PARABOLIC HIGGS BUNDLES AND Γ-HIGGS BUNDLES

INDRANIL BISWAS, SOURADEEP MAJUMDER™ and MICHAEL LENNOX WONG

(Received 31 August 2012; accepted 5 June 2013; first published online 19 August 2013)

Communicated by D. Chan

Abstract

We investigate parabolic Higgs bundles and Γ-Higgs bundles on a smooth complex projective variety.

2010 *Mathematics subject classification*: primary 14D23; secondary 14H60. *Keywords and phrases*: parabolic Higgs bundle, root stack, Γ Higgs bundle.

1. Introduction

Let X be a compact connected Riemann surface and E a holomorphic vector bundle on X. The infinitesimal deformations of E are parametrized by $H^1(X, \operatorname{End} E)$, where $\operatorname{End} E = E \otimes E^*$ is the sheaf of endomorphisms of the vector bundle E. By Serre duality, we have $H^1(X, \operatorname{End} E)^* = H^0(X, (\operatorname{End} E) \otimes \Omega^1_X)$, where Ω^1_X is the holomorphic cotangent bundle of X. A Higgs field on E is defined to be a holomorphic section of $(\operatorname{End} E) \otimes \Omega^1_X$; they were introduced by Hitchin [Hi87a, Hi87b]. A Higgs bundle is a holomorphic vector bundle equipped with a Higgs field. Hitchin proved that stable Higgs bundles of rank F and degree zero on F are in bijective correspondence with the irreducible flat connections on F of rank F is a holomorphic symplectic manifold, and the space of holomorphic functions on this holomorphic symplectic manifold gives it the structure of an algebraically completely integrable system [Hi87b]. Simpson arrived at Higgs bundles via his investigations of variations of Hodge structures [Si88]. He extended the results of Hitchin to Higgs bundles over higher dimensional complex projective manifolds.

A parabolic structure on a holomorphic vector bundle E on X is roughly a system of weighted filtrations of the fibers of E over some finitely many given points. A parabolic vector bundle is a holomorphic vector bundle equipped with a parabolic

MLW would like to express his gratitude to the Fonds québécois de la recherche sur la nature et les technologies for the support of a Bourse de recherche postdoctorale (B3).

^{© 2013} Australian Mathematical Publishing Association Inc. 1446-7887/2013 \$16.00

structure; parabolic vector bundles were introduced by Mehta and Seshadri [MS80]. Parabolic vector bundles with Higgs structure were introduced by Yokogawa [Yo95].

Our aim here is to investigate the parabolic vector bundles equipped with a Higgs structure. More precisely, we study the relationship between the parabolic Higgs bundles and the Higgs vector bundles on a root stack.

Root stacks are important examples of smooth Deligne–Mumford stacks; see [Cad07, Bo07] for root stacks.

Let Y be a smooth complex projective variety on which a finite group Γ acts as a group of automorphisms satisfying the condition that the quotient $X = \Gamma \setminus Y$ is also a smooth variety. There is a bijective correspondence between the *parabolic Higgs bundles* on X and the Γ -*Higgs bundles* on Y. We prove that the parabolic Higgs bundles on X are identified with the Higgs bundles on the associated root stack.

The organization of the paper is as follows. In Section 3 we review the notions of parabolic bundle and Γ -vector bundle and define the parabolic Higgs bundle and Γ -Higgs bundles. As was done for parabolic vector bundles in [Bi97] we describe an equivalence between the category of Γ -Higgs bundles on Y and parabolic Higgs bundle on X.

Section 4.1 describes the construction of a root stack as done in [Cad07]. In Section 4.2, we investigate vector bundles on root stacks. Section 4.3 generalizes Theorem 3.5 to the case of the root stack over the base space.

2. Preliminaries

Let Y be a smooth complex projective variety of dimension m endowed with the action $\lambda: \Gamma \times Y \longrightarrow Y$ of a finite group Γ such that:

- (1) $X := \Gamma \setminus Y$ is also a smooth variety; and
- (2) the projection map $\pi: Y \longrightarrow X$ is a Galois covering with Galois group Γ .

The closed subset of Y consisting of points with nontrivial isotropy subgroups for the action of Γ is a divisor $\widehat{D} \subset Y$ [Bi97, Lemma 2.8]. Let $D \subset X$ be its (reduced) image under π and $D = D_1 + \cdots + D_h$ its decomposition into irreducible components. We will always be working with the assumption that the D_μ , $1 \le \mu \le h$, are smooth, and D is a normal crossing divisor; this means that all the intersections of the irreducible components of D are transversal. For an effective divisor D' on Y, by D'_{red} we will denote the corresponding reduced divisor. So D'_{red} is obtained from D' by setting all the multiplicities to be one. We set

$$\widetilde{D}_{\mu} := (\pi^* D_{\mu})_{\text{red}}, \quad 1 \leq \mu \leq h, \quad \widetilde{D} := \sum_{\mu=1}^h \widetilde{D}_{\mu}.$$

There exist k_{μ} , $r \in \mathbb{N}$ for $1 \le \mu \le h$ such that $\pi^* D_{\mu} = k_{\mu} r \widetilde{D}_{\mu}$; with this,

$$\pi^*D = r \sum_{\mu=1}^h k_{\mu} \widetilde{D}_{\mu}.$$

It should be clarified that there are many choices of k_{μ} and r. We will write $\overline{D} := \sum_{\mu=1}^{h} k_{\mu} \widetilde{D}_{\mu}$, so that $\pi^* D = r \overline{D}$.

Lemma 2.1. With the assumption that D is a normal crossing divisor with smooth components, given a point $y \in Y$ with $\pi(y) \in \bigcap_{1}^{l} D_{\mu}$, one can choose coordinates w_1, \ldots, w_m in an analytic neighborhood of y and z_1, \ldots, z_m in an analytic neighborhood of $\pi(y)$ such that D_{μ} is defined by z_{μ} for $1 \le \mu \le l$, \widetilde{D}_{μ} is defined by w_{μ} for $1 \le \mu \le l$ and π is given in the local coordinates by

$$z_1 = w_1^{k_1 r}, \dots, z_l = w_l^{k_l r}, \quad z_{l+1} = w_{l+1}, \dots, z_m = w_m.$$

Proof. This is proved in [Na, page 11, Theorem 1.1.14].

Recall [Del70, Section II.3] that the sheaf $\Omega_X^1(\log D)$ of logarithmic differentials with poles at D is the locally free sheaf on X, a basis for which in the neighborhood of a point in $\bigcap_{1}^{l} D_u$ with coordinates chosen as in the lemma is given by

$$\frac{dz_{\mu}}{z_{\mu}}, 1 \le \mu \le l, \quad dz_{\mu}, l+1 \le \mu \le m.$$

Therefore, the dual $\Omega_X^1(\log D)^*$ is the subsheaf of the holomorphic tangent bundle TX given by the sheaf of vector fields that preserve $O_X(-D) \subset O_X$.

We have the following analogue of Hurwitz's theorem.

Lemma 2.2. With $\pi: Y \longrightarrow X$ as above, one has

$$\Omega^1_Y(\log \widetilde{D}) \cong \pi^*\Omega^1_X(\log D).$$

Proof. This follows immediately from [EV92, page 33, Lemma 3.21].

Observe that we have inclusions of sheaves

$$\begin{split} \Omega_X^1 &\subseteq \Omega_X^1(\log D) \subseteq \Omega_X^1(D) := \Omega_X^1 \otimes O_X(D), \\ \Omega_Y^1 &\subseteq \Omega_Y^1(\log \widetilde{D}) \subseteq \Omega_Y^1(\widetilde{D}) := \Omega_Y^1 \otimes O_Y(\widetilde{D}). \end{split}$$

Fixing an irreducible component D_{μ} of D, there is a residue map (see [Del70, Section II.3.7])

$$\operatorname{Res}_{D_u}: \Omega^1_X(\log D_\mu) \longrightarrow \mathscr{O}_{D_u}.$$

In local coordinates z_1, \ldots, z_m on X where D_{μ} is defined by $z_{\mu} = 0$, if ω is a section of $\Omega_X^1(\log D_{\mu})$ with local expression

$$\omega = f_1 dz_1 + \dots + f_{\mu} \frac{dz_{\mu}}{z_{\mu}} + \dots + f_m dz_m,$$

where the f_i , $1 \le i \le m$, are holomorphic functions, then the residue has the local expression

$$\operatorname{Res}_{D_{\mu}}\omega=f_{\mu}|_{z_{\mu}=0}.$$

3. Parabolic Higgs bundles and Γ -Higgs bundles

3.1. Parabolic Higgs bundles. Let E be a torsion-free coherent sheaf on X. We recall that a *parabolic structure* on E with respect to the divisor D is the data of a filtration

$$E = E_{\alpha_1} \supset E_{\alpha_2} \supset \cdots \supset E_{\alpha_l} \supset E_{\alpha_{l+1}} = E(-D),$$

where $0 \le \alpha_1 < \cdots < \alpha_l < 1$ are real numbers called *weights* (see [MY92, Definition 1.2]). The α_j will be chosen without redundancy in the sense that if $\epsilon > 0$, then $E_{\alpha_j+\epsilon} \ne E_{\alpha_j}$. We will often shorten E_{α_j} to E_j . The sheaf E together with a parabolic structure is called a *parabolic sheaf* and is often denoted by E_* . If E is a locally free sheaf, then we will call E_* a *parabolic vector bundle*. See [MY92] for more on parabolic sheaves.

We will always assume that the parabolic weights are rational numbers whose denominators all divide $r \in \mathbb{N}$, that is, $\alpha_j \in (1/r)\mathbb{Z}$, for $1 \le j \le l$; this way, we may write $\alpha_j = m_j/r$ for some integers $0 \le m_j \le r - 1$. It should be clarified that there are many choices for r. Further, we will make the same assumptions as in [Bi97, Assumptions 3.2].

A parabolic Higgs field, respectively strongly parabolic Higgs field, will be defined as a section $\phi \in H^0(X, (\operatorname{End} E) \otimes \Omega^1_Y(\log D))$ satisfying

$$\phi \wedge \phi = 0$$

and

$$(\operatorname{Res}_{D_{\mu}}\phi)(E_{j}|_{D_{\mu}}) \subseteq E_{j}|_{D_{\mu}}, \text{ respectively } (\operatorname{Res}_{D_{\mu}}\phi)(E_{j}|_{D_{\mu}}) \subseteq E_{j+1}|_{D_{\mu}},$$
 (3.1)

for $1 \le j \le l$, $1 \le \mu \le h$. By a *parabolic Higgs bundle* we will mean a pair (E_*, ϕ) consisting of a parabolic vector bundle E_* and a strongly parabolic Higgs field ϕ .

REMARK 3.1. Observe that this definition of a parabolic Higgs field differs from that given in [Yo95, Definition 2.2], where one takes $\phi \in H^0(X, (\operatorname{End} E) \otimes \Omega^1_X(D))$.

3.2. Γ -Higgs bundles. Let W be a vector bundle on Y admitting an action Λ : $\Gamma \times W \longrightarrow W$ compatible with the action λ on Y. If we think of W as a space with projection $r: W \longrightarrow Y$, then this means that

$$\begin{array}{ccc}
\Gamma \times W & \xrightarrow{\Lambda} & W \\
\mathbb{1}_{\Gamma \times r} & & \downarrow r \\
\Gamma \times Y & \xrightarrow{} & Y
\end{array}$$

commutes. Alternatively, if we think of W as a locally free sheaf then this means that there is an isomorphism

$$L: \lambda^* W \xrightarrow{\sim} p_V^* W$$

of sheaves on $\Gamma \times Y$ satisfying a suitable cocycle condition. When such an action exists, we will call W a Γ -vector bundle. In this realization, if W' is another Γ -vector

[5]

bundle with $L': \lambda^* W' \longrightarrow p_Y^* W'$ giving the action on W', then compatible actions on $W \oplus W'$ and $W \otimes W'$ are readily defined since direct sums and tensor products commute with pullbacks.

For each $\gamma \in \Gamma$, the restrictions $L_{\{\gamma\} \times Y} : \lambda_{\gamma}^* W \xrightarrow{\sim} W$ yield isomorphisms $L_{\gamma} : W \longrightarrow \lambda_{\gamma *} W$ (by adjunction) satisfying

$$L_e = \mathbb{1}_W$$
 and $\lambda_{\gamma *} L_{\delta} \circ L_{\gamma} = L_{\gamma \delta}$

for all $\gamma, \delta \in \Gamma$. In our case, since Γ is discrete, knowledge of the L_{γ} is enough to reconstruct L.

Example 3.2. There are three examples of Γ -bundles that will be of particular interest to us.

- (a) The action λ on Y induces a natural action on the sheaf of differentials Ω_Y^1 which will be compatible with λ .
- (b) Since $X = \Gamma \setminus Y$, we have $\pi \circ \lambda = \pi \circ p_Y$ as maps $\Gamma \times Y \longrightarrow X$. Thus, if E is any vector bundle on X, there is a canonical isomorphism $\lambda^* \pi^* E \xrightarrow{\sim} p_Y^* \pi^* E$. Hence the pullback $\pi^* E$ carries a Γ -action for which the action on the fibers is induced by the action on Y.
- (c) By the previous example, $\mathscr{O}_Y(\pi^*D) = \pi^*\mathscr{O}_X(D)$ carries a compatible Γ -action. Since $\widetilde{D} \subseteq \pi^*D$ is a Γ -invariant subset we have an induced action on the line bundle $\mathscr{O}_Y(\widetilde{D})$ making it into a Γ -line bundle.

Let W, W' be as above. A homomorphism $\Phi: W \longrightarrow W'$ is said to *commute with* the Γ -actions or is a Γ -homomorphism if the diagram

$$\lambda^* W \xrightarrow{\lambda^* \Phi} \lambda^* W'$$

$$\downarrow L \downarrow \qquad \qquad \downarrow L'$$

$$p_Y^* W \xrightarrow{p_Y^* \Phi} p_Y^* W'$$

commutes.

If $\Phi \in H^0(Y, (\operatorname{End} W) \otimes \Omega^1_Y)$ is a Higgs field on W, that is, $\Phi \wedge \Phi = 0$, then we will call it a Γ-Higgs field if as a map $W \longrightarrow W \otimes \Omega^1_Y$ it commutes with the Γ-actions, where $W \otimes \Omega^1_Y$ has the tensor product action. Thus, for every $\gamma \in \Gamma$, there is a commutative diagram.

$$W \xrightarrow{\Phi} W \otimes \Omega_{Y}^{1}$$

$$\downarrow^{L_{\gamma}} \qquad \qquad \downarrow^{\widetilde{L}_{\gamma}}$$

$$\lambda_{\gamma*}W \xrightarrow{\lambda_{\gamma*}\Phi} \lambda_{\gamma*}(W \otimes \Omega_{Y}^{1})$$

$$(3.2)$$

If Φ is a Γ -Higgs field, the pair (W, Φ) will be referred to as a Γ -Higgs bundle.

3.3. From Γ **-Higgs bundles to parabolic Higgs bundles.** We now begin with a Γ -Higgs bundle (W, Φ) and from it construct a parabolic Higgs bundle (E_*, ϕ) . The underlying vector bundle E is defined as $E := \pi_* W^{\Gamma}$, the sheaf of Γ -invariant sections of $\pi_* W$, and as in [Bi97, Section 2c], the parabolic structure on E is defined by

$$E_{j} := \pi_{*} W \left(\sum_{\mu=1}^{h} \lfloor -k_{\mu} r \alpha_{j} \rfloor \widetilde{D}_{\mu} \right)^{\Gamma}.$$

Suppose $\Phi \in H^0(Y, (\text{End } W) \otimes \Omega^1_Y)$ is a Γ-Higgs field on W. We will think of Φ as a homomorphism $\Phi : W \longrightarrow W \otimes \Omega^1_Y$. Since $\Omega^1_Y \subseteq \Omega^1_Y(\log \widetilde{D})$,

$$\pi_*(W \otimes \Omega^1_Y) \subseteq \pi_*(W \otimes \Omega^1_Y(\log \widetilde{D})) = \pi_*(W \otimes \pi^*\Omega^1_X(\log D)) = \pi_*W \otimes \Omega^1_X(\log D),$$

where the first equality is due to Lemma 2.2 and the last step by the projection formula. Therefore, $\phi := \pi_* \Phi$ may be considered as a map $\pi_* W \longrightarrow \pi_* W \otimes \Omega^1_X(\log D)$, and we have a candidate for a parabolic Higgs field.

Let $U \subseteq X$ be open and let s be an invariant section of $\pi_* W$ over U, so that we may think of s as a section \widehat{s} of W over $\pi^{-1}(U)$ with $L_{\gamma}\widehat{s} = \widehat{s}$ for all $\gamma \in \Gamma$. Then by definition $\phi s := \Phi \widehat{s}$, and for $\gamma \in \Gamma$, using (3.2),

$$\widetilde{L}_{\gamma}(\phi s) = \widetilde{L}_{\gamma}(\Phi \widehat{s}) = \Phi(L_{\gamma}\widehat{s}) = \Phi \widehat{s} = \phi s,$$

so ϕs is a Γ -invariant section, and hence $\phi : E \longrightarrow E \otimes \Omega^1_X(\log D)$.

Proposition 3.3. To a Γ -Higgs bundle (W, Φ) there is a naturally associated parabolic Higgs bundle (E_*, ϕ) .

PROOF. We have constructed (E_*, ϕ) . We must prove that ϕ is strongly parabolic. This is a condition on the residues of ϕ along the components of the divisor D, so we may concentrate on those points of D_μ that do not belong to any other component of D. Therefore, we may assume that we are in the neighborhood of a point y of \widetilde{D}_1 that lies on no other \widetilde{D}_μ . In this neighborhood, for $1 \le j \le l$,

$$E_j = \pi_* W (-m_j k_1 \widetilde{D}_1)^{\Gamma}.$$

We now choose coordinates on Y and X as in Lemma 2.1, so that the divisor \widetilde{D}_1 is defined by w_1 and the divisor D_1 is defined by z_1 ; we will write $p := k_1 r$ so that π is given in these coordinates by

$$z_1 = w_1^p, \quad z_2 = w_2, \dots, z_m = w_m.$$

In these coordinates, near y, we may write

$$\Phi = A_1 dw_1 + \cdots + A_m dw_m$$

for some holomorphic sections A_i of End W. We may then consider $A_1 dw_1 = (1/p)A_1w_1dz_1/z_1$ as a locally defined map $W \longrightarrow W \otimes \mathscr{O}_Y(-\widetilde{D}_1) \otimes \pi^*\Omega^1_X(\log D_1)$, or more generally, as a map

$$W(-m_i k_1 \widetilde{D}_1) \longrightarrow W(-(m_i k_1 + 1) \widetilde{D}_1) \otimes \pi^* \Omega^1_{\mathbf{Y}} (\log D_1)$$

for $1 \le j \le l$. It is easily verified that $W(-(m_jk_1+1)\widetilde{D}_1) \subseteq W(-rk_1(\alpha_j+\epsilon)\widetilde{D}_1)$, where $0 \le \epsilon \le 1/rk_1$. So taking invariants we see that $\pi_*A_1dw_1 = (1/p)A_1w_1dz_1/z_1$ gives a locally defined map

$$E_j \longrightarrow E_{\alpha_j + (1/rk_1)} \otimes \Omega^1_X(\log D_1) = E_{j+1} \otimes \Omega^1_X(\log D_1).$$

Since, by definition,

$$\operatorname{Res}_{D_1} \phi = \frac{1}{p} w_1 A_1 |_{z_1 = 0},$$

and noting that $(\operatorname{Res}_{D_{\mu}}\phi)(E_{j}|_{D_{1}})\subseteq E_{j+1}|_{D_{1}}$, it follows that the strong parabolicity condition (3.1) is satisfied.

That $\phi \wedge \phi = 0$ is easily seen, since if s is any section of E, then

$$(\phi \wedge \phi)s = (\Phi \wedge \Phi)\widehat{s} = 0$$

since $\Phi \wedge \Phi = 0$.

3.4. From parabolic Higgs bundles to \Gamma-Higgs bundles. Recall that we are working under assumptions as in [Bi97, Assumptions 3.2], hence we can use the construction from [Bi97, Section 3b] in the following proposition.

Proposition 3.4. Given a parabolic Higgs bundle (E_*, ϕ) on X, we can associate a Γ -Higgs bundle (W, Φ) on Y.

PROOF. We will begin by constructing a parabolic vector bundle on X of rank m. The holomorphic vector bundle underlying the parabolic vector bundle is Ω_X^1 . To define the parabolic structure, take any irreducible component D_i of D. Let $\iota: D_i \hookrightarrow X$ be the inclusion map. We have a short exact sequence of vector bundles on D_i

$$0 \longrightarrow N_{D_i}^* \longrightarrow \iota^* \Omega_X^1 \longrightarrow \Omega_{D_i}^1 \longrightarrow 0,$$

where N_{D_i} is the normal bundle of D_i . Note that the Poincaré adjunction formula says that $N_{D_i} = \iota^* O_X(D_i)$. The quasiparabolic filtration over D_i is the above filtration

$$N_{D_i}^* \subset \iota^* \Omega_X^1$$
.

The parabolic weights are 0 and $(rk_i - 1)/rk_i$. More precisely, $N_{D_i}^*$ has parabolic weight $(rk_i - 1)/rk_i$ and the parabolic weight of the quotient $\Omega_{D_i}^1$ is zero. Note that the nonzero parabolic weight $(rk_i - 1)/rk_i$ has multiplicity one. This parabolic vector bundle will be denoted by $\widetilde{\Omega}_{X}^1$.

The action of Γ on Y induces an action of Γ on the vector bundle Ω^1_Y making it a Γ -bundle. From the construction of $\widetilde{\Omega}^1_Y$ it can be deduced that the parabolic vector

bundle corresponding to the Γ -bundle Ω^1_Y is $\widetilde{\Omega}^1_X$. To prove this, first note that if $U_0 \subset X$ is a Zariski open subset such that the complement U^c_0 is of codimension at least two, and V, W are two algebraic vector bundles on X that are isomorphic over U_0 , then V and W are isomorphic over X; using Hartog's theorem, any isomorphism $V|_{U_0} \longrightarrow W|_{U_0}$ extends to a homomorphism $V \longrightarrow W$, and similarly, we have a homomorphism $V \longrightarrow V$, and these two homomorphisms are inverses of each other because they are so over U_0 . Next note that

$$(\pi_*\Omega^1_Y)^\Gamma = \Omega^1_X$$

because $(\pi_*\Omega_Y^1)^{\Gamma} = \Omega_X^1$ over the complement of the singular locus of D. Therefore, Ω_X^1 is the vector bundle underlying the parabolic bundle corresponding to the Γ-bundle Ω_Y^1 . It is now straightforward to check that the parabolic weights are of the above type.

Let W be the Γ -bundle on Y corresponding to the parabolic vector bundle E_* on X (using [Bi97, Section 3b]). Let ϕ be a strongly parabolic Higgs field on E_* . It is straightforward to check that ϕ defines a homomorphism of parabolic vector bundles

$$\phi': E_* \longrightarrow E_* \otimes \widetilde{\Omega}^1_X$$

where $E_* \otimes \widetilde{\Omega}^1_X$ is the parabolic tensor product of E_* and $\widetilde{\Omega}^1_X$.

Since the correspondence between parabolic bundles and Γ -vector bundles is compatible with the operation of tensor product, we conclude that the parabolic tensor product $E_* \otimes \widetilde{\Omega}^1_X$ corresponds to the Γ -bundle $W \otimes \Omega^1_Y$. Therefore, the above homomorphism ϕ' pulls back to a Γ -equivariant homomorphism Φ from W to $W \otimes \Omega^1_Y$.

Theorem 3.5. We have an equivalence of categories between Γ -Higgs bundles on Y and parabolic Higgs bundles on X which satisfy the assumptions as in [Bi97, Assumptions 3.2].

Proof. Proof is clear from Propositions 3.3 and 3.4 and [Bi97, Sections 2c, 3b].

REMARK 3.6. In Borne's formalism, the parabolic bundle E_* may be considered as a functor $((1/r)\mathbb{Z})^{\text{op}} \longrightarrow \mathfrak{Vect}(X)$, with

$$\frac{j}{r} \longmapsto E_j(D),$$

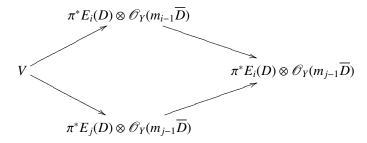
and composing with $\pi^* : \mathfrak{Dect}(X) \longrightarrow \mathfrak{Dect}(Y)$, we get a functor $((1/r)\mathbb{Z})^{\mathrm{op}} \longrightarrow \mathfrak{Dect}(Y)$. We also have a covariant functor $(1/r)\mathbb{Z} \longrightarrow \mathfrak{Dect}(Y)$ given by

$$\frac{j}{r}\longmapsto \mathscr{O}_Y(m_{j-1}\overline{D}).$$

Therefore, we obtain a functor $((1/r)\mathbb{Z})^{\text{op}} \times \frac{1}{r}\mathbb{Z} \longrightarrow \mathfrak{Vect}(Y)$

$$\frac{j}{r} \longmapsto \pi^* E_j(D) \otimes \mathscr{O}_Y(m_{j-1}\overline{D}).$$

An end for this functor [Ma98, Section IX.5] consists of a vector bundle $V \in \text{Ob}\mathfrak{Dect}(Y)$ and diagrams for $i \leq j$



such that the diagram is terminal among all such diagrams. It is not difficult to check that W is a universal end for the functor defined above, that is, it is an end, and given an end V as in the diagram, there is a unique morphism $V \longrightarrow W$ which yields the appropriate commuting diagrams.

4. Root stacks

The notion of a root stack is something of a generalization of the notion of an orbifold with cyclic isotropy groups over a divisor. Of course, our main interest in this construction is in the case when X is a smooth complex projective variety, but giving the definition for an arbitrary \mathbb{C} -scheme imposes no further conceptual or technical difficulties, so we will give the definition and describe some of the basic properties in this generality. We largely follow the presentations of [Bo07] and [Cad07] here (as well as [The], [Vis08] for generalities), so we direct the reader requiring further illumination on issues raised below to these references.

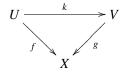
4.1. Definition and construction. We fix a \mathbb{C} -scheme X, an invertible sheaf L on X and $s \in H^0(X, L)$, so that if s is nonzero, it defines an effective divisor D on X. We will also fix $r \in \mathbb{N}$. Let $\mathfrak{X} = \mathfrak{X}_{(L,r,s)}$ denote the category whose objects are quadruples

$$(f: U \longrightarrow X, N, \phi, t),$$
 (4.1)

where U is a \mathbb{C} -scheme, f is a morphism of \mathbb{C} -schemes, N is an invertible sheaf on U, $t \in H^0(U,N)$ and $\phi: N^{\otimes r} \xrightarrow{\sim} f^*L$ is an isomorphism of invertible sheaves with $\phi(t^{\otimes r}) = f^*s$. A morphism

$$(f: U \longrightarrow X, N, \phi, t) \longrightarrow (g: V \longrightarrow X, M, \psi, u)$$

consists of a pair (k, σ) , where $k: U \longrightarrow V$ is a \mathbb{C} -morphism making



commute and $\sigma: N \xrightarrow{\sim} k^*M$ is an isomorphism such that $\sigma(t) = k^*(u)$. Moreover, the following diagram must commute:

$$N^{\otimes r} \xrightarrow{\phi} f^*L$$

$$\sigma^{\otimes r} \downarrow \qquad \qquad \downarrow \text{can}$$

$$k^*M^{\otimes r} \xrightarrow{k^*\psi} k^*g^*L$$

If

$$(g:V\longrightarrow X,M,\psi,u)\xrightarrow{(l,\tau)}(h:W\longrightarrow X,J,\rho,v)$$

is another morphism, then the composition is defined as

$$(l,\tau)\circ(k,\sigma):=(l\circ k,k^*\tau\circ\sigma),\tag{4.2}$$

using the canonical isomorphism $(l \circ k)^*J \cong k^*l^*J$.

We will often use the symbols \mathfrak{f} , \mathfrak{g} to denote objects of \mathfrak{X} . If it is understood that $\mathfrak{f} \in \mathfrak{X}_U$, then by \mathfrak{f} we will denote the quadruple $\mathfrak{f} = (f : U \longrightarrow X, N_{\mathfrak{f}}, \phi_{\mathfrak{f}}, t_{\mathfrak{f}})$.

The category $\mathfrak X$ comes with a functor $\mathfrak X \longrightarrow \mathfrak{Sch}/\mathbb C$ which simply takes $\mathfrak f$ to U and (k,σ) to h.

Proposition 4.1 [Cad07, Theorem 2.3.3]. The morphism of categories $\mathfrak{X} \longrightarrow \mathfrak{S}\mathfrak{ch}/\mathbb{C}$ makes \mathfrak{X} a Deligne–Mumford stack.

REMARK 4.2. The previous statement implies that $\mathfrak{X} \longrightarrow \mathfrak{S}\mathfrak{ch}/\mathbb{C}$ is a category fibered in groupoids. Let $\mathfrak{f} \in \mathrm{Ob}\mathfrak{X}_U$ be an object of \mathfrak{X} lying over U as given in (4.1) and let $g:V\longrightarrow U$ be a morphism of schemes. A choice of pullback $g^*\mathfrak{f} \in \mathrm{Ob}\mathfrak{X}_V$ can easily be described by the tuple

$$(g \circ f : V \longrightarrow X, g^*N_f, g^*\phi_f, g^*t_f)$$

and the Cartesian arrow $g^*\mathfrak{f} \longrightarrow \mathfrak{f}$ is given by $(g, \mathbb{1}_{g^*N_{\mathfrak{f}}})$.

EXAMPLE 4.3 [Cad07, Example 2.4.1]. Suppose $X = \operatorname{Spec} A$ is an affine scheme, $L = \mathcal{O}_X$ is the trivial bundle and $s \in H^0(X, \mathcal{O}_X) = A$ is a function. Consider $U = \operatorname{Spec} B$, where $B = A[t]/(t^r - s)$. Then U admits an action of the group of rth roots of unity (more precisely, of the group scheme of the rth roots of unity) μ_r of order r, where the induced action of $\zeta \in \mu_r$, a generator, is given by

$$\zeta \cdot a = a, a \in A,$$
 $\zeta \cdot t = \zeta^{-1}t.$

In this case, the root stack $\mathfrak{X}_{(\mathscr{O}_X,s,r)}$ coincides with the quotient stack $[U/\mu_r]$. Thus, as a quotient by a finite group (scheme), the map $U \longrightarrow \mathfrak{X}$ is an étale cover.

REMARK 4.4. If X is any \mathbb{C} -scheme, and L, s are as before, we may take an open affine cover $\{X_i = \text{Spec } A_i\}$ such that $L|_{X_i} \cong \mathcal{O}_{X_i}$ and $s|_{X_i}$ corresponds to $s_i \in A_i$. Then by the example above,

$$\coprod_{i} U_{i} \longrightarrow \mathfrak{X}$$

is an étale cover, where $U_i = \operatorname{Spec} A[t_i]/(t_i^r - s_i)$.

There is also a functor $\pi: \mathfrak{X} \longrightarrow \mathfrak{S}\mathfrak{ch}/X$, whose action on objects and morphisms is given by

$$f \longmapsto f: U \longrightarrow X, \quad (k, \sigma) \longmapsto k;$$

this yields a 1-morphism over $\mathfrak{Sch}/\mathbb{C}$, which we will often simply write as $\pi:\mathfrak{X}\longrightarrow X$.

4.2. Vector bundles and differentials on a root stack. Recall (for example [G01, Definition 2.50], [LM00, Lemme 12.2.1], [Vis89, Definition 7.18]) that a quasi-coherent sheaf \mathscr{F} on \mathfrak{X} consists of the data of a quasi-coherent sheaf $\mathscr{F}_{\mathfrak{f}}$ for each étale morphism $\mathfrak{f}: U \longrightarrow \mathfrak{X}$ along with isomorphisms $\alpha_k = \alpha_k^{\mathscr{F}}: \mathscr{F}_{\mathfrak{f}} \longrightarrow k^*\mathscr{F}_{\mathfrak{g}}$ for any commutative diagram

such that for a composition $U \xrightarrow{k} V \xrightarrow{h} W \longrightarrow \mathfrak{X}$ one has

$$\alpha_{h \circ k} = k^* \alpha_h \circ \alpha_k. \tag{4.4}$$

A (global) section $\mathfrak{s} \in H^0(\mathfrak{X}, \mathscr{F})$ of \mathscr{F} over \mathfrak{X} is the data of a global section $\mathfrak{s}_{\mathfrak{f}} \in H^0(U, \mathscr{F}_{\mathfrak{f}})$ for each étale morphism $\mathfrak{f}: U \longrightarrow \mathfrak{X}$ such that for a diagram (4.3) as above, one has

$$\alpha_k(\mathfrak{s}_{\mathfrak{f}})=k^*\mathfrak{s}_{\mathfrak{g}}.$$

A quasi-coherent sheaf \mathscr{F} on \mathfrak{X} is a subsheaf of a quasi-coherent sheaf \mathscr{G} if $\mathscr{F}_{\dagger} \subseteq \mathscr{G}_{\dagger}$ for all étale $\mathfrak{f}: U \longrightarrow \mathfrak{X}$.

Lemma 4.5. In the situation of Example **4.3**, where X = SpecA is affine, $U := SpecA[t]/(t^r - s)$ and $\mathfrak{X} = [U/\mu]$, then for a quasi-coherent sheaf \mathscr{F} on \mathfrak{X} , \mathscr{F}_U admits a μ_r -action compatible with that on U.

PROOF. We have $U \times_{\mathfrak{X}} U \cong U \times \mu$ and under this isomorphism, the two projection maps from $U \times_{\mathfrak{X}} U$ correspond to the maps $p_U, \lambda : U \times \mu \longrightarrow U$, where p_U is the projection onto U and λ is the action on U. Then the required action is defined by the composition

$$p_U^* \mathscr{F}_U \xrightarrow{\alpha_{p_U}^{-1}} \mathscr{F}_{U \times_{\mathfrak{X}} U} \xrightarrow{\alpha_{\lambda}} \lambda^* \mathscr{F}_U.$$

This concludes the proof.

4.2.1. The sheaf of differentials on \mathfrak{X} . The sheaf of differentials $\Omega^1_{\mathfrak{X}} = \Omega^1_{\mathfrak{X}/\mathbb{C}}$ can be defined as follows. If $\mathfrak{f}: U \longrightarrow \mathfrak{X}$ is an étale map, then we simply set

$$\Omega^1_{\mathfrak{X},\mathfrak{f}}:=\Omega^1_{U/\mathbb{C}}.$$

If we are given a diagram (4.3), then from the composition $U \xrightarrow{k} V \longrightarrow \operatorname{Spec}\mathbb{C}$, one obtains a sequence

$$0 \longrightarrow k^* \Omega_{V/\mathbb{C}} \longrightarrow \Omega_{U/\mathbb{C}} \longrightarrow \Omega_{U/V} \longrightarrow 0,$$

which is left exact [The, More on Morphisms, Ch. 33, Lemma 9.9] and whose last term is zero since k is necessarily étale. This defines isomorphisms α_k . The requirement (4.4) will be met because of the universal properties these morphisms possess.

4.2.2. The tautological invertible sheaf on \mathfrak{X} . The root stack \mathfrak{X} possesses a tautological invertible sheaf \mathscr{N} . For an étale morphism $\mathfrak{f}: U \longrightarrow \mathfrak{X}$, we simply take

$$\mathcal{N}_{f} := N_{f}$$
.

Given a diagram (4.3), one has an isomorphism $(\mathbb{1}_U, \sigma)$: $\mathfrak{f} \longrightarrow k^*\mathfrak{g}$ and one may take

$$\alpha_k^{\mathscr{N}} := \sigma : N_{\mathfrak{f}} \longrightarrow k^* N_{\mathfrak{q}}.$$

The expression in the second component of (4.2) implies that (4.4) is satisfied. This defines the invertible sheaf \mathcal{N} on \mathfrak{X} . Furthermore, by definition, we also get a tautological section t of \mathcal{N} over \mathfrak{X} by simply taking

$$t_f := t_f$$
.

4.3. Higgs fields on root stacks. Let X be as in Section 2, so that it is a smooth complex projective variety; D will be a normal crossing divisor with smooth components. Let $s \in H^0(X, \mathcal{O}_X(D))$ be a section with (s) = D. We also fix $r \in \mathbb{N}$. In all that follows $\mathfrak{X} = \mathfrak{X}_{(\mathcal{O}_X(D),r,s)}$ will be the associated root stack as constructed in Section 4.1.

REMARK 4.6. Consider the fuller situation of Section 2, where $\pi: Y \longrightarrow X$ be a Galois cover of smooth complex projective varieties and there is a divisor \overline{D} on Y such that $\pi^*D = r\overline{D}$. Then there is an isomorphism $\phi: \mathscr{O}_Y(\overline{D})^{\otimes r} \xrightarrow{\sim} \pi^*\mathscr{O}_X(D)$ and a section $t \in H^0(Y, \mathscr{O}_Y(\overline{D}))$ such that $\phi(t^{\otimes r}) = \pi^*s$. Therefore, the quadruple $(\pi: Y \longrightarrow X, \mathscr{O}_Y(\overline{D}), \phi, t)$ defines a morphism

$$\widehat{\pi}: Y \longrightarrow \mathfrak{X}.$$

4.3.1. Higgs fields. Let $\mathcal V$ be a vector bundle on $\mathfrak X$. A Higgs field Φ on $\mathcal V$ is a homomorphism $\Phi: \mathcal V \longrightarrow \mathcal V \otimes \Omega^1_{\mathfrak X}$. This means that for each étale morphism $\mathfrak f: U \longrightarrow \mathfrak X$ we have a homomorphism $\Phi_{\mathfrak f}: \mathcal V_{\mathfrak f} \longrightarrow \mathcal V_{\mathfrak f} \otimes \Omega^1_U$ such that given a diagram (4.3), we

obtain a commutative square.

$$\begin{array}{c|c}
\mathcal{V}_{\dagger} & \xrightarrow{\Phi_{\dagger}} & \mathcal{V}_{\dagger} \otimes \Omega_{U}^{1} \\
 \alpha_{k}^{\mathcal{V}} & & \downarrow^{\alpha_{k}^{\mathcal{V}} \otimes \alpha_{k}^{\Omega_{k}^{1}}} \\
 k^{*}\mathcal{V}_{\mathfrak{g}} & \xrightarrow{k^{*}\Phi_{\mathfrak{g}}} & k^{*}\mathcal{V}_{\dagger} \otimes k^{*}\Omega_{V}^{1}
\end{array} (4.5)$$

Theorem 4.7. There is an equivalence of categories of Higgs bundles on \mathfrak{X} and parabolic Higgs bundles on X.

PROOF. We remark that a parabolic structure is given locally, so we may assume that $X = \operatorname{Spec} A$ is affine and that the parabolic divisor D is defined by $s \in A$. Then as in Example 4.3, we may take $U = \operatorname{Spec} B$ where $B = A[t]/(t^r - s)$, so that $\mathfrak{X} = [U/\mu]$. In this case, the map $\mathfrak{f}: U \longrightarrow \mathfrak{X}$ is étale; we will write $f: U \longrightarrow X$ for the underlying map induced from $A \longrightarrow B$. Given a vector bundle \mathcal{V} , by Lemma 4.5, the bundle $\mathcal{V}_{\mathfrak{f}}$ on U carries a compatible μ -action. The fact that $\Phi_{\mathfrak{f}}$ commutes with this action comes from the existence of the diagram (4.5) for the two projection morphisms $U \times_{\mathfrak{X}} U \longrightarrow U$. Thus, we are reduced to the case of Γ -bundles when $\Gamma = \mu$, which comes from Propositions 3.3 and 3.4.

Acknowledgement

We are very grateful to the referee for helpful comments to improve the exposition.

References

- [Bi97] I. Biswas, 'Parabolic bundles as orbifold bundles', Duke Math. J. 88(2) (1997), 305–325.
- [Bo07] N. Borne, 'Fibrés paraboliques et champ des racines', Int. Math. Res. Not. 2007(16) (2007), Article ID rnm049, 38 pages.
- [Cad07] C. Cadman, 'Using stacks to impose tangency conditions on curves', Amer. J. Math. 129(2) (2007), 405–427.
- [Del70] P. Deligne, Equations Différentielles à Points Singuliers Réguliers, Lecture Notes in Mathematics, 163 (Springer, Berlin, 1970).
- [EV92] H. Esnault and E. Viehweg, Lectures on Vanishing Theorems, DMV Seminar, 20 (Birkhäuser, Basel, 1992).
- [G01] T. L. Gómez, 'Algebraic stacks', Proc. Indian Acad. Sci. Math. Sci. 111(1) (2001), 1–31.
- [Hi87a] N. J. Hitchin, 'The self-duality equations on a Riemann surface', Proc. Lond. Math. Soc. 55 (1987), 59–126.
- [Hi87b] N. J. Hitchin, 'Stable bundles and integrable systems', Duke Math. J. 54(1) (1987), 91–114.
- [LM00] G. Laumon and L. Moret-Bailly, *Champs Algébriques* (Springer, Berlin, 2000).
- [Ma98] S. Mac Lane, Categories for the Working Mathematician, 2nd edn. Graduate Texts in Mathematics, 5 (Springer, New York, 1998).
- [MY92] M. Maruyama and K. Yokogawa, 'Moduli of parabolic stable sheaves', *Math. Ann.* **293** (1992), 77–99.
- [MS80] V. Mehta and C. Seshadri, 'Moduli of vector bundles on curves with parabolic structures', Math. Ann. 248 (1980), 205–239.
 - [Na] M. Namba, Branched Coverings and Algebraic Functions, Pitman Research Notes in Mathematics, 161 (Longman Scientific & Technical, Harlow, 1987).

- [Si88] C. T. Simpson, 'Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization', J. Amer. Math. Soc. 1 (1988), 867–918.
- [The] The stacks project authors, *Stacks Project*, http://math.columbia.edu/algebraic_geometry/stacks-git.
- [Vis89] A. Vistoli, 'Intersection theory on algebraic stacks and on their moduli spaces', *Invent. Math.* 97 (1989), 613–670.
- [Vis08] A. Vistoli, Notes on Grothendieck topologies, fibrered categories and descent theory, http://homepage.sns.it/vistoli/descent.pdf, 2008.
- [Yo95] K. Yokogawa, 'Infinitesimal deformations of parabolic Higgs sheaves', *Internat. J. Math.* 6 (1995), 125–148.

INDRANIL BISWAS, School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India

e-mail: indranil@math.tifr.res.in

SOURADEEP MAJUMDER, School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India e-mail: souradip@math.tifr.res.in

MICHAEL LENNOX WONG, Chair of Geometry, Mathematics Section, Ecole Polytechnique Fédérale de Lausanne, Station 8, 1015 Lausanne, Switzerland e-mail: michael.wong@epfl.ch