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Introduction. Quantum stochastic integrals have been constructed in various
contexts [2, 3, 4, 5, 9] by adapting the construction of the classical L2-It6-integral with
respect to Brownian motion. Thus, the integral is first defined for simple integrands as a
finite sum, then one establishes certain isometry relations or suitable bounds to allow the
extension, by continuity, to more general integrands. The integrator is typically
operator-valued, the integrand is vector-valued or operator-valued and the quantum
stochastic integral is then given as a vector in a Hilbert space, or as an operator on the
Hilbert space determined by its action on suitable vectors.

These constructions are functional-analytic in essence rather than measure-theoretic.
That stochastic integration can be thought of in measure-theoretic terms was established
in [6]. Indeed, generalizing Bartle's construction of the bilinear vector integral [7] by
replacing the semi-variation of the vector measure by the "semi-variation with respect to
a filtration" (called the belated semi-variation) it was shown in [6] that one can define
genuine vector integrals of adapted integrands. The quantum stochastic integrals of [3, 4,
5] and, indeed, the clasical L2-It6-integral with respect to Brownian motion are special
cases of these "belated integrals".

We shall show here that, by a further slight generalization (allowing a more general
pairing between integrand and integrator) the Fock space quantum stochastic integrals of
[1, 2, 10] (namely those whose integrators are the fermion or boson annihilation, creation
or number operator processes) can also be obtained as belated integrals.

In view of the "equivalence" between the fermion and boson cases [11], it is enough
to treat just one or the other. We shall consider the latter.

1. The belated semi variation. We recall the relevant concepts from [6]. Let 5?
denote the ring of subsets of R+ = [0, °°) generated by bounded intervals, and let m be a
finitely-additive vector measure on 9? with values in a linear space <2/. Suppose that 3f is a
normed space and let {^}ieR+ be an increasing family of subspaces of 3£ indexed by R+.
Let 2£ be a Banach space and suppose that there is a bilinear mapping from *% x % into St,
(x,y)<-*xy,xe%!,y e %.

DEFINITION 1.1. The belated semivariation of m (with respect to {$£s}) is the set
function

where the supremum is over all partitions of E into a finite number of disjoint intervals
{/,} and alljc,ea?inf/, with | |* , | |<1.

If S£s = 9£ for all s e R + , then the belated semivariation reduces to the semivariation
ofw[7].

The belated semivariation can be suitably extended when it has a control measure y;
that is, when there is a locally finite positive measure y such that, for any t > 0,
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y(E)-*O=> ||£||£,->0 for E e 91, E c [0, t]. First || • \\b
m is extended to outer sets by using

monotone sequences from £%: if F is an outer set with F = lim En where (En) is an
increasing sequence in &, we define HFH^1 = lim||£:n||^'. The y continuity of || • \\b

m on 9i
ensures that \\F\\b^ is well-defined. If A c R+, we set

where the infimum is taken over all outer sets F containing A. Thus || • ||£,° is (locally)
continuous with respect to the outer measure induced by y. As explained in [6, Section 2],
extending || • ||£,° in this way leads to a wider class of integrable functions than one would
otherwise obtain.

The belated semivariations of the measures considered here will be shown to have
control measures and so will be extended as above with no further comment.

DEFINITION 1.2. A map <p :R+—»#? is said to be a process (with respect to the
filtration {%s}) if <j>(s) e %s, the closure of %s in #?, for each 5 e R+.

A process is elementary if it has the form (p = xxi for some bounded interval / c R+

and some x e S£-mth where %, denotes the indicator function of the interval /.
A process is simple if it is a finite linear combination of elementary processes.
It was shown in [6] that Bartle's methods [7] can be adapted to develop an

integration theory for processes using the belated semivariation rather than the
semivariation of the vector measure m. We note that for the development in [6] it is not
necessary that the pairing xy be defined for all x e 3£ and all y e %. All that is needed is
that xy is defined (and is bilinear) for y of the form y = m(I), where / is a bounded
interval in R+, and for x e 3£mU. We shall be concerned here with the case when 3£ is a
Hilbert space and "3/ is a set of (unbounded, closed) operators in %.

Let "K denote the symmetric Fock space over L2(R+), and for / e L2(R+), let ij>(f)
denote the exponential vector

= 1 © / e . . . e («!)-l/2(/<g>...

For g e L2(R+) and k e L°°(R+), let a+(g) and a~(g) denote the boson creation and
annihilation operators and let a°(k) denote the preservation (or gauge, or number)
operator, all considered as closed operators on $f.

Thus

d_
"dt <=o (1.1)

d_
dt ,=0

Each operator is the closure of its restriction to the linear span of the exponential
vectors, a±(g) are mutually adjoint and, when k is real-valued, a {k) is self-adjoint.

The relation (1.1) is the basis of the analysis of [10] and, of course, is the reason for
introducing exponential vectors.
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For j e R + , let %s be the complex unital polynomial algebra generated by the
operators a~(g), a+{g) where g runs over those elements of L2(R+) which vanish outside
[0, s], and, for / € L2(R+), set Xs(f) = 9B,V(/) a n d X=X. Then X,(J) <= X,(J) c X for
0 < s < f.

Let <3/± denote the set of closed operators {a±{g): g e L2(R+)} and % the set of
closed operators {a°(k): A: e L°°(R+)}. These become linear spaces if we define

«*(£>) + a\g2) = a*(gx + g2), «"(*,) + a°(k2) = a0^, + *2),

for A e C, k, ku k2 e L~(R+), and g, gl, g2 e L2(R+).

2 . Measures associated with a+, a0 and a ~ . L e t u,v e L2
O C(R+) a n d w e L£,C(R+) b e

°
(

given. For E e 91 set ju(£) = a~(uxE), v(E) = a+(u%£) and §(£) = a°(oj^£). Evidently, ju,
v and § are finitely-additive measures taking values in <3/+, <3/_ and 'S/Q, respectively. If
E c [s, oo), then $£(/) lies within the domain of the operators fi(E), v(E) and £(£), thus
defining a pairing with values in 3f = $f. Thus, as remarked in Section 1, the analysis of
[6] is applicable.

Henceforth, we will write the pairing in the order (x,y)<-+yx for y = n(E) (or v(E),
£(E))E<z[s,<»)andxeXs(f).

THEOREM 2.1. The belated semivariation of [i (with respect to {Xs(f)}) is given by

\\Et= f \u(s)f(s)\ ds (2.1)
JE

for Ee®.

Proof. For given E e 91, let {/,} be a finite partition of E into disjoint intervals, and
let Xj e X-mUIJ) with ||x,|| < 1. Then, using equation (1.1), we see that

giving \\Et^lE\u{s)f{s)\ds.
On the other hand, letting x, = a,V'(/), with a, e C, |ary| < 1, V'(/) = V(/)/ll V(/)ll.

and noting that i/>(/) € %s{f) for each s sO, we obtain

SjaryutofC*)*

since
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Taking the supremum over all such partitions {/,} of E and all a, e C with |ay| £ 1
gives ||£||£ > J £ \u(s)f(s)\ ds, and the result follows. •

To estimate the belated semivariations of v and §, we shall use the methods of [10].

THEOREM 2.2. The belated semivariations of v and § (with respect to {%s(f)}) satisfy

(2.2)

1/2
e"S \w(s)\2(\f(s)\2+\f(s)\4)ds} (2.3)

for Ee*3l, where t = sup E.
Thus vf € L?OC(R+) and f e L/OC(R+) are sufficient conditions for the belated

semivariations of v and %, respectively, to have control measures.

Proof. Let E e 5? and let {Ij} be a partition of E into a finite number of intervals. Let
Xj € 3?int/(f) with IIJC/H ^ 1. Then, using the methods of [10, Theorem 4.3], we obtain

where t = sup £. This gives (2.2) and a similar argument gives (2.3). •

Note that Theorems 2.1 and 2.2 exhibit control measures of the form E<-> j E (p(s) ds
for n, v and | , when vf and / 2 are locally square-integrable, thus allowing their belated
semivariations to be extended by continuity to outer sets as indicated in Section 1. The
inequalities 2.1-2.3 remain valid for the extensions || • ||£°, || • \\b

v° and || • |||", respectively,
with E replaced by any outer set F in [0, t], and hence any Lebesgue measurable set in

3. Integrable processes. We recall the definition of belated integrability [6].

DEFINITION 3.1. Let h : R+—»$? be an elementary process; h =Xix f°r some finite
interval / and x e d£-mf X/). The //-integral of h is defined to be J d\ibh = \i{l)x. The
//-integral of any simple process is then defined by linearity.

A process (j): R+ -* 5%f is nb°-integrable on [0, t] is and only if there is a sequence (hn)
of simple processes such that

(i) hn-* <p in //"-measure on [0, t];
(ii) lEdnbhn = JdnbxEhn^>0 in * as | |£| |*-*0 with £ e S ? , £ c [ 0 , f ] , uniformly in

n; i.e. (hn) is uniformly absolutely continuous with respect to / /" on [0, t].
Similarly, one defines vb°- and ^*°-integrability.

REMARK. Condition (i) means that for any given e > 0,

\\{se[0,t]:\\hn(s)-<l>(s)\\>e}\\bs-*0

as n —>«.
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We note that there is no third condition as in [6, 7]. This is simply because ||[0, t]\\b is
finite, for r\ = ju, v, §.

For E € 91, E c [0, t], the //''•'-integral of <f> is defined to be lEdnba(j> = lim jEdfxbhn.
For completeness, we include a proof that this is well-defined. Similarly, one defines

THEOREM 3.2. Let <f> be fib"-integrable on [0,t] and let (hn) be a sequence of simple
processes as in Definition 3.1. Then, for any Ee@l, Ec[0,t], {^Edfibhn) is a Cauchy
sequence in 3€.

Proof. Let E e 9t, £ c [ 0 , t] and e > 0 be given. Let <5>0 be such that
\\\Gdnbhn\\ < e for all n, whenever ||G||* < 5, where G e i with G c [0, t\.

Let No be such that for all n > No, ||Gn||*° < 6/2, where

Gn = {se[0,t]:\\hn(s)-<f>(s)\\^e/2}.

Put Gnm = {se [0, t]: ||AB(s) - hm(s)\\ a e}. Then Gnm e » and Gnm g G . U Gm. Hence

< 6/2+ 6/2

= 6

for all n, m > No.
But then, for all n, m > No, we have

dtibhn - f dnbhm\ < I f dfi\hn - hm)\\ +1 f dpLbhn
JE II II J£AG II ll-'EnG.™

The result follows. •

It is easy to check that the limit does not depend on the particular approximating
sequence (hn). We shall see that locally square-integrable processes are locally belated-
integrable.

Let 3Cf be the linear set of (Borel) measurable processes (with respect to {&(/)})
which are locally square-integrable on R+, equipped with the family of seminorms

&\\2ds}m, t aO, for * eSif,.

LEMMA 3.3. For any 0 e3Cf there is a sequence (hn) of simple processes such that

hn —* (f> in Xf.

Proof. For any <f> e jfcf and a > 0, define

[0, for0<5<a-,
(s — a), for a^s.
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Then Sa(pe%f and, for any f>0 , ft \\sa(t>(s)\\2ds < f t \\<t>(s)\\2ds; also
ft \\Sa<P(s) ~ Hs)\\2ds^0 as or 10.

For n e N + and keN, put Ink = [k2~",(k+ 1)2'"), and let En denote the "condi-
tional expectation" corresponding to the partition {Ink}keN of R+;

(Enct>)(s) = 2" I <p(s) ds (selnk,<pe Xf).

Then, for any N e N, and any <j> eJCf,

and ft' \\ln<t>(s) - <t>(s)\\2ds^>0 as n^oo.
Now let (f> edCf and define hn = Z[o,n]En52-^). Then hn is a simple process for each

n G N + , and hn^> <f> in 3C{. m

We can now establish the belated-integrability of the processes in 3Cf.

THEOREM 3.4. Let <pejfcf. Then (t>X[o,i) « \ib°-integrable for all t>0 whenever
uf e L2

OC(R+), vb°-integrable for all f>0 whenever v, vf e L^(R+) , and %b°-integrable for
allt>0 whenever f e L£c(R+).

Proof. From the proofs of Theorems 2.1 and 2.2 we have, for simple he3Cf, E e 9?,

| ( | j ) , (3.1)

where t = sup E, r/ = n, v or £ and

Let (j> e Xf and, by Lemma 3.3, let (hn) be a sequence of simple processes converging to $
in %f. Then, for any / ^ 0, hn —> <p in Lebesgue measure on [0, t] and hence, by Theorems
2.1 and 2.2, also in nb°, vb° and §6o-measure on [0, t] under the given conditions. Thus it
remains only to show that (hn) is uniformly absolutely continuous with respect to the
latter measures on [0, t].

Let e > 0 and t > 0 be given. If N is sufficiently large that

I \\hn(s)-hm(S)\\
2ds<€2

whenever n,m>N, and if M = max{\\hk(s)\\ ;se[0,t], 1<&<JV} then

JE II

for 1 < k < N and E e 9L, E c [0, i\.
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On the other hand, from the inequalities (3.1) we have, for n>N,

F (*«-M|

\\hn-hN\\2ds)

<M\\E\\%°+ekn(i) (i, = /*,v,§).

Thus (hn) is uniformly absolutely continuous over [0, t] with respect to /A, v6" and §6° as
required. •

The belated integrals of <f> e %f are defined to be

lim dr)bhn (rj = (i, v, £)
« Jo

as in Theorem 3.2, and are denoted by

J' da~<f>, da^cf), and da^Q,

o Jo Jo
respectively.

4. Quantum stochastic integrals. We shall show, in this section, that the quantum
stochastic integrals constructed in [10] can be considered as examples of belated integrals.
We recall the definition of operator process [10]. Let 3) c L2(R+) n L£C(R+) be such that
3) is dense in L2(R+) .

DEFINITION 4.1. An operator-valued process is a map F from R + into the set of
densely-defined (possibly unbounded) operators in 5if such that, for e a c h / e 3>, ip(f) is in
the domain of F(s) for all s e R + , and F(s)xp(f) e S£f. F is simple if it has the form
F(s) = Sy Fjx^s) for a finite number of bounded intervals {/,-} and Operators Fj.

We see immediately that to each operator-valued process F there corresponds a
collection of vector-valued processes indexed by 3), and conversely. Indeed, for each
/ e 3), define <f/ : R + - » Sif by (f>f(s) = F(s)ip(f) (s e R + ) . Evidently (j>f is a process with
respect to { ^ ( / ) } . Conversely, given a collection {$f : / e 3)} such that <j>f is a process
with respect to {#fs(/)}, we can define an operator-valued process F by its action on
{ip(f) :f e3s} by F(s)ip(f) = <t>f(s) for s e R + . F(s) is a well-defined and densely-defined
linear operator since the vectors {i/>(/) : / e 9 ) are linearly independent and span W.

We observe that cEs(f) = Ws(& xp{fs) where 36S is the symmetric Fock space over
L2([0,s]) and fs=fX(S,«>) considered as an element of L2((s, °°)). This tensor product
decomposition is used in [9, 10, 12, 13].

Let 3C denote the set of operator-valued processes F on R + such that s •-» F(s)%l>(f) is
Borel measurable for each f e3> and such that Jo \\F {s)il>(J)\\2 ds<<*> for each t^O.
Equip the linear space X with the topology induced by the family of seminorms
F^iS'o II^Xy)V'(/)ll2'fr}1/2 indexed b y / e 2) and f e R + .

It was shown in [10] that the elements of 3if can be integrated with respect to the
Fock creation, preservation and annihilation processes, thus defining quantum stochastic
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integrals as, in general, unbounded operators in f̂. These operators are defined strongly
by their action on the set of exponential vectors ip(f), for f e@>, thus reducing an
operator-integral to an integral of vector-valued processes. We now show that such
integrals may be viewed simply as belated integrals.

THEOREM 4.2. For any F e3C, the quantum stochastic integrals J FdAu, J FdAw and,
when v e LJ^R"1"), also J FdAl are all belated integrals in the sense that for any t > 0 and
f e3), we have

\'FdAu(y(f)=['da:<t>f, (4.1)
Jo Jo

( FdAwx\>{f)=( da°w<t>f (4-2)
Jo Jo

and

{ I aZtf, (4.3)

where <j>f(s) = F(s)xp(f), for s e R+.

Proof. If FeX then <pf eJCf and so, by Theorem 3.4, <pf is nb% vb° and
£fc°-integrable over [0, t] for any t a 0. Now, for each f e3), let {h{} be the sequence of
simple processes as constructed in the proof of Lemma 3.3, so that / i{-»0 / in 3Cf as
n—><x>. Since, for given n, the /t{'s are all piecewise constant on the same intervals, it
follows that the formula

Fn(s)ip(f) = hf
n{s), for j e R + and fe3),

defines a simple operator-valued process Fn on R+.
By Lemma 3.3, we see that Fn^F in %. Now, the quantum stochastic integrals of

[10] are constructed via their action on {ip(f) :f e3)} as strong limits of simple integrals.
Thus

ft ft

dAMf)f FdAuy(f) = lim\ Fn
Jo " Jo

and similarly for the other two integrals. But Jo Fn dAuxp(f) is precisely the belated
integral f'od[ibhf

n and, since these converge in $f to the belated integral J o da~0 / ,
equation (4.1) follows. Equations (4.2) and (4.3) follow in the same way. •

REMARK 4.3. The analysis of [10] includes an "initial space" and considers the
one-particle space to the Hilbert space-valued square-integrable (classes of) functions on
R+ rather than just L2(R+). The preceding discussion extends to allow this extra
generality with no more than notational changes. We should also note that the definition
of a simple map as given in [10] is slightly different from ours. On finite intervals the
differences only involve sets of (Lebesgue) measure zero and so are of no consequence to
the development of the theory.

REMARK 4.4. By considering measures given by the tensor products aT <8> 1 and
K&a* on $?<8>2if, it is straightforward to check directly that the quasi-free stochastic
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integrals constructed in [9, 12] are belated integrals (one uses the explicit representation
on 36 <8> VC as given, for example, in [8]). However, it was shown in [6] that the integrals
of [4] are belated integrals, and in [13] it was shown that the integrals of [9] are the same
as a class of those constructed in [4].
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