thus F(G) consists of those ZQ that have a neighbourhood
U such that {g : g e G} is a normal family on U. The Julia set J{G) of G is the
complement of F{G), that is J{G) = C\F{G).

REMARKS.

1. It is obvious that J(G) is a closed set for any transcendental semigroup G.

2. If G is generated by only one transcendental function / , then G is cyclic

and F(f) = F(G) = F«/»; J(f) = J(G) = J«/» .

3. For each geG, F{G) C F(g) and J(g) C J(G).

DEFINITION: For a given transcendental semigroup G, a set A c C is said to be
forward invariant if for all f € G, f(A) C A. It is called backward invariant if for all

/eC,
f-\A) = {z € C : f(z) €A}CA.

Similar to rational semigroups [10], we have the following theorem.

THEOREM 2 . 1 . Given a transcendental semigroup G, the Fatou set ofG is for-
ward invariant, while the Julia set of G is backward invariant.

It is well known that for transcendental entire functions, very frequently their Julia
set equals the whole complex plane. For example, it was shown by Devaney [6] that if
f(z) = eXz, if A ̂  e"1, then J(f) = C. On the contrary, it is rare that the Julia set of a
given rational function is the whole complex plane. Since F(G) C F(f) for any / 6 G,

one may ask whether there exists a non-trivial transcendental semigroup G such that
F(G) is non-empty. Non-trivial here means that G has more than one generator. An
example is given below.
EXAMPLE 2.1. Let G - (eAz,eAz + 2ni/X), where 0 < A < e"1. We can check that

Let g = ex', then for any f € G, f has either the form

or

where gn = g o . . . o g, n times. In both cases, F(f) = F(g). Hence F(G) = F(eXz) ± 0.

P R O O F O F T H E O R E M 2 .1 : For any / e G, G o / = {g o f : g e G} c G. G o f is

normal on F(G) by definition. Thus G is normal on f(F(G)), hence f(F(G)) C F(G).
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Moreover, if z € J(G), we can find w € C such that f(w) — z; then w necessary belongs
to J{G), for otherwise, we have z € F(G) by the previous arguments. Hence J(G) is
backward invariant. D

3. EXCEPTIONAL SETS OF TRANSCENDENTAL SEMIGROUPS

Given a transcendental semigroup G, we define the set

O~(z) — {w G C : there exists g € G such that g(w) — z}

and the exceptional set of G is defined by

E(G) = {zeC:C>-(z) is finite}.

REMARKS. It is a fundamental result that if / is a transcendental entire function, then
/ takes every complex value infinitely often except possible at most one value, called the
Picard exceptional value of / . A value c 6 C is called a Fatou exceptional value of / if
f(z) = c has no solution or the only solution of f(z) — c is c itself. From the definition, a
Fatou exceptional value is a Picard exceptional value, but the converse need not be true.
In our case, E(G) contains at most one value in C.

4. JULIA SETS OF TRANSCENDENTAL SEMIGROUPS

In analogy to complex functions [5] and rational semigroups [10], we have the fol-
lowing theorem.

THEOREM 4 . 1 . Suppose G is a transcendental semigroup, then J(G) is a perfect

set.

Based on Nevanlinna theory of transcendental functions and a remarkable result on
the theory of normal families due to Zalcman [17], we obtain the following theorem.

THEOREM 4 . 2 . Given a transcendental semigroup G,

J(G) = (J J(g).

In order to prove Theorem 4.2, we need the following lemma.

LEMMA 4 . 1 . [17] A family F of transcendental entire functions is not normal at
zi»o € C if and only if there exists a sequence {/,} 6 F, a sequence Zj —> WQ, a positive
sequence pj —¥ 0 and an entire function f on the plane with f ^ 0, such that

f(z)

spherically uniformly on all compact subsets ofC.
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P R O O F O F T H E O R E M 4 .1 : By assumption, G contains at least one transcendental
entire function / . Since J(f) is perfect, J(G) is non-empty and it contains at least three
points as J(f) is contained in J(G). Suppose /? € J(G) is an isolated point. Choose
a neighbourhood U of 0 so that U\{(3} C F{G). Since g(F(G)) C F(G) , each g G G
omits J(G) on V = U\{0} which implies every element in G is normal on U, which gives
a contradiction. D

P R O O F OF T H E O R E M 4.2: Since J(g) C J(G) for all g € G and J(G) is closed,

(J Jig) C J(G).
geG

Conversely, we choose an element / € G. Hence / is transcendental entire and we let A

be the set

where

is an index of multiplicity of / . The set A has at most two elements and for w 0 A,
f(z) = w has infinitely many simple solutions. (See [9] for more details.) Now, we choose
w0 e J(G)\A. We want to prove that w0 is a limit point of some sequences of repelling
periodic points of the elements in G.

By definition, G is not normal on w0, hence by Lemma 4.1, we can find a sequence
{/j} € G, a sequence Zj —> too, a positive sequence pj —> 0 and an analytic function h
with h' ^ 0 such that

fj(*j + Pi*)-> h(z)

spherically uniformly on all compact subsets of C. Therefore,

f o MZJ + PJZ) ^ f o h{z)

as j -> oo. Since w0 £ A, there exists infinitely many simple solutions of f(z) — w0.
We denote the solutions by {an}, that is, f{an) = wo and f'(an) / 0 for n 6 N. If h is
transcendental, we have Q(otj,h) < 1/2 for some ai,a2,a3. Without loss of generality,
we assume

M0) = «i, h'iP) #0,

for some /? € C. If /i is a polynomial, one of the equations /i(z) = c^, i € N has a simple
root, say /?, since /i'(z) has only finitely many zeros. In both case, we can find /? 6 C
such that

We obtain

/ f( ) h + Pjz
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/ o h(z) = wo has a solution 0, and it is non-constant. Hurwitz's theorem implies that

+ pjz'j is a fixed point of / o fjhas a solution zj for sufficiently large j and zj —» /?.
and Zj + pjZj -» wQ. It is repelling because

\(f°fj)'(zj+Pjz'j)\ =
Pi

for sufficiently large j . Hence the result follows.

(foh)'(p)
Pi

> 1

5. ABELIAN TRANSCENDENTAL SEMIGROUPS

DEFINITION: G — (/i, / 2 , . . . , /„) is called an Abelian transcendental semigroup if
all the generators in G are permutable, that is fa o fj = fj o f{ for all 1 ̂  i, j ^ n.

THEOREM 5 . 1 . Suppose G = ( / i , . . . ,fn) is an Abelian transcendental semi-
group in which each fi is of finite type fori= 1 , . . . , n. Then for any f € G, F(G) = F(f).

Before proving the above theorem, we need the following two lemmas.

LEMMA 5 . 1 . Suppose f and g are transcendental entire functions. If both f and
g are of finite type, then f o g is of finite type. In particular, f2 is of finite type.

LEMMA 5 . 2 . Suppose f and g are permutable transcendental entire functions of
finite type. Then F(f) = F{g).

PROOF OF LEMMA 5.1: Suppose a 6 Sing(/o^)~1 is an algebraic singularity, then
a = / o g(b) and (/ o g)'(b) = f'(g(b))g'(b) = 0. Hence either f'(g(b)) = 0 or g'{b) = 0.
Thus g(b) is a critical point of / or b is a critical point of g. In the former case, a is a
critical value of / . For the other case, we can find a c which is a critical value of g such
that g(b) = c, and so a = /(c). Hence the number of algebraic singularities of / o g is at
most equal to the sum of the number of algebraic singularities of / and g.

Finally, if a € Sing(/o5)~1 is a transcendental singularity, then there exists a path T
approaching infinity such that fog(z) —* aas z transverses alongF. If g(T) is unbounded,
then g(T) is an asymptotic path of / and hence a is an asymptotic value of / . If g(T)
is bounded, it must terminate at one of the solutions f(z) = a. Since a-points of / are
isolated, we have a c € Sing(p~1) is a transcendental singularity of g such that f(c) = a.
Hence the number of transcendental singularities of / o g is at most equal to the sum of
the number of transcendental singularities of / and g and the lemma follows. D

P R O O F OF LEMMA 5.2: Since both / and g are of finite type, / and g have no
wandering domains or Baker domains. (See [5].) This will ensure that any subsequence
{/"'} and {<?"'} will not tend to infinity for z belonging to their Fatou sets respectively.

https://doi.org/10.1017/S000497270003238X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003238X


[7] Fatou-Julia theory 409

In order to reach our conclusion, we only need to show that F(f) C F(g) since by
symmetry we can also conclude F(g) C F(f). Indeed, it is sufficient to prove g(F(f)) c
F(f). Take a € F(f) and consider a neighbourhood Ua C F(f) which contains a.
Consider any sequence fn> which is convergent on Ua. Then {fnj} cannot converge to
infinity. Hence it converges to a holomorphic function h : Ua -* C. In this case, /">
converges to g o h on g(Ua) by / " o g = g o / " . Therefore we have g(Ua) C F(f). Hence
the lemma follows. D

P R O O F O F T H E O R E M 5.1: Since for any 1 ^ i ^ j• ̂  n, fi and / , are permutable,
by Lemma 5.2, we can conclude that F(fi) — F(fj). Now, for any / £ G, by the
permutability of each /*, / can be represented by:

Applying Lemma 5.1 repeatedly, / j m ' , . . . , / " " are of finite type and so is / [" ' o . . . o /™».
Hence / is of finite type. Observe that / and fi are permutable for 1 ^ i sj n. By Lemma
5.2 again, F(f) = F ( / 0 for alH = 1, . . . , n. In conclusion, F(G) = F(f) for all / € G. •

6. WANDERING DOMAINS ON F{G)

DEFINITION: A component U of F(G) is called a wandering domain of G if there
are infinitely many distinct components Uj of F(G) and elements fj of G such that
fj(U) C C/j. In this case, {/,-} is called a sequence of wandering functions on U.

THEOREM 6 . 1 . Let G be a transcendental semigroup. If U is a wandering do-
main ofG and {fj} is a sequence of functions with wandering domains U, then any limit
function of {fj} on U must be constant and belong to the Julia set ofG.

PROOF OF THEOREM 6.1: Suppose {/,} tends to a limit function c locally uniformly
on U. The limit function must be constant, for otherwise, the image under fj of a close
disc contained in U contains a fixed disc for all large j , so that the Uj coincide for
sufficiently large j , which is a contradiction. Similarly, we can conclude c € J{G). D
REMARKS. In analogy to the case of complex functions, we can also defined the peri-
odic components in F(G) as it is defined in the rational semigroups case, see [10].
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