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Similarity and Coincidence Isometries for
Modules

Svenja Glied

Abstract. The groups of (linear) similarity and coincidence isometries of certain modules Γ in d-

dimensional Euclidean space, which naturally occur in quasicrystallography, are considered. It is

shown that the structure of the factor group of similarity modulo coincidence isometries is the di-

rect sum of cyclic groups of prime power orders that divide d. In particular, if the dimension d is a

prime number p, the factor group is an elementary abelian p-group. This generalizes previous results

obtained for lattices to situations relevant in quasicrystallography.

1 Introduction

The classification of colour symmetries and that of grain boundaries in crystals and

quasicrystals are closely related to the existence of similar and coincidence sublattices

of the underlying lattice of periods or the corresponding translation module; cf. [2]

and [4]. It is thus of interest to understand the corresponding groups of isometries

from a more mathematical perspective. For a free Z-module M ⊂ Rd of finite rank

that spans Rd, an element R ∈ O(d, R) is called a coincidence isometry of M if RM

and M are commensurate, written RM ∼ M, which means that their intersection has

finite index both in M and in RM. We let OC(M) denote the set of all coincidence

isometries of M. More generally, a similarity isometry of M is an elementT ∈ O(d, R)

with αTM ∼ M for some positive real number α. This definition was first introduced

for lattices in [6]. The set OS(M) of all similarity isometries of M obviously contains

OC(M) as a subset.

For subrings S of the rings of integers of real algebraic number fields, we consider

the similarity and coincidence isometries of free S-modules Γ ⊂ Rd of rank d that

span Rd. For a separate treatment of the crystallographic case S = Z, where Γ is

a lattice, the reader is referred to [14]. We show that the similarity isometries of Γ
form a group that contains the coincidence isometries as a normal subgroup. The

corresponding factor group of similarity modulo coincidence isometries is the direct

sum of cyclic groups of prime power orders that divide d (Theorem 3.14). In the

case of S-modules over K in Rd (cf. Definition 3.17), where K is the quotient field

of S, the factor group is either trivial or an elementary abelian 2-group, depending

on the parity of d. This includes the standard icosahedral modules and the rings of

cyclotomic integers in complex cyclotomic fields.
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2 S. Glied

2 Z-modules

Let us begin by recalling some well-known facts on abelian groups. If M is an abelian

group and N ⊂ M a subgroup of finite index [M : N] = k, then a direct consequence

of Lagrange’s Theorem is that kM is a subgroup of N.

Fact 2.1 Let M be a free Z-module of finite rank.

(1) If N is a submodule of M, then N is also a free Z-module with rank(N) 6

rank(M).

(2) If N is a submodule of M of finite index, then N has the same rank as M.

Proof Cf. [1, Theorem 6.2] for (1). If [M : N] = k ∈ N, then kM ⊂ N. If

{m1, . . . , mr} is a Z-basis of M, then {km1, . . . , kmr} forms a Z-basis for the free

module kM. Using (1) yields rank(M) = rank(kM) 6 rank(N). Now (2) follows

from (1).

Fact 2.2 ([12, Chapter 2, Lemma 6.1.1]) If M is a torsion-free abelian group of

rank r, and N is a subgroup which is also of rank r, then the index [M : N] is finite

and equals the absolute value of the determinant of the transition matrix from any

basis of M to any basis of N.

Together with Fact 2.1(2), this gives the following equivalence.

Lemma 2.3 Let M ⊂ Rd be a free Z-module of finite rank and let N ⊂ M be a

submodule. Then the index [M : N] is finite if and only if rank(N) = rank(M).

Fact 2.4 Two free Z-modules M, M ′ ⊂ Rd of finite rank are called commensurate

if their intersection has finite (subgroup) index both in M and in M ′. In this case

we write M ∼ M ′. Furthermore, if M ∼ M ′, then M ∩ M ′ is a free Z-module with

rank(M) = rank(M ′) = rank(M ∩ M ′) by Facts 2.1(1) and 2.1(2).

Lemma 2.5 Commensurability of free Z-modules of finite rank r contained in Rd is

an equivalence relation.

Proof Reflexivity and symmetry are clear by definition. For the transitivity, let M1 ∼
M2 and M2 ∼ M3. In particular, the indices s12 = [M2 : (M1 ∩ M2)] and s23 = [M2 :

(M2 ∩ M3)] are finite. One obtains s12M2 ⊂ (M1 ∩ M2) and s23M2 ⊂ (M2 ∩ M3).

Since M1, M3 and s12s23M2 are free Z-modules of rank r in Rd, Lemma 2.3 together

with the relation

s12s23M2 ⊂ (M1 ∩ M2 ∩ M3)

now implies that M1∩M2∩M3 is of finite index both in M1 and M3. As a consequence,

one obtains M1 ∼ M3.

Alternatively to the definition of OS(M) above, one easily verifies that

(1) OS(M) = {R ∈ O(d, R) | βRM ⊂ M for some β ∈ R+},

where R+ denotes the set of positive real numbers.
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Similarity and Coincidence Isometries for Modules 3

Therefore, OS(M) consists of all linear isometries that arise from similarity map-

pings of M into itself. We call a submodule of M of the form βRM a similar submodule

of M. (For similar submodules in four dimensions, see [8].)

Lemma 2.6 Let M ⊂ Rd be a free Z-module of finite rank r that spans Rd. The sets

OS(M) and OC(M) are subgroups of O(d, R).

Proof Let R, S ∈ OS(M). Due to equation (1), there exist positive real numbers α, β
with αRM ⊂ M and βSM ⊂ M. Hence RS ∈ OS(M), because

αβRSM = αR(βSM) ⊂ αRM ⊂ M.

One also has M ⊂ α−1R−1M, which implies that the group index [α−1R−1M : M] =

s is finite by Lemma 2.3. Thus sα−1R−1M ⊂ M is also of finite index. This shows

R−1 ∈ OS(M). For the group property of OC(M) let R1, R2 ∈ OC(M). R2M ∼
M yields M ∼ R−1

2 M, and hence R1M ∼ R1R−1
2 M. On the other hand, M ∼

R1M ∼ R1R−1
2 M implies M ∼ R1R−1

2 M, because commensurability is transitive

by Lemma 2.5.

Let us briefly turn to the subgroup of orientation preserving similarity isome-

tries SOS(M) ⊂ OS(M), which are by definition those similarity isometries R with

det(R) = 1. For planar lattices, these similarity rotations are rather well understood;

cf. [11]. A Z-module in an algebraic number field K of degree n is called full, if it con-

tains n linearly independent elements over Q . If a full Z-module in K is a ring and

contains the number 1, it is called an order of K. Any order of K is contained in the

ring of algebraic integers OK of K, which is itself an order. Hence OK is also called the

maximal order of K; cf. [12]. In the following results on orders of imaginary algebraic

number fields, we parametrise the Euclidean plane by the complex numbers C and

furthermore, we use SO(2, R) ≃ S1.

Lemma 2.7 Let K be an imaginary algebraic number field and let O be an order of K.

Then

SOS(O) =

{

a/|a|
∣

∣ a ∈ O \ {0}
}

.

Proof For 0 6= a ∈ O, one has |a| · a/|a|O ⊂ O, because O is a ring. Hence

a/|a| ∈ SOS(O). Conversely, let r ∈ SOS(O), meaning r ∈ S1 with λrO ⊂ O for

some λ ∈ R+. Since 1 ∈ O, this yields λr ∈ O, say λr = β. Thus |λ| = |β|, because

r ∈ S1. This shows that r = ±β/|β| is an O-direction.

There is a close connection between similar submodules of orders O of algebraic

number fields K that arise from rotations and the principal ideals of these orders. The

special cases where K is an n-th cyclotomic field of class number 1 and O = Z[ζn]

(with ζn an n-th primitive root of unity), or where O is a planar lattice with non-

generic multiplier ring, can be found in [4] and [11].

Theorem 2.8 Let K be an imaginary algebraic number field and let O be an order

of K. Then the similar submodules of O of the form αRO with R ∈ SOS(O) are precisely

the principal ideals of O, i.e., the ideals of the form κO with κ ∈ O. Moreover, one has

[O : κO] = |N(κ)|,
where N denotes the field norm of K.
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4 S. Glied

Proof Let R ∈ SOS(O) and α ∈ R+ with αRO ⊂ O. Due to Lemma 2.7, there exists

a nonzero δ ∈ O such that R = δ/|δ|. Then 1 ∈ O implies αδ/|δ| ∈ O. Hence

αRO is a principal ideal of O. Conversely, for any nonzero κ ′ ∈ O one has κ ′O ⊂ O,

because O is a ring. Setting R ′
= κ ′/|κ ′|, one has R ′ ∈ SOS(O) by Lemma 2.7,

and |κ ′|R ′O ⊂ O. The second claim follows by a standard argument in Minkowski

theory; cf. [12, Section 3, Chapter 2]. Considering a Minkowski representation x(O)

of O, one finds

[O : κO] = [x(O) : x(κO)] = |N(κ)|.

3 S-Modules

Let S ⊂ R be a ring with unity that is also a finitely generated Z-module, hence a free

Z-module of finite rank r. Furthermore, let K be the field of fractions of S. Through-

out this section, let Γ ⊂ Rd be a free S-module of rank d that spans Rd, meaning

that it is the S-span of an R-basis of Rd. Besides the case S = Z, where Γ is a lattice

in Rd, this also covers many important examples relevant in quasicrystallography; cf.

Example 3.18.

Remark 3.1

(1) Every element of S is an algebraic integer and K is a real algebraic number field.

(2) S is integrally closed if and only if S is the ring of integers OK in K.

(3) Γ is a free Z-module of rank rd.

(4) In fact, by standard results from algebra, rings S as above are precisely the sub-

rings of rings of integers in real algebraic number fields; cf. [15] for more on

this.

Remark 3.2 Let Γ1, Γ2 be free S-modules of rank d that span Rd. If Γ1 and Γ2

are commensurate, then Γ1 ∩ Γ2 is a free Z-module of rank rd (cf. Fact 2.4) and it

spans Rd. Namely, if Γ1 ∼ Γ2, then one has m = [Γ1 : (Γ1 ∩ Γ2)] < ∞. Hence

mΓ1 ⊂ (Γ1 ∩ Γ2), which implies that Γ1 ∩ Γ2 contains an R-basis of Rd.

The following result is of fundamental importance; compare [20, Theorem 2.1]

for the special case S = Z (K = Q).

Theorem 3.3 Let Γ1, Γ2 ⊂ Rd be free S-modules of rank d that span Rd. Further, let

B1, B2 ∈ GL(d, R) be basis matrices of the S-modules Γ1 and Γ2, respectively. Then, one

has

Γ1 ∼ Γ2 ⇐⇒ B−1
2 B1 ∈ GL(d, K).

Proof Let firstly Γ1 ∼ Γ2. By Remark 3.2, the intersection Γ ′
= Γ1 ∩ Γ2 contains

an R-basis B of Rd. Let B ∈ GL(d, R) be the associated matrix. Then there exist

non-singular matrices Z1, Z2 ∈ Mat(d, S) such that

B1Z1 = B = B2Z2,

whence B−1
2 B1 = Z2Z−1

1 ∈ GL(d, K) by the standard formula for the inverse of a

matrix. Conversely, if B−1
2 B1 ∈ GL(d, K), then there is a non-zero number s ∈ S
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such that B = sB−1
2 B1 ∈ Mat(d, S). Setting Γ ′

= Γ1 ∩ Γ2, the identity sB1 = B2B

implies that sΓ1 ⊂ Γ ′ ⊂ Γ1. Since sΓ1 and Γ1 are both free Z-modules of rank rd,

one obtains [Γ1 : Γ ′] < ∞. By symmetry, one also has [Γ2 : Γ ′] < ∞. Hence,

Γ1 ∼ Γ2.

Definition 3.4 For an arbitrary element R ∈ O(d, R), define

scalΓ (R) = {α ∈ R | Γ ∼ αRΓ}.

Note that OS(Γ ) = {R ∈ O(d, R) | scalΓ (R) 6= ∅}.

Remark 3.5 If β ∈ scalΓ (R), then there exists a nonzero element t ∈ Z such that

tβRΓ ⊂ Γ . For if β ∈ scalΓ (R), then the index [βRΓ : (Γ ∩ βRΓ )] = t is finite and

one has tβRΓ ⊂ (Γ ∩ βRΓ ) ⊂ Γ .

Lemma 3.6 For all elements α ∈ scalΓ (R) one has αd ∈ K. Thus α is an algebraic

number.

Proof One has αRΓ ∼ Γ by assumption. Let B be a basis matrix for Γ . Then αRB

is a basis matrix for αRΓ . By Theorem 3.3, one has B−1αRB ∈ GL(d, K), which

immediately yields

αd
= ± det(αR) ∈ K.

Hence α is algebraic over K, which implies that K(α) is a finite field extension of K,

and thus also of Q . Therefore α is algebraic over Q .

Let R• denote the multiplicative group formed by the nonzero real numbers.

Denoting by R• GL(d, K) the group consisting of all elements of the form tH with

t ∈ R• and H ∈ GL(d, K), there is the following consequence of Theorem 3.3.

Corollary 3.7 For any basis matrix BΓ of Γ , one has

(2) OS(Γ ) =

(

BΓ

(

R
• GL(d, K)

)

B−1
Γ

)

∩ O(d, R)

and

OC(Γ ) =

(

BΓ GL(d, K)B−1
Γ

)

∩ O(d, R).

Proof Let {γ1, . . . , γd} be an S-basis of Γ and denote by BΓ the associated matrix.

For R ∈ OS(Γ ) there exists a positive real number α with αRΓ ∼ Γ . The set

{αRγ1, . . . , αRγd} is an S-basis of αRΓ with associated matrix BαRΓ = αRBΓ . The-

orem 3.3 then implies that there exists an H ∈ GL(d, K) with H = B−1
Γ αRBΓ . Thus,

one has R = BΓ α−1HB−1
Γ . If on the other hand S ∈ O(d, R) and S = BΓ β JB−1

Γ for

some β ∈ R• and J ∈ GL(d, K), then one has

B−1
Γ Bβ−1SΓ = B−1

Γ β−1SBΓ ∈ GL(d, K).

Theorem 3.3 therefore implies β−1SΓ ∼ Γ , which shows S ∈ OS(Γ ).
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6 S. Glied

Remark 3.8 By Corollary 3.7, every element R ∈ OS(Γ ) can be written as R =

BΓ βHB−1
Γ with β ∈ R• and H ∈ GL(d, K). Theorem 3.3 implies βRΓ ∼ Γ and

hence β ∈ scalΓ (R), which shows that β is an algebraic number and that βd ∈ K

by Lemma 3.6. But the set of all algebraic numbers is countable and so is GL(d, K).

Therefore the group OS(Γ ) is countable and in particular, the subgroup OC(Γ ) is

countable as well. The explanations above imply that, in Corollaries 3.7 and 3.9, R•

can be replaced by the set of all nonzero real numbers δ with δd ∈ K.

Corollary 3.9 Let Γ ⊂ Kd. One has

OS(Γ ) =

(

R
• GL(d, K)

)

∩ O(d, R)

and

OC(Γ ) = O(d, K).

Proof The assumption Γ ⊂ Kd yields BΓ ∈ GL(d, K). Therefore, one has

BΓ GL(d, K)B−1
Γ = GL(d, K), and the claim follows from Corollary 3.7.

Lemma 3.10 For R ∈ OS(Γ ), the following assertions hold:

(1) b · scalΓ (R) = scalΓ (R) for all b ∈ K \ {0},

(2) rΓ ∼ Γ with r ∈ R implies r ∈ K,

(3) αβ−1 ∈ K for all α, β ∈ scalΓ (R).

Proof Let α ∈ scalΓ (R). Since K is the field of fractions of S, every nonzero element

b ∈ K can be written as b = b1/b2 with b1, b2 ∈ S \ {0}. Then, one finds

b1

b2

αRΓ ∼ 1

b2

αRΓ ∼ 1

b2

Γ .

One easily observes that 1
b2

Γ ∼ Γ . Hence bαRΓ ∼ Γ , yielding b · scalΓ (R) ⊂
scalΓ (R). Thus, one also has b−1 · scalΓ (R) ⊂ scalΓ (R), which proves (1). In order to

show (2), let u ∈ R with uΓ ∼ Γ . Due to Remark 3.5, there exists a nonzero integer k

such that kuΓ ⊂ Γ . Let γ ∈ Γ be represented in terms of an S-basis γ1, . . . , γd of

Γ as γ =

∑d
i=1 ciγi with ci ∈ S. On the other hand, kuγ can be represented as

kuγ =

∑d
i=1 aiγi , where ai ∈ S. Thus

d
∑

i=1

kuciγi =

d
∑

i=1

aiγi .

By assumption, Γ spans the Rd. Hence {γ1, . . . , γd} forms an R-basis of Rd. There-

fore, one has kuci = ai , yielding u = aic
−1
i k−1 ∈ K. Finally, (3) is obtained from (2)

as follows. By assumption, one has

βRΓ ∼ Γ ∼ αRΓ .

Multiplying with 1/β gives RΓ ∼ α
β RΓ , which completes the proof.
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In accordance with the previous notation, denote by K• the multiplicative group

formed by the nonzero elements of K.

Remark 3.11 As a direct consequence of Lemma 3.10, one has scalΓ (R) = αK• for

any α ∈ scalΓ (R).

Define the map

η : OS(Γ ) −→ R
•/K•,

R 7−→ scalΓ (R).

This map is well-defined due to the fact that scalΓ (R) is non-empty for R ∈ OS(Γ )

and by Remark 3.11.

Lemma 3.12 The map η is a group homomorphism with Ker(η) = OC(Γ ).

Proof Let R, S ∈ OS(Γ ) and α ∈ scalΓ (R), β ∈ scalΓ (S). We need to show that

αβ ∈ scalΓ (RS). By assumption, one has

Γ ∼ αRΓ ∼ αR(βSΓ ) = αβRSΓ .

Thus αβ ∈ scalΓ (RS), hence η is a group homomorphism. It remains to show

that Ker(η) = OC(Γ ). For R ∈ OC(Γ ) the set scalΓ (R) contains 1, thus η(R) =

scalΓ (R) = K• by Remark 3.11. Conversely, if S ∈ Ker(η), one has scalΓ (S) = K•,

which implies S ∈ OC(Γ ).

As the kernel of a group homomorphism, OC(Γ ) is a normal subgroup of OS(Γ ).

The factor group OS(Γ )/ OC(Γ ) is isomorphic to the image of η, which is a sub-

group of R•/K• and thus abelian. Furthermore, OS(Γ )/ OC(Γ ) is countable by

Remark 3.8. The corresponding result holds for the special case of orientation-

preserving isometries by considering the restriction of η to SOS. To unfold the struc-

ture of the factor group OS(Γ )/ OC(Γ ), we need the following result from the theory

of abelian groups.

Proposition 3.13 ([18, Theorems 5.1.9 and 5.1.12]) Let G be an abelian group.

(1) If a prime number p exists such that xp
= 1 for all x ∈ G, then G is the direct sum

of subgroups of order p.

(2) If a positive integer n exists such that xn
= 1 for all x ∈ G, then G is the direct sum

of cyclic groups of prime power orders.

Theorem 3.14 The group OS(Γ )/ OC(Γ ) is the direct sum of cyclic groups of prime

power orders that divide d.

Proof We consider again the group homomorphism η : OS(Γ ) −→ R•/K•. Let

R ∈ OS(Γ ). According to Lemma 3.6, one has αd ∈ K• for any nonzero α ∈
scalΓ (R), which yields

(3) η(R)d
= scalΓ (R)d

= (αK•)d
= αdK•

= K•
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in R•/K•. Using the group isomorphism η
(

OS(Γ )
)

≃ OS(Γ )/ OC(Γ ), this shows

that the order of each element of OS(Γ )/ OC(Γ ) divides d. Proposition 3.13(2) then

implies that the group OS(Γ )/ OC(Γ ) is the direct sum of cyclic groups of prime

power orders. Consequently, the prime power order of each cyclic group divides d.

Example 3.15 Denote by {e1, . . . , ed} the canonical basis of Rd. Let n > 1 be a

natural number with ξ =
d
√

n 6∈ Q . The Z-span Γ of {ξiei | 1 6 i 6 d} is a lattice in

Rd. Consider the cyclic permutation σ = (12 · · · d) of the symmetric group Sd. Then

σ induces a linear isomorphism R of Rd by permuting the canonical basis vectors,

i.e., Rei = eσ(i). Since ξRΓ ⊂ Γ , R is a similarity isometry of Γ . But R is not a

coincidence isometry of Γ (because d
√

n 6∈ Q). Setting m = mini {ξi | ξi ∈ Q}, one

easily verifies that the factor group OS(Γ )/ OC(Γ ) contains the cyclic group Cm of

order m generated by the equivalence class of R. If m is not a prime power, then the

fundamental theorem of finitely generated abelian groups states that Cm is the direct

sum of cyclic groups of prime power orders. Examples of the module case can be

constructed similarly.

Corollary 3.16 If d = p is a prime number, then OS(Γ )/ OC(Γ ) is an elementary

abelian p-group, i.e., it is the direct sum of cyclic groups of order p.

Definition 3.17 Denote by 〈 · , · 〉 the standard scalar product of Rd. We call Γ an

S-module over K in Rd if it satisfies 〈γ, γ〉 ∈ K for all γ ∈ Γ .

Example 3.18

(1) Let S = Z. Then, K = Q and the S-modules Γ over K in Rd are precisely the

rational lattices in Rd; cf. [13] for examples.

(2) For n ∈ N, Sn is an S-module over K in Rn.

(3) Consider the quadratic number field L := Q(τ ), where τ is the golden ratio, i.e.,

τ = (1 +
√

5)/2. Then, one has OL = Z[τ ]. The icosian ring

I = 〈(1, 0, 0, 0), (0, 1, 0, 0), 1
2
(1, 1, 1, 1), 1

2
(1 − τ , τ , 0, 1)〉OL

⊂ L4

is an OL-module over L in R4 (see [8]). Further, both the standard body centred

icosahedral module MB and the standard face centred icosahedral module MF

of quasicrystallography are OL-modules over L in R3; cf. [2], [9] and references

therein.

(4) Consider the quadratic number field L := Q(
√

2). Then, OL = Z[
√

2] and

further, the octahedral (or cubian) ring

K = 〈(1, 0, 0, 0), 1√
2
(1, 1, 0, 0), 1√

2
(1, 0, 1, 0), 1

2
(1, 1, 1, 1)〉OL

⊂ L4

is an OL-module over L in R4; cf. [8], [9] and references therein.

(5) Consider the complex cyclotomic field Q(ζm), where m ≥ 3 and ζm is a primitive

m-th root of unity in C (e.g., ζm = e2πi/m). Recall that Q(ζm) is a finite Ga-

lois extension of Q with maximal real subfield L := Q(ζm) ∩ R = Q(ζm + ζ̄m);
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cf. [19, Theorem 2.5]. Further, it is well known that OQ(ζm) = Z[ζm] and OL =

Z[ζm + ζ̄m]; cf. [19, Theorem 2.6 and Proposition 2.16]. Moreover, since ζ2
m =

(ζm + ζ̄m)ζm−1, the ring Z[ζm] is the Z[ζm + ζ̄m]-span of the R-basis {1, ζm} of C.

Identifying the complex numbers C with R2, one can now verify that Z[ζm] is an

OL-module over L in R2. In particular, rings of integers in complex cyclotomic

fields can be used to construct planar mathematical quasicrystals such as the ver-

tex sets of Penrose, Ammann–Beenker or shield tilings; cf. [7], [3], [5], [17].

Theorem 3.19 For an S-module Γ over K in Rd one has

OS(Γ )2 ⊂ OC(Γ ),

where OS(Γ )2
= {R2 | R ∈ OS(Γ )}. Thus, the factor group OS(Γ )/ OC(Γ ) is an

elementary abelian 2-group when d is even. If d is odd, one has OS(Γ ) = OC(Γ ).

Proof Let R ∈ OS(Γ ). Then there exists an element α ∈ R+ with αRΓ ⊂ Γ . By

assumption, one has 〈αRγ, αRγ〉 ∈ K for all γ ∈ Γ . Hence α2 ∈ K•, say α2
= s1/s2,

where s1, s2 ∈ S \ {0}. Since s2α
2
= s1 ∈ S and αRΓ ⊂ Γ , this yields

Γ ⊃ s2αR(αRΓ ) = s2α
2R2Γ ⊂ R2Γ ,

whence s1R2Γ ⊂ (Γ ∩ R2Γ ). Since Γ , R2Γ and s1R2Γ are Z-modules of the same

finite rank, one obtains that both [Γ : s1R2Γ ] and [R2Γ : s1R2Γ ] are finite. It

follows that Γ ∼ R2Γ , meaning that R2 is a coincidence isometry of Γ . Consequently,

OS(Γ )2 ⊂ OC(Γ ). Thus, every element of the factor group OS(Γ )/ OC(Γ ) is of

order 1 or 2. By Proposition 3.13(1), the factor group is an elementary abelian 2-

group. If d is odd, set d = 2m + 1 with m ∈ N. Then α(α2)m
= αd ∈ K• yields

α ∈ K•, because α2 ∈ K•. Thus η(R) = scalΓ (R) = αK•
= K• in R•/K• for all

R ∈ OS(Γ ), whence OS(Γ )/ OC(Γ ) is the trivial group. In other words, one has

OS(Γ ) = OC(Γ ) for d odd.

Example 3.20 Using the notation of Example 3.18(5), consider a cyclotomic field

Q(ζm) of class number one, meaning that its ring of integers Z[ζm] is a unique fac-

torization domain; see [10] for more on this. Z[ζm] is an OL-module over L in R2.

Since we are working in 2-space, Theorem 3.19 implies that the factor group of sim-

ilarity modulo coincidence isometries is an elementary abelian 2-group. Combining

the results of [10] and [16, Proposition 1.89], one immediately obtains

SOS(Z[ζm])/ SOC(Z[ζm]) ≃ C2 ×C(ℵ0)
2 ,

where SOS and SOC indicate the restriction to orientation-preserving isometries,

and C(ℵ0)
2 stands for the direct sum of countably many cyclic groups of order 2.
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