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Abstract
We study the local theta correspondence for dual pairs of the form Aut(𝐶) × 𝐹4 over a p-adic field, where C is
a composition algebra of dimension 2 or 4, by restricting the minimal representation of a group of type E. We
investigate this restriction through the computation of maximal parabolic Jacquet modules and the Fourier–Jacobi
functor.

As a consequence of our results, we prove a multiplicity one result for the Spin(9)-invariant linear functionals
of irreducible representations of 𝐹4 and classify the Spin(9)-distinguished representations.
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1. Introduction

Let F be a p-adic field, that is, a nonarchimedean local field of characteristic 0 and residual characteristic
𝑝 > 0. We study the local theta correspondence for the group of F-points of the dual pair Aut(𝐶) × 𝐹4,
where C is a composition F-algebra of dimension 2 or 4, by restricting the minimal representation
(Π,V) of an adjoint group G𝐶 of absolute type 𝐸6 if dim𝐶 = 2, and absolute type 𝐸7 if dim𝐶 = 4. For
this introduction we specialize to dim(𝐶) = 4, for simplicity. In this case, the group G𝐶 is split when C
is split and the unique nonsplit form when C is anisotropic.

With a dual pair Aut(𝐶) × 𝐹4 ⊂ G𝐶 one can lift representations from 𝒢 = Aut(𝐶) (𝐹) to 𝐺 = 𝐹4 (𝐹)
as follows. Given 𝜏 ∈ Irr(𝒢) a smooth irreducible representation of 𝒢, the maximal 𝜏-isotypic quotient
of V admits an action of G and factors as 𝜏 ⊗ Θ(𝜏), where Θ(𝜏) is a smooth representation of G. The
representation Θ(𝜏) is called the big theta lift of 𝜏. Its maximal semisimple quotient 𝜃 (𝜏) (co-socle) is
called the small theta lift of 𝜏. Note that one may reverse the roles of 𝒢 and G. The primary objective
of this paper is to investigate the big and small theta lifts of the dual pair Aut(𝐶) × 𝐹4 ⊂ G𝐶 .

We begin by discussing the theta lift from Aut(𝐶) to 𝐹4. Our first theorem gives a qualitative behavior
of the lift. It is a combination of Theorems 4.10, 6.2, and 6.3.

Theorem 1.1. Let 𝜏 ∈ Irr(Aut(𝐶)). Then:

1. Θ(𝜏) ≠ 0 and it is a finite-length representation of 𝐹4.
2. If 𝜏 is tempered then Θ(𝜏) is irreducible.
3. If 𝜃 (𝜏) � 𝜃 (𝜏′), where 𝜏′ ∈ Irr(Aut(𝐶)), then 𝜏 � 𝜏′.

For lifting in the opposite direction, that is, from 𝐹4 to Aut(𝐶), our main result is Theorem 7.4. It says
if 𝜎 ∈ Irr(𝐹4) such that Θ(𝜎) ≠ 0, then Θ(𝜎) ∈ Irr(Aut(𝐶)).

For our second theorem, we specialize to the case where C is the algebra of 2 × 2 matrices, so
Aut(𝐶) = PGL2. In this case, we can completely describe Θ(𝜏). In order to state the results, we note
that the 𝐹4 group in this paper is not realized as a Chevalley group but as the group of automorphisms
of a 27-dimensional exceptional Jordan algebra J. Thus 𝐹4 acts on the 26-dimensional subspace 𝐽0 of
trace 0 elements in J and its maximal parabolic subgroups can be described as stabilizers of singular
subspaces of 𝐽0 [2]. In particular, 𝐹4 has maximal parabolic subgroups Q and 𝑄2 stabilizing one-
and two-dimensional singular spaces, respectively. (We record that Levi subgroups of Q and 𝑄2 have
the type 𝐵3 and 𝐴2,long × 𝐴1,short, respectively.) Observe that Q and 𝑄2, via their actions on the
stabilized one- and two-dimensional singular spaces, have quotients isomorphic to GL1 and GL2,
respectively. In particular, a character 𝜒 of GL1 (𝐹) defines a degenerate principal series representation
Ind𝐺

𝑄 (𝜒), and a supercuspidal representation 𝜏 of PGL2(𝐹) defines a family of degenerate principal
series representations Ind𝐺

𝑄2
(𝜏 ⊗ | det |𝑠).
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Theorem 1.2. Let 𝜏 ∈ Irr(PGL2 (𝐹)).

1. If 𝜏 is a quotient of a principal series Ind𝒢
ℬ
(𝜒) then Θ(𝜏) is a quotient of Ind𝐺

𝑄 (𝜒). (For the precise
statement see Theorems 6.2 and 6.3 and Proposition 6.4.)

2. If 𝜏 is a supercuspidal representation, then Θ(𝜏) = 𝜃 (𝜏) is the unique irreducible quotient of
Ind𝐺

𝑄2
(𝜏 ⊗ | det |3/2).

In (1) 𝜃 (𝜏) is always isomorphic to the co-socle of the degenerate principal series. Since the co-socle
of Ind𝐺

𝑄 (| · |5/2) is a sum of two irreducible representations the theta correspondence is not one to one,
and this is the only place where it fails.

Next we want to highlight some consequences of our results, as they relate to the relative Lang-
lands program of Sakellaridis–Venkatesh [25]. We prove that the rank one exceptional symmetric pair
(𝐹4, Spin9) over a p-adic field is a Gelfand pair, a long-time open problem:

Theorem 1.3. Let 𝜎 ∈ Irr(𝐹4). Then dimHomSpin(9) (𝜎̃,C) ≤ 1. Moreover, the dimension is 1 if and
only if 𝜎 is the theta lift of a generic representation of PGL2(𝐹).

The study of symmetric spaces, and more generally spherical spaces, has a long history. In [29]
van Dijk proved that real forms of the symmetric pair (𝐹4, Spin(9)) are generalized Gelfand pairs, a
slightly weaker statement, as it concerns unitary representations only. Recently Rubio [23] proved that
(𝐹4, Spin(9)) is a Gelfand pair overC. The usual approach involves invariant distributions, see [10] or [1]
for more information on this rich subject. On the other hand, Howe [11] used the dual pair SL2 ×O(𝑛) to
analyze the symmetric pair (O(𝑛), O(𝑛−1)). It was observed in [26] that Howe’s strategy can be applied
to all rank-one symmetric pairs. In this paper, at long last, we execute this strategy for the exceptional
symmetric pair. Theorem 1.3 is a consequence of the fact that the theta correspondence relates the
Spin(9)-period on representations of 𝐹4 to the Whittaker period on representations of PGL2(𝐹). More
precisely, we have

HomSpin(9) (𝜎̃,C) � Hom𝒰,𝜓 (Θ(𝜎),C)

where (𝒰, 𝜓) is a Whittaker datum for PGL2 (𝐹). Since we proved that Θ(𝜎) is irreducible (or zero)
Theorem 1.3 follows from uniqueness of the Whittaker functional for irreducible representations of
PGL2 (𝐹). Moreover, since the lift from PGL2 (𝐹) is completely known by Theorem 1.2, we have a
classification of Spin(9)-distinguished representations of 𝐹4, consistent with predictions made in [25].

The primary tools in our analysis are computations of maximal parabolic Jacquet modules and
the Fourier–Jacobi functor. Similar Jacquet module computations were used to study several different
exceptional dual pairs in [6, 9, 19]. In particular, this type of Jacquet module computation provides an
important step in establishing Howe duality and dichotomy for exceptional dual pairs containing 𝐺2,
which was recently completed in [9].

Our main new input is the use of the Fourier–Jacobi functor. This allows us to relate the Aut(𝐶) × 𝐹4
theta correspondence to a classical O(3) ×Sp(6) theta correspondence. Using the well developed theory
of this classical theta correspondence we can efficiently derive results about the Aut(𝐶) × 𝐹4 theta
correspondence.

Now we outline the contents of the paper and make a few more remarks on the proofs of our main
results. Section 2 introduces notation and recalls some preliminary material. Section 3 contains the
computations of (twisted) Jacquet modules of the minimal representation V with respect to a maximal
Heisenberg parabolic of 𝐹4. These calculations are done using a filtration of V with respect to a maximal
Heisenberg parabolic subgroup of 𝐸7 (recalled in Theorem 3.1). This filtration was first studied in
Magaard-Savin [19]. In this section we also review the Fourier–Jacobi functor.

In Section 4 we apply the results of Section 3 to study the theta lift of 𝜏 a supercuspidal representation
of Aut(𝐶) to 𝐹4. The main result of this section Theorem 4.10 states that Θ(𝜏) is irreducible. The proof
is based on the Fourier–Jacobi functor, which is the main new input in our analysis. Its utility stems from
Proposition 4.3, which says that the Fourier–Jacobi functor applied to the minimal representation of 𝐸7 is
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isomorphic to the Weil representation as an SO(3)×Sp(6)-representation. This is almost the setting of the
classical dual pair O(3) × Sp(6). We use the well-developed classical theory and basic properties of the
Fourier–Jacobi functor to deduce that Θ(𝜏) has at most two nontrivial constituents (Corollary 4.5). Then
we apply the calculations from Section 3 to show thatΘ(𝜏) is irreducible. Specifically, we use the twisted
Jacquet module calculations to prove that Θ(𝜏) has at most one nontrivial constituent (Proposition 4.8),
and the untwisted Jacquet module to rule out the trivial representation (Proposition 4.9).

Next we specialize to the case when C is the algebra of 2× 2 matrices, so Aut(𝐶) = PGL2. Section 5
is roughly analogous to Section 3. The difference is that now we use a filtration of V with respect to a
maximal Siegel parabolic subgroup of 𝐸7 [26] (recalled in Theorem 5.1) to compute Jacquet modules
with respect to a Borel subgroup of PGL2.

In Section 6 we describe the theta lift of representations of PGL2 to 𝐹4. This breaks up into two parts.
First we consider constituents of principal series. For this we apply the results of Section 5 on untwisted
Jacquet modules to lift the constituents of principal series of PGL2 to 𝐹4. Generically, the theta lift
of a PGL2 principal series is a degenerate principal series of 𝐹4 induced from the maximal parabolic
subgroup Q. The complete description of the big theta lift is contained in Theorems 6.2 and 6.3; the
small theta lift is described in Proposition 6.4. The approach of this section builds upon [26].

Second, we consider supercuspidal representations in Subsection 6.4. From Theorem 4.10 we
know that the theta lift of a supercuspidal representation is irreducible. Here we refine this result in
Proposition 6.5 when Aut(𝐶) = PGL2. Specifically, we show that the theta lift is a quotient of an explicit
representation of 𝐹4 induced from the maximal parabolic subgroup 𝑄2. We note that this calculation
uses the 𝐺2 × 𝐹4 ⊂ 𝐸8 dual pair studied in Magaard-Savin [19].

In Section 7 we consider the theta lift from 𝐹4 to Aut(𝐶). The main result is Theorem 7.4, which
states that if 𝜎 ∈ Irr(𝐹4) and Θ(𝜎) ≠ 0, then Θ(𝜎) ∈ Irr(Aut(𝐶)).

In Section 8 we characterize the irreducible representations of 𝐹4 that are Spin(9)-distinguished,
that is, possess a Spin9-invariant linear functional. The main result, Theorem 8.1, is proved using the
twisted Jacquet module calculations from Section 5. We also show in Proposition 8.4 that supercuspidal
representations of PGL2 lift to Spin9-relatively supercuspidal representations of 𝐹4.

Section 9 concludes the paper with analogous (but easier) results when dim𝐶 = 2.

2. Notation

2.1. Representation theory of p-adic groups

Let F be a nonarchimedean local field of characteristic 0 and residual characteristic 𝑝 > 0, with ring of
integers O and maximal ideal 𝔭. Let q be the order of the residue field. We normalize the absolute value
on F so that its value is 𝑞−1 on any generator of 𝔭. We fix a nontrivial additive character 𝜓 : 𝐹 → C×.

Let G be the group of F-points of a connected reductive group. Let M(𝐺) be the category of
smooth G-representations and let Irr(𝐺) be the set of isomorphism classes of irreducible objects. Given
𝜋 ∈ M(𝐺) we write 𝜋̃ for the smooth contragradient representation of 𝜋.

If 𝐻 ⊂ 𝐺 is a closed subgroup and (𝜎,𝑊) is a smooth representation of H. We write Ind𝐺
𝐻 (𝜎)

for the space of right G-smooth functions 𝑓 : 𝐺 → 𝑊 such that for any 𝑔 ∈ 𝐺 and ℎ ∈ 𝐻 we
have 𝑓 (ℎ𝑔) = 𝜎(ℎ) 𝑓 (𝑔). This is a G-representation with the action (𝑔 · 𝑓 ) (𝑔′) = 𝑓 (𝑔′𝑔). We write
ind𝐺

𝐻 (𝜎) ⊂ Ind𝐺
𝐻 (𝜎) for the G-submodule of functions with compact support mod H.

Now suppose 𝑃 = 𝑀𝑁 ⊂ 𝐺 is a parabolic subgroup with a Levi decomposition, and (𝜎,𝑊) is a
smooth representation of M inflated to P. We fix 𝑑𝑛 a Haar measure on N and let 𝛿𝑃 be the modular
character of P defined by 𝑑 (𝑝𝑛𝑝−1) = 𝛿𝑃 (𝑝)𝑑𝑛. We write 𝑖𝐺𝑀 (𝜎) = Ind𝐺

𝑃 (𝛿1/2
𝑃 ⊗ 𝜎) for normalized

parabolic induction.
Let (𝜋,𝑉) be a smooth G-representation. If 𝐻 ⊂ 𝐺 is a subgroup with a character 𝜒 : 𝐻 → C,

let 𝑉(𝐻,𝜒) denote the space of (𝐻, 𝜒)-coinvariants. This space can be realized as the quotient of V
by the subspace span{ℎ · 𝑣 − 𝜒(ℎ)𝑣 |𝑣 ∈ 𝑉, ℎ ∈ 𝐻} and is a representation of the subgroup of the
normalizer of H that fixes 𝜒, which we write as Stab𝐺 (𝜒). If 𝜒 is trivial we write 𝑉𝐻 = 𝑉(𝐻,𝜒) . We
write 𝑟𝑃 (𝑉) = 𝛿−1/2

𝑃 ⊗ 𝑉𝑁 for the normalized Jacquet module of a parabolic subgroup 𝑃 = 𝑀𝑁 ⊂ 𝐺.

https://doi.org/10.1017/fms.2025.10108 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10108


Forum of Mathematics, Sigma 5

2.2. Composition algebras

The theta-lift examined in this paper is based on exceptional dual pairs that can be constructed using
composition and Jordan algebras. We begin by collecting some information on these algebras.

Let C be a composition algebra over F with quadratic norm form 𝑛𝐶 . We write 𝐵𝐶 (𝑥, 𝑦) =
𝑛𝐶 (𝑥 + 𝑦) − 𝑛𝐶 (𝑥) − 𝑛𝐶 (𝑦) for the bilinear form associated to 𝑛𝐶 and : 𝐶 → 𝐶 as 𝑥 ↦→ 𝑥 for
conjugation ([28], Section 1.3). The trace of an element of 𝑥 ∈ 𝐶 is Tr𝐶 (𝑥) = 𝑥 + 𝑥 and 𝑛𝐶 (𝑥) = 𝑥𝑥.
Note that Tr𝐶 (𝑥𝑦) = −𝐵𝐶 (𝑥, 𝑦), for all 𝑥, 𝑦 ∈ 𝐶.

We write 𝐶0 for the subspace of trace 0 elements of C. The group of F-algebra automorphisms
Aut(𝐶) preserves the norm and acts on 𝐶0. Thus Aut(𝐶) is contained in 𝑂 (𝐶0, 𝑛𝐶 ) the orthogonal
group of the norm form.

Recall that dim𝐹 (𝐶) = 1, 2, 4, 8. Over the p-adic field F the possible composition algebras can
be described explicitly. When dim𝐹 (𝐶) = 2, then C is either a quadratic field extension of F, or C
is isomorphic to the split quadratic algebra 𝐹 ⊕ 𝐹 with norm form (𝑥, 𝑦) ↦→ 𝑥𝑦. In either case, the
automorphism group of Aut(𝐶) is generated by the conjugate map 𝑥 ↦→ 𝑥 and so is isomorphic to
𝜇2 = {±1}.

When dim(𝐶) = 4, C is either isomorphic to the split quaternion algebra, which can be realized as
the algebra of 2 × 2 matrices 𝑀 (2, 𝐹) with norm form given by the determinant; or C is isomorphic
to D, the unique (up to isomorphism) quaternion division algebra over F. The group of Aut(𝐶) consists
of inner automorphisms (Skolem–Noether Theorem) and so is isomorphic to 𝑃𝐶×. When 𝐶 � 𝑀 (2, 𝐹),
then Aut(𝐶) � PGL2 (𝐹).

When dim𝐹 (𝐶) = 8, then C is isomorphic to O the split octonion algebra over F. Its automorphism
group is the F-points of an algebraic group of type 𝐺2.

For more information on composition algebras the reader can refer to [12, 28].

2.3. Jordan algebras

Next we describe a family of Jordan algebras indexed by a composition algebra C. For more details, see
Pollack [22, Chapter 2, Section 2].

Let

J = J𝐶 =
{
𝑋 =

(
𝑐1 𝑥3 𝑥2
𝑥3 𝑐2 𝑥1
𝑥2 𝑥1 𝑐3

)
|𝑐 𝑗 ∈ 𝐹, 𝑥 𝑗 ∈ 𝐶

}
.

Given 𝐴, 𝐵 ∈ J𝐶 the Jordan multiplication is defined by

𝐴 ∗ 𝐵 =
𝐴𝐵 + 𝐵𝐴

2
,

where 𝐴𝐵, 𝐵𝐴 denotes usual matrix multiplication. The algebra J𝐶 is equipped with a cubic norm form

𝑁J (𝑋) = 𝑐1𝑐2𝑐3 − 𝑐1𝑛𝐶 (𝑥1) − 𝑐2𝑛𝐶 (𝑥2) − 𝑐3𝑛𝐶 (𝑥3) + Tr(𝑥1𝑥2𝑥3).

The norm form uniquely defines a symmetric trilinear form (−,−,−)J : J × J × J → 𝐹 normalized
so that (𝑋, 𝑋, 𝑋)J = 6𝑁J (𝑋).

We write TrJ : J → 𝐹 for the map defined by TrJ (𝑋) = 𝑐1 + 𝑐2 + 𝑐3. From this we define a
nondegenerate pairing 〈−,−〉J : J × J → 𝐹 by 〈𝑋, 𝑋 ′〉J = TrJ (𝑋 ∗ 𝑋 ′).

There is also a map # : J → J defined by

𝑋# =

(
𝑐2𝑐3−𝑛𝐶 (𝑥1) 𝑥2 𝑥1−𝑐3𝑥3 𝑥3 𝑥1−𝑐2𝑥2
𝑥1𝑥2−𝑐3 𝑥3 𝑐1𝑐3−𝑛𝐶 (𝑥2) 𝑥3 𝑥2−𝑐1 𝑥1
𝑥1 𝑥3−𝑐2𝑥2 𝑥2 𝑥3−𝑐1𝑥1 𝑐1𝑐2−𝑛𝐶 (𝑥3)

)
.

https://doi.org/10.1017/fms.2025.10108 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10108


6 E. Karasiewicz and G. Savin

This map can be used to define the cross product

𝑋 × 𝑌 = (𝑋 + 𝑌 )# − 𝑋# − (𝑌 )#. (2.1)

Alternatively 𝑋 × 𝑌 ∈ J is the unique element such that for all 𝑌 ∈ J

〈𝑋 × 𝑌, 𝑍〉J = (𝑋,𝑌, 𝑍)J . (2.2)

There is a notion of rank for elements in J . Every element 𝑋 ∈ J has rank at most 3. If 𝑁 (𝑋) = 0,
then X has rank at most 2. If 𝑋# = 0, then x has rank at most 1. If 𝑋 = 0, then X has rank 0. (Pollack
[22, Chapter 3, Section 3])

We write 𝐻𝐶 for the group of invertible linear transformations of J = J𝐶 that scale the norm form
𝑁J (i.e., the group of similitudes of the cubic form), and 𝐻1

𝐶 for the subgroup preserving the norm
form. We have a subgroup Aut(𝐶) × GL3 (𝐹) → 𝐻𝐶 where 𝑔 ∈ Aut(𝐶) acts naturally on entries of
elements of J , while ℎ ∈ GL3(𝐹) acts on 𝑋 ∈ J by

det(ℎ) · (ℎ−1)
𝑋ℎ−1,

where ℎ
 denotes the transpose of h. The similitude character of this transformation of J is det(ℎ). If
𝐶 = 𝐹, then 𝐻𝐹 � GL3(𝐹). In general, Aut(𝐶) × GL3(𝐹) preserves the decomposition

J𝐶 = J𝐹 ⊕ J𝐶0

where J𝐶0 is the subspace consisting of

𝐽 (𝑥) =

(
0 𝑥3 𝑥2
𝑥3 0 𝑥1
𝑥2 𝑥1 0

)
,

where 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ (𝐶0)3. The following proposition in essence restates the known fact that the
dual of the standard three-dimensional representation of GL3 is isomorphic to the exterior square of the
standard representation twisted by determinant inverse. In any case it is easy to check.

Proposition 2.1. Let 𝑉3 be the standard representation of GL3(𝐹). Then J𝐶0 � 𝐶0 ⊗ 𝑉3. Explicitly,
(𝑔, ℎ) ∈ Aut(𝐶) × GL3 (𝐹) acts on 𝐽 (𝑥) by 𝐽 (𝑔𝑥ℎ
).

2.4. Construction of exceptional Lie algebras

Let 𝔥𝐶 be the Lie algebra of 𝐻1
𝐶 . We define vector spaces

𝔤0,𝐶 = 𝔰𝔩(3, 𝐹) ⊕ 𝔥𝐶 ,

𝔤1,𝐶 = 𝑉3 ⊗ J𝐶 ,

𝔤−1,𝐶 = 𝑉∗
3 ⊗ J ∗

𝐶 ,

where 𝑉3 is the standard representation of 𝔰𝔩3 and 𝑉∗
3 the dual of 𝑉3. We identify J ∗

𝐶 with J𝐶 using the
trace form. Consider the vector space

𝔤𝐶 = 𝔤0,𝐶 ⊕ 𝔤1,𝐶 ⊕ 𝔤−1,𝐶 .

The space 𝔤𝐶 can be given the structure of a Lie algebra that extends the Lie algebra structure on 𝔤0,𝐶

and the natural action of 𝔤0,𝐶 on 𝔤1,𝐶 ⊕ 𝔤−1,𝐶 . (See [24], Section 1.3.) We write 〈−,−〉𝐶 for the Killing
form of 𝔤𝐶 . The Lie algebra 𝔤𝐹 is the split simple Lie algebra of type 𝐹4. The Lie algebra 𝔤𝐶 is a simple
Lie algebra of type 𝐸𝑛, where 𝑛 = 6, 7, 8 when dim𝐹 (𝐶) = 2, 4, 8, respectively.
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Let 𝑌 ∈ 𝔰𝔩(3, 𝐹) and 𝑋 ∈ J𝐶 , then 𝑋 ↦→ 𝑌𝑋 + 𝑋𝑌
 defines a Lie algebra action of 𝔰𝔩(3, 𝐹) on
J𝐶 extending the analogous action of 𝔰𝔩(3, 𝐹) on J𝐹 . This action induces an inclusion of Lie algebras
𝔥𝐹 � 𝔰𝔩(3, 𝐹) ↩→ 𝔥𝐶 , which induces an inclusion of Lie algebras 𝔤𝐹 ↩→ 𝔤𝐶 .

Next we describe a Heisenberg parabolic subalgebra in 𝔤𝐶 . Let 𝔱 be the subalgebra of diagonal
matrices in 𝔰𝔩(3, 𝐹) ⊂ 𝔤0,𝐶 . The adjoint action of 𝔱 on 𝔤𝐶 provides a decomposition

𝔤𝐶 =
⊕
𝛾∈𝔱∗

𝔤𝛾 ,

where 𝔤𝛾 = {𝑋 ∈ 𝔤𝐶 | [ℎ, 𝑋] = 𝛾(ℎ)𝑋 for all ℎ ∈ 𝔱}. The weights 𝛾 ≠ 0 such that 𝔤𝛾 ≠ 0 form a
relative root system Φ of type 𝐺2 ([7, Sections 9.2, 10.8]). Note that the long relative root spaces are
all isomorphic to F and sit in 𝔰𝔩(3, 𝐹) while the short relative root spaces are isomorphic to J𝐶 or J ∗

𝐶 .
Finally, observe that 𝔤0 = 𝔱 ⊕ 𝔥𝐶 .

We let {𝛼, 𝛽} be a set of simple roots in the 𝐺2 relative root system so that 𝛼 is long, 𝛽 is short. Then
the maximal root 𝛼max = 2𝛼 + 3𝛽 is a long root. Thus, without loss of generality, we can assume that
ℎ𝛼max = diag(1, 0,−1) ∈ 𝔰𝔩(3, 𝐹).

The element ℎ𝛼max defines a Z-grading on 𝔤𝐶 supported on {0,±1,±2}. For 𝑗 ∈ Z, let

𝔤𝐶 ( 𝑗) = {𝑥 ∈ 𝔤𝐶 | [ℎ𝛼max , 𝑥] = 𝑗𝑥}.

Let 𝔭 = ⊕ 𝑗≥0𝔤𝐶 ( 𝑗). Then 𝔭 is a Heisenberg parabolic subalgebra with Levi subalgebra

𝔪 = 𝔤𝐶 (0) = 𝔱 ⊕ 𝔥𝐶 ⊕ 𝔤𝛽 ⊕ 𝔤−𝛽

and nilpotent radical 𝔫 = ⊕ 𝑗>0𝔤𝐶 ( 𝑗) with one-dimensional center

𝔷 = 𝔤𝐶 (2) = 𝔤𝛼max .

Let G𝐶 = Aut(𝔤𝐶 ). If 𝐶 ≠ 𝐹 then the connected component of G𝐶 is an adjoint group of type 𝐸𝑛.
The group G𝐹 is 𝐹4. We omit the subscript C when no confusion can arise. Then the maximal parabolic
subalgebra 𝔭 corresponds to a maximal parabolic subgroup P = MN in G. Let Z be the center of N .
Then M acts on N /Z � 𝔫/𝔷. The space 𝔫/𝔷 admits a symplectic and a quartic form, and M acts as a
group of similitudes of these two forms.
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2.5. A symplectic space

Using Pollack [22, Chapter 3] we give an explicit construction of the reductive group M and its
representation on the symplectic space 𝔫/𝔷. In terms of the restricted root system, we have

𝔫/𝔷 � 𝔤𝛼 ⊕ 𝔤𝛼+𝛽 ⊕ 𝔤𝛼+2𝛽 ⊕ 𝔤𝛼+3𝛽 .

We identify J and J ∗ using the trace form, so 𝔤𝛾 � J for any short root 𝛾. Thus we can identify 𝔫/𝔷
with

W =W𝐶 = 𝐹 ⊕ J ⊕ J ⊕ 𝐹.

So any element 𝑤 ∈ W is a quadruple 𝑤 = (𝑎, 𝑏, 𝑐, 𝑑), where 𝑎, 𝑑 ∈ 𝐹 and 𝑏, 𝑐 ∈ J . The space W
comes with a symplectic form

〈(𝑎, 𝑏, 𝑐, 𝑑), (𝑎′, 𝑏′, 𝑐′, 𝑑 ′)〉W = 𝑎𝑑 ′ − Tr(𝑏 ∗ 𝑐′) + Tr(𝑐 ∗ 𝑏′) − 𝑑𝑎′,

and a quartic form

𝑞(𝑎, 𝑏, 𝑐, 𝑑) = (𝑎𝑑 − Tr(𝑏 ∗ 𝑐))2 + 4𝑎𝑁 (𝑐) + 4𝑑𝑁 (𝑏) − 4Tr(𝑏# ∗ 𝑐#).

Let (−,−,−,−)W be the unique symmetric 4-linear form onW such that (𝑣, 𝑣, 𝑣, 𝑣) = 2𝑞(𝑣). Then M
is isomorphic to the group of similitudes

𝑀𝐶 = {(𝑔, 𝜈) ∈ GL(W) × GL1(𝐹) |〈𝑔𝑣, 𝑔𝑣
′〉 = 𝜈〈𝑣, 𝑣′〉, 𝑞(𝑔𝑣) = 𝜈2𝑞(𝑣) for all 𝑣, 𝑣′ ∈ W}.

We write 𝑀1
𝐶 for the subgroup of elements where the similitude factor 𝜈 is equal to 1.

We highlight a few subgroups of 𝑀1
𝐶 . If ℎ ∈ 𝐻𝐶 with similitude factor 𝜆, then the map (𝑎, 𝑏, 𝑐, 𝑑) ↦→

(𝜆𝑎, ℎ𝑏, ℎ̃𝑐, 𝜆−1𝑑), where the action of ℎ̃ on J is defined through the identification of J with J ∗ via
the trace pairing, defines an element of 𝑀1

𝐶 . We abuse notation and let 𝐻𝐶 denote this subgroup.
For 𝑥 ∈ J let 𝑛(𝑥) be the map defined by

𝑛(𝑥) (𝑎, 𝑏, 𝑐, 𝑑) = (𝑎, 𝑏 + 𝑎𝑥, 𝑐 + 𝑏 × 𝑥 + 𝑎𝑥#, 𝑑 + Tr(𝑐 ∗ 𝑥) + Tr(𝑏 ∗ 𝑥#) + 𝑎𝑁 (𝑥)). (2.3)

The map 𝑛(𝑥) ∈ 𝑀J and has similitude factor equal to 1. The group generated by these elements is
isomorphic to the unipotent group exp(𝔤𝛽) ⊂ M.

Similarly, for 𝑥 ∈ J let 𝑛(𝑥) be the map defined by

𝑛(𝑥) (𝑎, 𝑏, 𝑐, 𝑑) = (𝑎 + Tr(𝑏 ∗ 𝑥) + Tr(𝑐 ∗ 𝑥#) + 𝑑𝑁 (𝑥), 𝑏 + 𝑐 × 𝑥 + 𝑑𝑥#, 𝑐 + 𝑑𝑥, 𝑑).

The map 𝑛(𝑥) ∈ 𝑀𝐶 and has similitude factor equal to 1. The group generated by these elements is
isomorphic to the unipotent group exp(𝔤−𝛽) ⊂ M.

The two abelian groups generated by 𝑛(𝑥) and 𝑛(𝑥), respectively, are unipotent radicals of two
opposite maximal parabolic subgroups in 𝑀1

𝐶 with the Levi factor 𝐻𝐶 . These two parabolic groups are
conjugate by

(𝑎, 𝑏, 𝑐, 𝑑) ↦→ (−𝑑, 𝑐,−𝑏, 𝑎). (2.4)

If 𝜆 ∈ GL1 (𝐹), then

𝑠𝜆 : (𝑎, 𝑏, 𝑐, 𝑑) ↦→ (𝜆2, 𝜆𝑏, 𝑐, 𝜆−1𝑑)

and

𝑠∗𝜆 : (𝑎, 𝑏, 𝑐, 𝑑) ↦→ (𝜆−1, 𝑏, 𝜆𝑐, 𝜆2𝑑)
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are two elements of 𝑀𝐶 with the similitude factor 𝜈 = 𝜆. Thus 𝑀𝐶 is generated by 𝑀1
𝐶 and any of

the two one-parameter groups s or 𝑠∗. We have written down both of these two groups for the sake of
symmetry but also because they generate a two-dimensional torus whose Lie algebra is 𝔱 ⊂ 𝔪.

Observe that Aut(𝐶) ⊂ 𝑀𝐶 where Aut(𝐶) acts on the coordinates ofW𝐶 . The centralizer of Aut(𝐶)
in 𝑀𝐶 is 𝑀𝐹 , the Levi of the Heisenberg maximal parabolic of 𝐹4. This group is isomorphic to GSp6(𝐹),
as one can see from root data, for example. We shall fix an isomorphism 𝑀𝐹 � GSp6(𝐹) as follows.
Recall thatW𝐶 is a symplectic space. Under the action of Aut(𝐶) it decomposes as

W𝐶 =W𝐹 ⊕ (J𝐶0 ⊕ J𝐶0).

If 𝑉6 is a six-dimensional symplectic space then 𝐶0 ⊗ 𝑉6 is a symplectic space obtaining by tensoring
the quadratic space 𝐶0 and the symplectic space 𝑉6. We pick 𝑉6 so that

J𝐶0 ⊕ J𝐶0 � 𝐶0 ⊗ 𝑉6, (2.5)

given by (𝐽 (𝑥), 𝐽 (𝑦)) ↦→ (𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3), is an isomorphism of symplectic spaces. Since 𝑀𝐹

commutes with Aut(𝐶), and Aut(𝐶) acts on 𝐶0 irreducibly, 𝑀𝐹 must act on 𝑉6, giving an identification
with GSp6(𝐹). Let sim denote the usual similitude character of GSp6 (𝐹). Observe that the similitude
character of 𝑀𝐶 restricts to sim under the identification.

2.6. Orbits

We now describe orbits of 𝑀J acting on W = W𝐶 . Given 𝑣 = (𝑎, 𝑏, 𝑐, 𝑑) ∈ WJ define 𝑣♭ =
(𝑎♭, 𝑏♭, 𝑐♭, 𝑑♭) ([22, Proposition 1.0.3]), where

𝑎♭ = −𝑎(𝑎𝑑 − Tr(𝑏 ∗ 𝑐)) − 2𝑁 (𝑏);

𝑏♭ = −2𝑐 × 𝑏# + 2𝑎𝑐# − (𝑎𝑑 − Tr(𝑏 ∗ 𝑐))𝑏;

𝑐♭ = 2𝑏 × 𝑐# − 2𝑏𝑑# + (𝑎𝑑 − Tr(𝑏 ∗ 𝑐))𝑐;

𝑑♭ = 𝑑 (𝑎𝑑 − Tr(𝑏 ∗ 𝑐)) + 2𝑁 (𝑐).

Over the algebraic closure the orbits are classified by the rank for elements in W, defined as follows.
Let 𝑣 ∈ W. The element v has rank at most 4. If 𝑞(𝑣) = 0, then v has rank at most 3. If 𝑣♭ = 0, then v
has rank at most 2. If (𝑣, 𝑣, 𝑤, 𝑤′) = 0 for all 𝑤, 𝑤′ ∈ (𝑣)⊥ (the orthogonal complement with respect to
〈−,−〉W), then v has rank at most 1. If 𝑣 = 0, then v has rank 0.

We need the following proposition [8, Proposition 8.1] and a simple corollary.

Proposition 2.2. A nonzero element (𝑎, 𝑏, 𝑐, 𝑑) ∈ W has rank 1 if and only if

1. 𝑏# − 𝑎𝑐 = 0,
2. 𝑐# − 𝑑𝑏 = 0,
3. 𝑎𝑑 = ℎ(𝑏) ∗ ℎ̃(𝑐) for all ℎ ∈ 𝐻𝐶 , where ℎ̃ is the dual action of h on J ∗ identified with J using the

trace form.

Corollary 2.3. Ξ = (1, 𝑏, 𝑐, 𝑑) ∈ W has rank 1 if and only if 𝑐 = 𝑏# and 𝑑 = 𝑁 (𝑏).

Proof. If Ξ has rank 1, then Proposition 2.2 implies 𝑐 = 𝑏# and 𝑑 = 𝑏 ∗ 𝑏# = 𝑁 (𝑏) (use ℎ = 1 in (3)).
In the opposite direction use (𝑏#)# = 𝑁 (𝑏) · 𝑏 and ℎ̃(𝑏#) = ℎ(𝑏)#/𝜈 where 𝜈 is the similitude factor
of h. �

2.7. The dual pair Aut(𝐶) × G𝐹 in G𝐶

Observe that Aut(𝐶) naturally acts on J𝐶 preserving the norm 𝑁J . Thus Der(𝐶), the Lie algebra of
Aut(𝐶), is a subalgebra of 𝔥𝐶 . From the construction of 𝔤𝐶 in Subsection 2.4 it is evident that the
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centralizer of Der(𝐶) in 𝔤𝐶 contains 𝔤𝐹 , the Lie algebra of G𝐹 , the group of type 𝐹4. This group is
simply connected with trivial center. Thus the inclusion of Lie algebras lifts to an inclusion G𝐹 ⊆ G𝐶 .

Lemma 2.4. Aut(𝐶) × G𝐹 is a maximal subgroup in G𝐶 .

Proof. Observe that, under the adjoint action restricted to Der(𝐶) ⊕ 𝔤𝐹 ,

𝔤𝐶 = Der(𝐶) ⊕ 𝔤𝐹 ⊕ 𝐶0 ⊗ 𝑉26

where 𝐶0 and 𝑉26 are irreducible representations of Der(𝐶) and 𝔤𝐹 respectively. The irreducibility of
𝐶0 ⊗ 𝑉26 implies that Der(𝐶) ⊕ 𝔤𝐹 is a maximal subalgebra of 𝔤.

First assume dim(𝐶) ≠ 2. Then Aut(𝐶) × G𝐹 is connected. Since Der(𝐶) ⊕ 𝔤𝐹 is maximal, any
proper subgroup H of G𝐶 containing Aut(𝐶) × G𝐹 must have Aut(𝐶) × G𝐹 as its connected component
of identity. Now Aut(𝐶) × G𝐹 has no outer automorphisms, so if H is disconnected, then there exists
a semisimple finite-order element 𝑧 ∈ G𝐶 centralizing Aut(𝐶) × G𝐹 . Since 𝐶0 ⊗ 𝑉26 is irreducible, z
would have to act on it as −1. But the centralizer of the semisimple element z must contain a maximal
torus. Since Aut(𝐶) × G𝐹 has rank 5 and G𝐶 has rank 7, this is a contradiction.

Second, assume dim𝐶 = 2. Note that in this case G𝐶 is disconnected and the component group is
generated by the outerautomorphism of the 𝐸6 Dynkin diagram, which has order 2. As above we can see
that G𝐹 is maximal in G◦

𝐶 , the connected component of the identity. Since the generator of Aut(𝐶) = 𝜇2
is the outerautomorphism in G𝐶 , the conclusion of the lemma holds in this case, too. �

We are now in a position to understand rational G𝐶 -conjugacy classes of Aut(𝐶) × G𝐹 ⊂ G𝐶 over F.
Over 𝐹̄, there is one conjugacy class, that is, any subgroup of G𝐶 isomorphic to Aut(𝐶) × G𝐹 is
conjugate to Aut(𝐶) × G𝐹 , this is due to Dynkin. By Lemma 2.4, the normalizer of Aut(𝐶) × G𝐹 in G𝐶

is Aut(𝐶) × G𝐹 , hence conjugacy classes over F correspond to the kernel of the map of pointed sets

𝐻1(𝐹, Aut(𝐶)) × 𝐻1(𝐹,G𝐹 ) → 𝐻1(𝐹,G𝐶 ).

If F is p-adic, then 𝐻1(𝐹,G𝐹 ) is trivial, hence we are reduced to the map 𝐻1 (𝐹, Aut(𝐶)) → 𝐻1(𝐹,G𝐶 ).
This maps sends a rational form 𝐶 ′ of C (i.e., an element of 𝐻1 (𝐹, Aut(𝐶))) to G𝐶′ . This map is clearly
injective, hence we have only one conjugacy class. Furthermore, injectivity implies that Aut(𝐶) × G𝐹

can be a subgroup of G𝐶′ only when 𝐶 � 𝐶 ′.
In this paper we use two different constructions of the dual pair Aut(𝐶) × G𝐹 ⊆ G𝐶 to investigate

the theta correspondence. From the above these two subgroups are conjugate. Thus the results obtained
using each construction are compatible.

2.8. Degenerate principal series on 𝐹4

In this section, we collect the results of Choi–Jantzen [4] that describe the structure of degenerate
principal series on 𝐹4. Henceforth we write 𝐺 = G𝐹 for the unique group of type 𝐹4 over F.

We note that in this paper we use the Bourbaki labeling of simple roots of 𝐹4 [3, Plate VIII], but
Choi–Jantzen [4] use the reverse order, that is, the two labelings are related by the permutation (14) (23),
written in disjoint cycle notation.

Proposition 2.5 (Theorems 3.1 and 6.1 [4]). Let 𝜒 be a character of 𝐹× such that 𝜒 = | − |𝑠𝜒0, where
𝜒0 is a unitary character and 𝑠 ∈ C. Let Q be a maximal parabolic subgroup associated with the simple
root 𝛼4 and let 𝜛4 be the fundamental weight that pairs nontrivially with 𝛼∨

4 .

1. 𝑖𝐺𝑄 (𝜒 ◦𝜛4) is reducible if and only if 𝑠 = ± 11
2 ,± 5

2 ,±
1
2 with 𝜒0 trivial, or 𝑠 = ± 1

2 with 𝜒0 of order 2.
2. If 𝑠 = ± 11

2 ,− 5
2 ,±

1
2 and 𝜒0 has order dividing 2, then 𝑖𝐺𝑄 (𝜒 ◦𝜛4) has a unique irreducible quotient.

3. If 𝑠 = 5
2 and 𝜒0 is trivial, then 𝑖𝐺𝑄 (𝜒 ◦𝜛4) has a maximal semisimple quotient of the form 𝜎+ ⊕ 𝜎−,

where 𝜎+ and 𝜎− are distinct irreducible representations of G.
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2.9. PGL2 (𝐹)

In this subsection, we recall basic facts about 𝒢 = PGL2 (𝐹).
Lemma 2.6. The characters of 𝒢 are in bijection with the quadratic characters of 𝐹×.

Let ℬ = 𝒯𝒰 be a Borel subgroup of 𝒢 and let ℬ = 𝒯𝒰 be its opposite. We fix an identification
𝒯 � 𝐹× so that 𝒯 acts on 𝒰 by multiplication. In particular, the modular character is 𝛿

ℬ
(𝑡) = |𝑡 |. Let

𝜒 be a character of 𝒯 and define 𝑖𝒢
ℬ
(𝜒) = Ind𝒢

ℬ
(𝛿1/2

ℬ
· 𝜒). Let St denote the Steinberg representation

of 𝒢. We have the following well-known result:
Lemma 2.7. Let 𝜒 be a character of 𝐹× such that 𝜒 = | − |𝑠𝜒0, where 𝜒0 is a unitary character and
𝑠 ∈ C. The representation 𝑖𝒢

ℬ
(𝜒) is irreducible unless 𝑠 = ±1/2 and 𝜒0 is a quadratic character.

1. If 𝑠 = 1/2 and 𝜒0 is a quadratic character. Then 𝑖𝒢
ℬ
(𝜒) has length 2. The unique irreducible

quotient is the one-dimensional representation obtained by inflating 𝜒0 to 𝒢. The unique irreducible
submodule is St ⊗ 𝜒0.

2. If 𝑠 = −1/2 and 𝜒0 is a quadratic character. Then 𝑖𝒢
ℬ
(𝜒) has length 2. The unique irreducible

quotient is St ⊗ 𝜒0. The unique irreducible submodule the one-dimensional representation obtained
by inflating 𝜒0 to 𝒢.

2.10. Theta lifting preliminaries

In this subsection we establish preliminaries to discuss a theta lift for Aut(𝐶) × 𝐹4 ⊂ 𝐸7.
Recall that associated to a quaternion algebra C we have the following groups: G is the F-points of a

connected semisimple adjoint group of type 𝐸7; G is the F-points of a connected semisimple group of
type 𝐹4; 𝒢 is the F-points of the automorphism group of C. Let (Π,V) = (Πmin,Vmin) be the minimal
representation of G. (See [14] for split groups; [7] for nonsplit.)

To begin we define the big theta lift. Let 𝜏 be an irreducible smooth 𝒢-representation. The maximal
𝜏-isotypic quotient of V is naturally a 𝒢 ×𝐺-representation V𝜏 . Furthermore, V𝜏 admits a factorization
V𝜏 � 𝜏 ⊗ Θ(𝜏), where Θ(𝜏) is a G-representation. We call Θ(𝜏) the big theta lift of 𝜏 with respect to
the restriction of V to 𝒢 × 𝐺. (For details, see [20, Chapter 2, Section 3].) Let 𝜃 (𝜏) be the maximal
semisimple quotient (cosocle) of Θ(𝜏).

The main objective of this work is to investigate Θ(𝜏) and 𝜃 (𝜏). The following simple lemma is
important for our analysis. If V is a vector space, we write 𝑉∗ for its linear dual.
Lemma 2.8. Let 𝜏 ∈ Irr(𝒢). Let 𝑈 ⊂ 𝐺 be a unipotent subgroup with a character Ψ and let
𝐻 = Stab𝐺 (𝑈,Ψ). There is an H-module isomorphism

(Θ(𝜏)(𝑈,Ψ) )
∗ � Hom𝒢 (V(𝑈,Ψ) , 𝜏),

where the H acts on Hom𝒢 (V(𝑈,Ψ) , 𝜏) by (ℎ · 𝑓 ) (𝑣) = 𝑓 (ℎ−1 · 𝑣).
In particular, there is an isomorphism of G-modules

Θ(𝜏)∗ � Hom𝒢 (V , 𝜏).

Proof. Because 𝜏 is irreducible, it follows that Θ(𝜏) � (V ⊗ 𝜏)𝒢 as G-modules. Taking (𝑈,Ψ)-
coinvariants gives Θ(𝜏)(𝑈,Ψ) � [(V ⊗ 𝜏)𝒢](𝑈,Ψ) as H-modules. Since H and 𝒢 commute we can
commute the coinvariants to get an H-module isomorphism Θ(𝜏)(𝑈,Ψ) � (V(𝑈,Ψ) ⊗ 𝜏)𝒢. Next we take
the linear dual and apply the ⊗-Hom adjunction to get an isomorphism of H-modules

(Θ(𝜏)(𝑈,Ψ) )
∗ � Hom((V(𝑈,Ψ) ⊗ 𝜏)𝒢,C) � Hom𝒢 (V(𝑈,Ψ) , (𝜏)

∗).

Since V(𝑈,Ψ) is a smooth 𝒢-module we have Hom𝒢 (V(𝑈,Ψ) , (𝜏)
∗) � Hom𝒢 (V(𝑈,Ψ) , ˜̃𝜏). Since 𝜏 is

irreducible we have ˜̃𝜏 � 𝜏 as 𝒢-modules. Thus as H-modules (Θ(𝜏)(𝑈,Ψ) )
∗ � Hom𝒢 (V(𝑈,Ψ) , 𝜏). �
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3. Jacquet modules I

Let G = G𝐶 and 𝐺 = G𝐹 . Let Aut(𝐶) ×𝐺 be the dual pair described in subsection 2.7 and let P = MN
be the Heisenberg maximal parabolic subgroup in G. Since Aut(𝐶) ⊂ M, the centralizer of Aut(𝐶)
in P is the Heisenberg maximal parabolic 𝑃 = 𝑀𝑁 in G. We write P = MN and 𝑃 = 𝑀𝑁 for the
parabolic subgroups opposite to P and P, respectively.

Our study of the theta lifting is based on two tools. The first are functors of twisted co-invariants
of the minimal representation V of G. The second is the Fourier–Jacobi functor. To compute these
functors, we use a P-filtration of V due to Magaard-Savin [19, Theorem 6.1], which we now recall.
In the following, Ω is the minimal nontrivial M-orbit in N /𝑍 . Under the isomorphism N /𝑍 � W𝐶 , Ω
is the set of rank 1 elements inW𝐶 .

Theorem 3.1. Let (Π,V) be the minimal representation of G and let P = MN be the Heisenberg
parabolic subgroup of G opposite to P . Let 𝑍 be the center of N . Then V has a P-filtration given by the
exact sequence

0 → 𝐶∞
𝑐 (Ω) → V𝑍 → VN → 0. (3.1)

Furthermore, the action of P is described as follows:

1. Let 𝑚𝑛 ∈ MN and 𝑓 ∈ 𝐶∞
𝑐 (Ω). Then

[Π(𝑛) 𝑓 ] (𝑥) =𝜓(〈𝑥, 𝑛〉) 𝑓 (𝑥);

[Π(𝑚) 𝑓 ] (𝑥) =𝜒𝐶 (𝑚) |det(𝑚) |𝑠/𝑑 𝑓 (𝑚−1 · 𝑥).

2. VN � [V (M) ⊗ |det|𝑡/𝑑] ⊕ 𝜒𝐶 |det|𝑠/𝑑 , where V (M) is the minimal representation of M (center
acting trivially).

Here det is the determinant of the representation of M acting on N /𝑍; 𝜒𝐶 is a quadratic character,
trivial unless C is a quadratic field, and then corresponding to C by the local class field theory; d is the
dimension of N /𝑍 . The values of s, t, and d are given in the following table.

G s t d

𝐸6 4 3 20
𝐸7 6 4 32
𝐸8 10 6 56

Remark: In Magaard-Savin [19], the groups are split. Nevertheless, their proof still applies toG = G𝐶 ,
where C is a split or nonsplit composition algebra over F. The quadratic twist by 𝜒𝐶 was observed in [8].

Given 𝜏 ∈ Irr(𝒢) there is a surjective map V � 𝜏 ⊗ Θ(𝜏). To study Θ(𝜏) we apply the functor of
(𝑁,Ψ)-coinvariants to sequence (3.1), where Ψ is a character of 𝑁 .

Let 𝑀Ψ = Stab𝑀 (Ψ). Let N (Ψ) = {𝑛 ∈ N |𝜓(〈𝑛, 𝑛〉) = Ψ(𝑛) for all 𝑛 ∈ 𝑁}. Let ΩΨ = Ω ∩N (Ψ).

Lemma 3.2. The restriction map 𝐶∞
𝑐 (Ω) → 𝐶∞

𝑐 (ΩΨ) induces a 𝒢 × 𝑀Ψ-module isomorphism

𝐶∞
𝑐 (Ω)(𝑁 ,Ψ) � 𝐶∞

𝑐 (ΩΨ).

Proof. The proof is the same as Magaard-Savin [19], Lemma 2.2. �

To describe 𝐶∞
𝑐 (ΩΨ) as a 𝒢 × 𝑀Ψ-module we need an explicit description of ΩΨ, which we take up

in the next subsection. When Ψ is nontrivial, this gives a complete description of V(𝑁 ,Ψ) , as we see in
the next lemma.
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Lemma 3.3. Suppose that Ψ is nontrivial. By applying (𝑁,Ψ) coinvariants to the exact sequence (3.1)
we get a 𝒢 × 𝑀Ψ-module isomorphism

𝐶∞
𝑐 (Ω)(𝑁 ,Ψ) � V(𝑁 ,Ψ) .

Proof. Since the functor (−)(𝑁 ,Ψ) is exact and (VN )(𝑁 ,Ψ) = 0 the result follows. �

3.1. Fiber calculation

The main objective of this section is to compute 𝐶∞
𝑐 (Ω)(𝑁 ,Ψ) , where Ψ is of rank 3 or rank 0. This is

accomplished in Proposition 3.7 for rank 3, and Proposition 3.11 for rank 0. The rank of Ψ will be defined
in terms of the rank of elements ofW𝐹 (Subsection 2.5). We explain this after setting up some notation.

The map N /𝑍 → Hom(N /𝑍,C×) defined by 𝑛 ↦→ 𝜓(〈𝑛,−〉) defines an isomorphism of N /𝑍 with
the Pontryagin dual of N /𝑍 . Similarly, by restriction this map defines an isomorphism between 𝑁/𝑍
and the Pontryagin dual of 𝑁/𝑍 .

We identify N /𝑍 withW𝐶 and M with 𝑀𝐶 so that the adjoint action of M on N /𝑍 corresponds to
the action of 𝑀𝐶 onW𝐶 . This also fixes an identification of 𝑁/𝑍 withW𝐹 = WAut(𝐶)

𝐶 and of 𝑀 ⊂ M
with 𝑀𝐹 ⊂ 𝑀𝐶 . Thus we can view the character Ψ as an element of W𝐹 . We define the rank of Ψ to
be the rank of its associated element inW𝐹 .

Now we reinterpret the set N (Ψ) as the fiber of a map F, defined below.
Let f : J𝐶 → J𝐹 be the map defined by(

𝑎 𝑥 𝑧
𝑥 𝑏 𝑦
𝑧 𝑦 𝑐

)
↦→

(
𝑎 Tr(𝑥)

2
Tr(𝑧)

2
Tr(𝑥)

2 𝑏 Tr(𝑦)
2

Tr(𝑧)
2

Tr(𝑦)
2 𝑐

)
.

Let F :W𝐶 →W𝐹 be defined by

(𝑎, 𝑏, 𝑐, 𝑑) ↦→ (𝑎, f (𝑏), f (𝑐), 𝑑).

With the identifications above, the natural restriction map from the Pontryagin dual of N /𝑍 to the
Pontryagin dual of 𝑁/𝑍 is realized as the map F : W𝐶 → W𝐹 . Viewing Ψ as an element of W𝐹 , we
have N (Ψ) = F−1 (Ψ). Thus our next objective is to describe the intersection of the fibers of F with Ω.

Proposition 3.4. Let C be any composition algebra. Let 𝜉 = (1, 0, 𝑐, 𝑑) ∈ W𝐹 . The set F−1 (𝜉) ∩ Ω
consists of

(1, 𝐽 (𝑥), 𝐽 (𝑥)#, 𝑁J (𝐽 (𝑥)))

for all 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ (𝐶0)3 such that

1. 𝑐 = 1
2 (Tr(𝑥𝑖𝑥 𝑗 ))

2. 𝑑 = Tr(𝑥1𝑥2𝑥3).

Proof. Let Ξ = (𝑎′, 𝑏′, 𝑐′, 𝑑 ′) ∈ F−1 (𝜉) ∩Ω.
Since Ξ ∈ F−1 (𝜉), it follows that Ξ = (1, 𝑏′, 𝑐′, 𝑑), where

𝑏′ = 𝐽 (𝑥1, 𝑥2, 𝑥3), with 𝑥 𝑗 ∈ 𝐶0;
f (𝑐′) = 𝑐.

Since Ξ ∈ Ω, by Proposition 2.2, 𝑑 = 𝑁 (𝑏′) = Tr(𝑥1𝑥2𝑥3) and

𝑐′ = (𝑏′)# =

(
−𝑁 (𝑥1) 𝑥2 𝑥1 𝑥3 𝑥1

𝑥1 𝑥2 −𝑁 (𝑥2) 𝑥3 𝑥2
𝑥1 𝑥3 𝑥2 𝑥3 −𝑁 (𝑥3)

)
=

(
𝑥2

1 𝑥2 𝑥1 𝑥3 𝑥1

𝑥1 𝑥2 𝑥2
2 𝑥3 𝑥2

𝑥1 𝑥3 𝑥2 𝑥3 𝑥2
3

)
.
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Thus

𝑐 = f (𝑐′) = 1
2

(
Tr(𝑥2

1 ) Tr(𝑥1 𝑥2) Tr(𝑥1 𝑥3)

Tr(𝑥1 𝑥2) Tr(𝑥2
2 ) Tr(𝑥2 𝑥3)

Tr(𝑥1 𝑥3) Tr(𝑥2 𝑥3) Tr(𝑥2
3 )

)
. �

Now we describe F−1 ((1, 0, 𝑐, 𝑑)) ∩Ω, where 𝑐 ∈ J𝐹 has rank 3 and dim𝐶 = 4.

Proposition 3.5. Assume dim𝐶 = 4. Let 𝜉 = (1, 0, 𝑐, 𝑑) ∈ W𝐹 such that 𝑐 ∈ J𝐹 has rank 3. Then
Ω𝜉 = F−1 (𝜉) ∩Ω is nonempty if and only if

1. Aut(𝐶) � SO(3, 𝑐),
2. 𝑑2 = −4 det(𝑐), so that 𝜉 has rank 3.

If that is the case, then Ω𝜉 is a principal homogeneous space for Aut(𝐶).

Proof. We start with a lemma.

Lemma 3.6. Let 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ (𝐶0)3. Then we have the following identity of sextic polynomials

−4 det(
1
2

Tr(𝑥𝑖𝑥 𝑗 )) = [Tr(𝑥1𝑥2𝑥3)]
2.

Proof. Let 𝑔 ∈ GL3(𝐹). Let 𝑦 = (𝑦1, 𝑦2, 𝑦3) ∈ (𝐶0)3 defined by 𝑦 = 𝑥𝑔. It is clear that

det(Tr(𝑦𝑖𝑦 𝑗 )) = det(𝑔)2 · det(Tr(𝑥𝑖𝑥 𝑗 )).

On the other hand, Tr(𝑥1𝑥2𝑥3) is a nontrivial trilinear, skew-symmetric form. Since 𝐶0 has dimension
3, the form induces an isomorphism of ∧3𝐶0 and F. Hence

Tr(𝑦1𝑦2𝑦3) = det(𝑔) · Tr(𝑥1𝑥2𝑥3).

Since GL3(𝐹) acts transitively on the open set of all bases (𝑥1, 𝑥2, 𝑥3) of 𝐶0, it suffices now to check
the identity on one basis of 𝐶0. So let us take usual 𝑖, 𝑗 , 𝑘 such that 𝑖2 = 𝑎, 𝑗2 = 𝑏, 𝑖 𝑗 = 𝑘 and 𝑘2 = −𝑎𝑏.
Then both sides of the proposed identity are equal to (2𝑎𝑏)2. �

Now, the if and only if statement is a simple combination of the lemma and Proposition 3.4. For
the last statement, on the structure of the fiber, observe that the set of x such that 𝑐 = 1

2 (Tr(𝑥𝑖𝑥 𝑗 )) is a
principal homogeneous space for O(𝐶0). Since O(𝐶0) � SO(𝐶0) × {±1} and Tr((−𝑥1) (−𝑥2) (−𝑥3)) =
−Tr(𝑥1𝑥2𝑥3), the additional equation 𝑑 = Tr(𝑥1𝑥2𝑥3) assures that the fiberΩ𝜉 is a principal homogenous
space for SO(𝐶0) = Aut(𝐶). �

We shed some light on Stab𝑀 (Ψ) for rank 3 characters. Recall that we have GL3 (𝐹) ⊂ 𝑀 such that
𝑔 ∈ GL3 (𝐹) acts on 𝜉 = 𝜉Ψ = (1, 0, 𝑐, 𝑑) ∈ W𝐹 by

(det(𝑔), 0, det(𝑔)−1𝑔𝑐𝑔
, det(𝑔)−1𝑑).

Hence 𝑔 ∈ Stab𝑀 (Ψ) if and only if det(𝑔) = 1 and 𝑔𝑐𝑔
 = 𝑐. In other words the stabilizer of 𝜉
in GL3(𝐹) is the group SO(3, 𝑐). Thus we have an action of Aut(𝐶) × SO(3, 𝑐) on Ω𝜉 . Explicitly,
(𝑔, ℎ) ∈ Aut(𝐶) × SO(3, 𝑐) acts on 𝑥 = (𝑥1, 𝑥2, 𝑥3) ∈ Ω𝜉 by

𝑥 ↦→ (𝑔𝑥1, 𝑔𝑥2, 𝑔𝑥3)ℎ

.

We have the following corollary to Proposition 3.5.
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Corollary 3.7. Assume dim𝐶 = 4. Let Ψ be a rank 3 character of 𝑁 corresponding to
𝜉 = (1, 0, 𝑐, 𝑑) ∈ W𝐹 such that SO(3, 𝑐) � Aut(𝐶), where SO(3, 𝑐) ⊆ Stab𝑀 (Ψ) described above.
Then there are isomorphisms of Aut(𝐶) × SO(3, 𝑐)-modules

V(𝑁 ,Ψ) � 𝐶∞
𝑐 (Ω)(𝑁 ,Ψ) � 𝐶∞

𝑐 (Ω𝜉 ) � 𝐶∞
𝑐 (Aut(𝐶)) � 𝐶∞

𝑐 (SO(3, 𝑐))

where the last two isomorphisms depend on a choice of a point in Ω𝜉 , giving identifications of Ω𝜉 with
Aut(𝐶) and SO(3, 𝑐), and an isomorphism SO(3, 𝑐) � Aut(𝐶).

Next we give the analog of Proposition 3.5, where C is a quadratic composition algebra.
Proposition 3.8. Assume dim𝐶 = 2. Let 𝜉 = (1, 0, 𝑐, 𝑑) ∈ W𝐹 . If the set Ω𝜉 = F−1 (𝜉) ∩Ω is nonempty
then 𝑑 = 0 and c has rank at most one. If c has rank one, then Ω𝜉 is a principal homogeneous
Aut(𝐶) � O(2)-space, possibly with no rational points.
Proof. This follows from Proposition 3.4 using that 𝐶0 is one-dimensional. �

Now we discuss the rank 0 case, that is, Ψ is trivial. We begin by computing F−1(0) ∩ Ω. Observe
that F−1(0) = J𝐶0 ⊕ J𝐶0 . Recall that we have identified 𝑀 � GSp(𝑉6) such that

J𝐶0 ⊕ J𝐶0 � 𝐶0 ⊗ 𝑉6

via the map (𝐽 (𝑥), 𝐽 (𝑦)) ↦→ (𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3) (Subsection 2.5).
Proposition 3.9. Let C be a composition algebra.
1. If 𝐶0 is anisotropic then F−1 (0) ∩Ω = ∅.
2. Suppose C is a split quaternion algebra. Then Ω0 = F−1(0) ∩Ω consists of nonzero pure tensors

𝑥 ⊗ 𝑣 ∈ 𝐶0 ⊗ 𝑉6

where 𝑥2 = 0.
Proof. Let Ξ ∈ F−1 (0) = J𝐶0 ⊕ J𝐶0 , then Ξ = (0, 𝑏, 𝑐, 0), where

𝑏 = 𝐽 (𝛽1, 𝛽2, 𝛽3) ∈ J𝐶0 ,

𝑐 = 𝐽 (𝛾1, 𝛾2, 𝛾3) ∈ J𝐶0 .

If Ξ ∈ Ω, then by Lemma 2.2 we know that b or c is not equal to 0 and

𝑏# = 0,
𝑐# = 0,

𝑏 ∗ 𝑐 = 0.

The equation 𝑏# = 0 implies that 𝛽2
𝑖 = 𝛽2

𝑗 = 𝛽𝑖𝛽 𝑗 = 0. Similarly, the equation 𝑐# = 0 implies that
𝛾2

𝑖 = 𝛾2
𝑗 = 𝛾𝑖𝛾 𝑗 = 0. If 𝐶0 is anisotropic then there are no nonzero nilpotent elements. This proves the

first claim. Now assume 𝐶 = M(2, 𝐹), the algebra of 2 × 2 matrices. The equation 𝑏 ∗ 𝑐 = 0 implies
𝛽𝑖𝛾 𝑗 + 𝛾 𝑗 𝛽𝑖 = 0 for all i and j. We need the following lemma.
Lemma 3.10. Let 𝛽, 𝛾 ∈ M(2, 𝐹). If 𝛽2 = 0, 𝛾2 = 0 and 𝛽𝛾 + 𝛾𝛽 = 0. Then 𝛽 and 𝛾 are proportional.
Proof. This is trivial if 𝛽 or 𝛾 is 0, so suppose not. Then ker 𝛽 = Im𝛽 and ker 𝛾 = Im𝛾 are one
dimensional. The equation 𝛽𝛾 = −𝛾𝛽 implies that 𝛾 acts on ker 𝛽. Thus ker 𝛽 = Im𝛽 = ker 𝛾 = Im𝛾 and
so 𝛽 and 𝛾 are proportional. �

It follows that all 𝛽𝑖 and 𝛾 𝑗 are linearly dependent, proving the proposition. �

Now we can describe V𝑁 .
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Proposition 3.11. Let C be a composition algebra over F.

1. If 𝐶0 is anisotropic, then V𝑁 � VN .
2. If 𝐶 = M(2, 𝐹), write 𝒢 for PGL2(𝐹) = Aut(𝐶), then V𝑁 has a composition series with a quotient

VN and a submodule

Ind𝒢×GSp6
ℬ×𝑄

(𝐶∞
𝑐 (𝐹×)) ⊗ |sim|3

where ℬ is a Borel subgroup of 𝒢, and Q is a maximal parabolic in GSp6 (𝐹) stabilizing a line in
𝑉6, and sim is the similitude character of GSp6. The induction is not normalized.

Proof. By Theorem 3.1, V𝑁 has a filtration with quotient VN and submodule

𝐶∞
𝑐 (Ω)𝑁 � 𝐶∞

𝑐 (Ω0).

Now we apply by Proposition 3.9. If 𝐶0 is anisotropic then Ω0 is empty and we are done. So suppose
𝐶 = M(2, 𝐹). Then Ω0 ⊂ 𝐶0 ⊗𝑉6 consists of nonzero pure tensors 𝑥 ⊗ 𝑣 such that 𝑥2 = 0. Fix 𝜔 = 𝑥 ⊗ 𝑣.
The stabilizer in 𝒢 of the line through x is a Borel subgroup ℬ, and the stabilizer in GSp6 of the line
through v is a maximal parabolic subgroup Q. The stabilizer of 𝑥 ⊗ 𝑣 is a subgroup of ℬ ×𝑄 such that
the quotient is 𝐹×. Observe that 𝐶∞

𝑐 (Ω0), as a 𝒢 × GSp6(𝐹)-module, is obtained by compact induction
of the trivial representation of the stabilizer of 𝑥 ⊗ 𝑣. Hence, using induction in stages,

𝐶∞
𝑐 (Ω0) � Ind𝒢×GSp6

ℬ×𝑄
(𝐶∞

𝑐 (𝐹×))

where the induction is not normalized. This completes the proof, after taking into account additional
twisting by the character of M in Theorem 3.1. �

We remark that the variant of the previous proposition, when C is an octonion algebra, was obtained
in [27].

3.2. Fourier–Jacobi functor

Now we recall the definition of the Fourier–Jacobi functor. (For more details, see Weissman [30].) By the
Stone-Von-Neumann theorem, the group N has a unique irreducible smooth representation with central
character 𝜓, denoted by (𝜌𝑁

𝜓 ,𝑊𝜓). By [30, Proposition 2.5], there is a unique extension of (𝜌𝑁
𝜓 ,𝑊𝜓)

to a projective representation of 𝑀1𝑁 , where 𝑀1 is the commutator subgroup of M. Furthermore,
S̃p(14, 𝐹), the two-fold cover of the symplectic group Sp(14, 𝐹) where 14 = dim(𝑁/𝑍), also acts on
𝑊𝜓 via the Weil representation. So, 𝑀1 � S̃p(6, 𝐹), the metaplectic double cover of 𝑀1 � Sp(6, 𝐹),
acts on 𝑊𝜓 through the Weil representation of S̃p(14, 𝐹).

We now make a brief comment on why the embedding 𝑀1 ↩→ Sp(14, 𝐹) induced by the action of
𝑀1 on 𝑁/𝑍 induces an embedding 𝑀1 ↩→ 𝑆𝑝(14, 𝐹). The representation of 𝑀1 on 𝑁/𝑍 is irreducible
and corresponds to the third fundamental weight of 𝑀1 � Sp(6, 𝐹) (Bourbaki labeling). Let 𝐻 ⊂ 𝑀1 be
a long-root SL(2) subgroup. Then the restriction of the 𝑀1-representation 𝑁/𝑍 to H decomposes into
four copies of the trivial representation and five copies of the unique two-dimensional representation
of SL(2). Thus the image of H in Sp(14, 𝐹) sits diagonally inside five commuting long-root SL(2)
subgroups of Sp(14). Since five is odd and each root is long, the preimage of H in 𝑆𝑝(14, 𝐹) does not
split. Therefore the preimage of 𝑀1 in 𝑆𝑝(14, 𝐹) does not split, giving the embedding 𝑀1 ↩→ 𝑆𝑝(14, 𝐹).

If (𝜋,𝑉) is a smooth representation of G, then the Fourier–Jacobi functor with respect to the
Heisenberg parabolic P sends 𝜋 to

FJ(𝜋) = Hom𝑁 (𝑊𝜓 , 𝑉(𝑍,𝜓) ).
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The space FJ(𝜋) is an 𝑀1-module with the action defined by [𝑚 · 𝑓 ] (𝑤) = 𝜋(𝑚) 𝑓 (𝑚−1𝑤), where
the action of 𝑀1 on 𝑉(𝑍,𝜓) factors through 𝑀1. The Fourier–Jacobi functor does not depend on 𝜓
([30, Proposition 3.1]).

Remark. The work of Weissman [30] assumes that the groups involved are simply laced. How-
ever, the results that we require also hold for the non-simply laced group 𝐹4. In particular we use
[30, Corollary 6.1.4], which states that if the Fourier–Jacobi functor kills an irreducible representation
then that representation is the trivial representation. In fact, this statement holds outside of type 𝐶𝑛.

We use the sequence (3.1) and the Fourier–Jacobi functor to investigate the constituents ofΘ(𝜏) via the
surjectionV � 𝜏⊗Θ(𝜏). This is done in two steps. First, we use the Fourier–Jacobi functor in conjunction
with a classical theta correspondence to show that Θ(𝜏) has at most two nontrivial constituents. Second,
by applying twisted coinvariants to the sequence (3.1) along with another application of the Fourier–
Jacobi functor we show that Θ(𝜏) has a single constituent, which is nontrivial, that is, Θ(𝜏) is nontrivial
and irreducible.

4. Lifting supercuspidal representations from Aut(𝐶) to 𝐹4

Our objective in this section is to investigate Θ(𝜏), where 𝜏 is a supercuspidal representation of𝒢, using
the tools of Section 3. The main result is Theorem 4.10, where we show that Θ(𝜏) is irreducible, and
Θ(𝜏1) � Θ(𝜏2) implies that 𝜏1 � 𝜏2, where 𝜏1, and 𝜏2 are supercuspidal.

4.1. At most two nontrivial constituents

We begin by using the Fourier–Jacobi functor and a classical theta correspondence to show that Θ(𝜏)
has at most two nontrivial constituents. This is accomplished in Corollary 4.5.

Let M1 ⊂ M be the commutator subgroup. Let P1 = M1N .

Lemma 4.1. Let 𝜌N𝜓 be the unique irreducible smooth representation of N with central character 𝜓.
As P1-modules V(𝑍,𝜓) � 𝜌N𝜓 .

Proof. The canonical P1-module map HomN (𝜌N𝜓 ,V(𝑍,𝜓) ) ⊗ 𝜌N𝜓 → V(𝑍,𝜓) is an isomorphism by
[30, Proposition 3.2], and HomN (𝜌N𝜓 ,V(𝑍,𝜓) ) � C with trivial P1-action by [7, Definition 3.6]. �

Lemma 4.2. Let 𝑃1 = 𝑀1𝑁 . As an Aut(𝐶) × 𝑃1-module,

V(𝑍,𝜓) � 𝜌𝑁
𝜓 ⊗ 𝜔𝜓 ,

where 𝜔𝜓 is the Weil representation of 𝑂 (𝐶0) × S̃p(𝑉6) as a dual pair in S̃p(𝐶0 ⊗ 𝑉6). Under this
isomorphism, 𝒢 acts on the second factor, while the action of 𝑀1 is on both factors. (We note that 𝑀1
does not act on either factor individually. Rather 𝑀1 acts genuinely on both factors, thus the diagonal
action factors through 𝑀1.)

Proof. By Lemma 4.1, V(𝑍,𝜓) � 𝜌N𝜓 as P1-modules. We must describe the restriction to 𝒢 × 𝑀1.
Let 𝑁⊥ ⊆ N be the subgroup containing Z such that 𝑁⊥/𝑍 is the orthogonal complement of the

symplectic subspace 𝑁/𝑍 ⊆ N /𝑍 . By Moeglin-Vignéras-Waldspurger [20, Chapitre 2, I.6 (2) and
II.1 (6)], it follows that 𝜌N𝜓 � 𝜌𝑁

𝜓 ⊗ 𝜌𝑁⊥

𝜓 as S̃p(14, 𝐹)𝑁 × S̃p(18, 𝐹)-modules. Note that𝒢 acts trivially
on N and so it acts trivially on 𝜌𝑁

𝜓 .
Recall from Subsection 2.5 the identification of N /𝑍 with W𝐶 . This then identifies 𝑁/𝑍 with

W𝐹 , and 𝑁⊥/𝑍 with J𝐶0 ⊕ J𝐶0 . From the isomorphism J𝐶0 ⊕ J𝐶0 � 𝐶0 ⊗ 𝑉6 of symplectic spaces
(line (2.5)), we see that the action of 𝒢 × 𝑀1 on 𝜌𝑁⊥

𝜓 is through the action of the Weil representation
𝜔𝜓 of S̃p(𝐶0 ⊗ 𝑉6) restricted to 𝑂 (𝐶◦) × S̃p(𝑉6). �
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Using Lemma 4.2 we show in the next proposition that the Fourier–Jacobi functor with respect to
P applied to V is isomorphic to the Weil representation. This allows us to study Θ(𝜏) using a classical
𝑂 (3) × Sp(6) theta correspondence.

Proposition 4.3. The𝒢×𝑀1-module FJ(V) is isomorphic to the Weil representation 𝜔𝜓 of S̃p(𝐶0 ⊗𝑉6)

restricted to 𝒢 × 𝑀1. (Recall that 𝒢 � 𝑆𝑂 (𝐶0) and 𝑀1 � Sp(6, 𝐹).)

Proof. By definition FJ(V) = Hom𝑁 (𝜌𝑁
𝜓 ,V(𝑍,𝜓) ). By Lemma 4.2, V𝑍,𝜓 � 𝜔𝜓 ⊗ 𝜌𝑁

𝜓 as 𝒢 × 𝑀1𝑁-
modules. Thus as 𝒢 × 𝑀1-modules

FJ(V) � Hom𝑁 (𝜌𝑁
𝜓 , 𝜔𝜓 ⊗ 𝜌𝑁

𝜓 ).

Since 𝜌𝑁
𝜓 is a finitely generated N-module, Hom𝑁 (𝜌𝑁

𝜓 , 𝜔𝜓 ⊗ 𝜌𝑁
𝜓 ) � 𝜔𝜓 ⊗Hom𝑁 (𝜌𝑁

𝜓 , 𝜌𝑁
𝜓 ). By Schur’s

lemma Hom𝑁 (𝜌𝑁
𝜓 , 𝜌𝑁

𝜓 ) � C. Thus FJ(V) � 𝜔𝜓 as 𝒢 × 𝑀1-modules. �

Now we introduce some notation to discuss the 𝑂 (𝐶0) × Sp(6, 𝐹) theta correspondence. Since
𝒢 × 𝑀1 � SO(𝐶0) × Sp(6, 𝐹), we almost have a classical dual pair. The representation 𝜏 admits two
extensions to the group 𝑂 (𝐶0) � SO(𝐶0) × {±𝑖𝑑𝐶0 } determined by whether −𝑖𝑑𝐶0 acts by ±1. We
write 𝜏± for the two extensions and Θ†(𝜏±) for the big theta lift of 𝜏± with respect to the action of
𝑂 (𝐶0) × S̃p(6, 𝐹) on the Weil representation 𝜔𝜓 of S̃p(18, 𝐹).

Proposition 4.4. Let 𝜏 ∈ Irr(𝒢). There is a surjective 𝑀1-module homomorphism

Θ†(𝜏+) ⊕ Θ†(𝜏−) � FJ(Θ(𝜏)).

Proof. We apply the Fourier–Jacobi functor, which is exact, to the surjective map V � 𝜏 ⊗ Θ(𝜏) to get
a map of 𝒢 × 𝑀-modules

FJ(V) � 𝜏 ⊗ FJ(Θ(𝜏)). (4.1)

By Proposition 4.3, we know that FJ(V) � 𝜔𝜓 as 𝒢 × 𝑀1-modules. Therefore, we have a surjective
𝑂 (𝐶0) × S̃p(6, 𝐹)-module map

𝜔𝜓 � (𝜏+ ⊗ Θ†(𝜏+)) ⊕ (𝜏− ⊗ Θ†(𝜏−)).

Upon restricting to 𝑆𝑂 (𝐶0) × S̃p(6, 𝐹) � 𝒢 × 𝑀1 we get a surjective homomorphism

FJ(V) � 𝜔𝜓 � 𝜏 ⊗ (Θ†(𝜏+) ⊕ Θ†(𝜏−)).

Moreover, this is the surjection onto the maximal 𝜏-isotypic quotient of FJ(V). Thus the map from line
(4.1) factors through the maximal 𝜏-isotypic quotient to give a surjection

𝜏 ⊗ (Θ†(𝜏+) ⊕ Θ†(𝜏−)) � 𝜏 ⊗ FJ(Θ(𝜏)).

By construction, this map factors over the tensor product and the result follows. �

Corollary 4.5. Let 𝜏 ∈ Irr(𝒢) be a supercuspidal. The G-module Θ(𝜏) has at most two nontrivial
irreducible subquotients, each with multiplicity at most 1.

Proof. This follows from Proposition 4.4 and the following two results. First, when 𝜏± is supercuspi-
dal, the 𝑀1-modules Θ†(𝜏+) and Θ†(𝜏−) are irreducible and distinct (Kudla [17]; Moeglin-Vignéras-
Waldspurger [20, Chapitre 3, IV, 4.]). Second, the Fourier–Jacobi functor is exact and the only irreducible
representation that it kills is the trivial representation. (See [30, Proposition 3.1; Corollary 6.1.4] and
our remark in Subsection 3.2.) �
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4.2. Unique nontrivial constituent

In this subsection, we show that Θ(𝜏) has exactly one nontrivial constituent.
Using Propositions 3.7 and 3.11 we can compute twisted coinvariants of Θ(𝜏).

Proposition 4.6. Let (1, 0, 𝑐, 𝑑) ∈ W𝐹 be an element of rank 3 such that SO(𝑐, 3) � Aut(𝐶). Let Ψ±

be the character of 𝑁/𝑍 corresponding to the element (1, 0, 𝑐,±𝑑) ∈ W𝐹 � 𝑁/𝑍 . Let 𝜏 ∈ Irr(𝒢) (not
necessarily supercuspidal). Then as SO(𝑐, 3) ⊂ Stab𝑀 (Ψ±)-modules

Θ(𝜏)(𝑁 ,Ψ±) � 𝜏̃.

and Θ(𝜏) must have a nontrivial constituent.
Furthermore, if 𝜌1 and 𝜌2 are distinct irreducible subquotients of Θ(𝜏), then

1. (𝜌 𝑗 )(𝑁 ,Ψ+) � (𝜌 𝑗 )(𝑁 ,Ψ−) as SO(𝑐, 3)-modules, 𝑗 = 1, 2;
2. for 𝜖 ∈ {±}, (𝜌1)(𝑁 ,Ψ𝜖 ) and (𝜌2)(𝑁 ,Ψ𝜖 ) cannot both be nonzero.

Proof. The first part is a simple consequence of Corollary 3.7, and Lemma 2.8.
Suppose that 𝜌1, 𝜌2 are two distinct irreducible subquotients of Θ(𝜏). Note that the characters Ψ±

are M-conjugate, because 𝑠−1(1, 0, 𝑐, 𝑑) = (1, 0, 𝑐,−𝑑). Thus

(𝜌 𝑗 )(𝑁 ,Ψ+) � (𝜌 𝑗 )(𝑁 ,Ψ−) .

Finally (𝜌1)(𝑁 ,Ψ+) and (𝜌2)(𝑁 ,Ψ+) cannot both be nonzero because this would imply that the irre-
ducible Aut(𝐶)-module Θ(𝜏)(𝑁 ,Ψ+) � 𝜏̃ has length greater than or equal to 2. �

The next lemma employs two Heisenberg parabolic subgroups in G. Let 𝑃 = 𝑀𝑁 and 𝑃
′
= 𝑀 ′𝑁

′ be
two Heisenberg parabolic subgroups. Let 𝑍 ⊂ 𝑁 and 𝑍

′
⊂ 𝑁

′ be the centers of the Heisenberg groups.
Furthermore, suppose that 𝑍 (𝑍 ′) is the root subgroup associated to the 𝐺2 relative root 2𝛼+3𝛽 (𝛼+3𝛽).

We also use the following notation. Let 𝑁𝛼 be the subgroup of 𝑁 generated by the root subgroups of
the roots {2𝛼 + 3𝛽, 𝛼 + 3𝛽, 𝛼 + 2𝛽, 𝛼 + 𝛽} in the 𝐺2 relative root system. Let 𝑁𝛼+𝛽 = 𝑀 ′ ∩ 𝑁 , which is
the root subgroup of 𝛼 + 𝛽. Let 𝐿 ⊂ 𝑀 be the subgroup generated by elements ℎ𝑠∗det(ℎ) , where ℎ ∈ 𝐻𝐹 .
For a character Ψ of 𝑁 , we abuse notation and continue to write Ψ for its restriction to 𝑁

𝛼 and 𝑁𝛼+𝛽 .

Lemma 4.7. Let 𝜎 be a smooth representation of G. Let Ψ be the character of 𝑁/𝑍 corresponding to
the element (1, 0, 𝑐, 𝑑) ∈ 𝑊𝐹 , where SO(3, 𝑐) � 𝒢. Then as Stab𝐿 ((𝑁

𝛼
,Ψ)) = Stab𝐿 ((𝑁𝛼+𝛽 ,Ψ)) �

𝑂 (3, 𝑐)-modules

𝜎
(𝑁

𝛼
,Ψ)
� FJ′(𝜎)(𝑁 𝛼+𝛽 ,Ψ) .

Proof. We begin with some preliminaries. Let𝑊+ be the subgroup of 𝑁 ′ generated by the root subgroups
of the relative roots {𝛼 + 2𝛽, 𝛼 + 3𝛽, 2𝛼 + 3𝛽} in the 𝐺2 relative root system. We extend the character
𝜓 to 𝑊+ so that it is trivial on the 𝛼 + 2𝛽 and 2𝛼 + 3𝛽 root spaces, and continue to call this extended
character 𝜓. Note that this is the restriction of Ψ to 𝑊+. Now we prove the lemma.

From Weissman [30, Proposition 3.2], we have 𝜎
𝑍
′
,𝜓
� Hom

𝑁
′ (𝜌𝑁

′

𝜓 , 𝜎
(𝑍

′
,𝜓)

) ⊗ 𝜌𝑁
′

𝜓 as 𝑀 ′
1 � 𝑁

′-
modules. (Remember, 𝑀 ′

1 acts genuinely on each factor.) It suffices for us to restrict the action of 𝑀 ′
1 to

the subgroup 𝐿 � GL(3, 𝐹).
Since 𝑊+/𝑍 ′ is a maximal isotropic subspace of 𝑁 ′/𝑍 ′, the (𝑊+, 𝜓)-coinvariants of 𝜌𝑁

′

𝜓 is a one-
dimensional space. Thus as Stab𝐿 ((𝑊

+, 𝜓)) = 𝐿-modules

(𝜎
(𝑍

′
,𝜓)

)(𝑊 + ,𝜓) � Hom
𝑁

′ (𝜌𝑁
′

𝜓 , 𝜎
(𝑍

′
,𝜓)

) = 𝐹𝐽 ′(𝜎).
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Applying (𝑁𝛼+𝛽 ,Ψ)-coinvariants and using transitivity of coinvariants we get an isomorphism of
Stab𝐿 ((𝑁

𝛼
,Ψ)) = Stab𝐿 ((𝑁𝛼+𝛽 ,Ψ)) � 𝑂 (3, 𝑐)-modules

𝜎
(𝑁

𝛼
,Ψ)
� [(𝜎

(𝑍
′
,𝜓)

)(𝑊 + ,𝜓) ](𝑁 𝛼+𝛽 ,Ψ) � 𝐹𝐽 ′(𝜎)(𝑁 𝛼+𝛽 ,Ψ) . �

Proposition 4.8. Let 𝜏 ∈ Irr(𝒢) be supercuspidal. Then Θ(𝜏) has a unique nontrivial irreducible
subquotient.
Proof. By Proposition 4.6, Θ(𝜏) has at least one nontrivial irreducible subquotient.

By Proposition 4.4 (applied using 𝑃′) we know that there is an 𝑀 ′
1-module surjection

Θ†(𝜏+) ⊕ Θ†(𝜏−) � 𝐹𝐽 ′(Θ(𝜏)).

Since we are assuming that 𝜏 is supercuspidal it follows that Θ†(𝜏±) is an irreducible 𝑀 ′
1-module. Thus

FJ′(Θ(𝜏)) is completely reducible of length at most 2.
Suppose that Θ(𝜏) has two distinct irreducible subquotients 𝜎+, 𝜎− different from the trivial repre-

sentation. Since 𝜎± is not trivial FJ′(𝜎±) ≠ 0. Then without loss of generality we may assume that we
have 𝑀 ′

1-module isomorphisms Θ†(𝜏±) � FJ′(𝜎±).
We take (𝑁𝛼+𝛽 ,Ψ)-coinvariants and apply Lemma 4.7 to get 𝑂 (3, 𝑐)-module isomorphisms

Θ†(𝜏±)(𝑁 𝛼+𝛽 ,Ψ) � (𝜎±)
(𝑁

𝛼
,Ψ)

.
Now by an analog of Proposition 4.6 in the classical case, we have Θ†(𝜏±)(𝑁 𝛼+𝛽 ,Ψ) � 𝜏̃± as O(3, 𝑐)-

modules.
The natural SO(3, 𝑐)-module quotient maps (𝜎±)

(𝑁
𝛼
,Ψ)

→ (𝜎±)(𝑁 ,Ψ±) define an isomorphism

𝜏̃ � (𝜎±)
(𝑁

𝛼
,Ψ)

→ (𝜎±)(𝑁 ,Ψ+) ⊕ (𝜎±)(𝑁 ,Ψ−)

of SO(3, 𝑐)-modules. But by Proposition 4.6, (𝜎 𝜖 )(𝑁 ,Ψ+) ⊕(𝜎
𝜖 )(𝑁 ,Ψ−) = 0 for at least one 𝜖 ∈ {±}. Thus

𝜏̃ = 0, a contradiction. Therefore, Θ(𝜏) must have at most one nontrivial irreducible subquotient. �

Finally, we rule out the existence of trivial irreducible subquotients of Θ(𝜏).
Proposition 4.9. Let 𝜏 ∈ Irr(𝒢) be supercuspidal. Then Θ(𝜏) does not contain an irreducible subquo-
tient that is trivial.
Proof. Suppose that the trivial representation 1 is a subquotient of Θ(𝜏), then 𝜏 ⊗ 1𝑁 is a subquotient
of V𝑁 . Observe that 1𝑁 is the trivial representation of M. By Proposition 3.11, V𝑁 has a𝒢×𝑀-module
filtration with VN as a quotient. From Theorem 3.1,

VN � (V (M) ⊗ |det|3/32) ⊕ |det|6/32,

where the center of M acts trivially on V (M). Thus the center of M acts by two nontrivial characters
on the two summands of VN hence the trivial representation of M cannot be a subquotient of VN . The
bottom part of the filtration, which appears if C is split, is a principal series representation of 𝒢, and
hence 𝜏 cannot be a subquotient there. �

Now we prove our main theorem on the theta lift of super cuspidal representations.
Theorem 4.10. Let 𝜏1, 𝜏2 ∈ Irr(𝒢) where 𝜏1 is supercuspidal.
1. The theta lift Θ(𝜏1) is an irreducible representation of G.
2. If 𝜃 (𝜏1) � 𝜃 (𝜏2), then 𝜏1 � 𝜏2.
Proof. (1) By Propositions 4.8 and 4.9 the representation Θ(𝜏) is irreducible. (2) By the assumption,
and using (1), we have a surjection Θ(𝜏2) � Θ(𝜏1). Then, by Proposition 4.6,

𝜏̃2 � Θ(𝜏2)(𝑁 ,Ψ±) � Θ(𝜏1)(𝑁 ,Ψ±) � 𝜏̃1. �

https://doi.org/10.1017/fms.2025.10108 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10108


Forum of Mathematics, Sigma 21

5. Jacquet modules II

In this section, we take C to be the split quaternion algebra 𝑀 (2, 𝐹) of 2 × 2 matrices with entries in
F. In particular, 𝒢 = Aut(𝐶) = PGL2 (𝐹). The main objective of this section is to compute the Jacquet
module of the minimal representation of 𝐸7 with respect to a Borel subgroup of 𝒢. These calculations
are applied in Section 6 to compute the big theta lift of constituents of principal series of 𝒢 to G.

Our approach follows the argument of Savin [26] and Magaard-Savin [19] utilizing the exact sequence
from [26, Theorem 6.5], which we recall after introducing some notation.

Fix a Borel subgroup B ⊂ G, let P ⊃ B be the unique maximal parabolic subgroup corresponding
to the 𝐸6 subdiagram inside the 𝐸7 diagram. Fix a Levi decomposition P = MN and note that N can
be given the structure of the exceptional cubic Jordan algebra J = JO [15]. We identify N with J as
F-vector spaces. Under this identification M is the group of linear transformations of J that preserve
the cubic norm form of J up to scaling. The semisimple part of M is a group of type 𝐸6. (For details
see [16].)

Let 𝜔 be the set of singular points in J � N , that is, the highest weight vectors for a Borel subgroup
in M. Equivalently, 𝜔 is the set of rank 1 elements in J .

Theorem 5.1 (Magaard-Savin [19], Theorem 1.1; Savin [26], Theorem 6.5). Let P = MN be the
maximal parabolic subgroup defined above. Let P = MN be its opposite. The minimal representation
(Π,V) of G has a P-invariant filtration

0 → 𝐶∞
𝑐 (𝜔) → V → VN → 0. (5.1)

Here 𝐶∞
𝑐 (𝜔) denotes the space of locally constant, compactly supported functions on 𝜔, and VN is the

space of N -coinvariants of V . Furthermore, the P-module structure is given by:

1. Let 𝑓 ∈ 𝐶∞
𝑐 (𝜔) and let 𝑚𝑛 ∈ P = MN . Then

[Π(𝑛) 𝑓 ] (𝑥) = 𝜓(〈𝑥, 𝑛〉) 𝑓 (𝑥) (5.2)

and

[Π(𝑚) 𝑓 ] (𝑥) = |det(𝑚) |𝑠/𝑑 𝑓 (𝑚−1𝑥). (5.3)

2.

VN � V (M) ⊗ |det|𝑡/𝑑 + |det|𝑠/𝑑 , (5.4)

where V (M) is the minimal representation of M (center acting trivially).

Above 〈−,−〉 : N ×N → 𝐹 is the F-valued pairing induced by the Killing form on Lie(G), and det
is the determinant of the representation of M on N , and d is the dimension of N . The values of s and t
are given in the following table.

G s t

𝐸6 4 2
𝐸7 6 3

It will be convenient to describe the dual pair 𝒢 × 𝐺 in terms of the parabolic subgroup P . If we
identify N � J and M with the group of similitudes of the norm form, then 𝐺 � Aut(J ) sits in M.
Let 𝒢 be the centralizer of G in G. Let ℬ = 𝒯𝒰 ⊂ 𝒢 be Borel subgroup defined by

𝒯 = 𝒢 ∩M and 𝒰 = 𝒢 ∩N .
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Then 𝒯 is the center of M and 𝒰 the set of scalar matrices in J under the identification N � J . Recall
that, for the purpose of describing representations of 𝒢, we identified 𝒯 with 𝐹× such that 𝒯 acts on
𝒰 by multiplication, it follows that 𝒯 � 𝐹× acts on N � J by inverse scalar multiplication. Thus the
character |det(𝑚) |𝑠/𝑑 restricted to 𝒯 is |𝑡 |6.

5.1. Untwisted Jacquet modules

Our objective in this section is to describe the 𝒯 × 𝐺-module 𝑟
ℬ
(𝐶∞

𝑐 (𝜔)). This is accomplished in
Proposition 5.5.

For 𝑆 ⊂ N we write

𝑆⊥ = {𝑥 ∈ N |𝜓(〈𝑥, 𝑠〉) = 1, for all 𝑠 ∈ 𝑆}.

Let J 0 be the set of trace 0 elements in J . Under the identification N � J , we have 𝒰
⊥
� J 0. Let

𝜔0 = 𝜔 ∩ J 0.
Lemma 5.2. The restriction map 𝐶∞

𝑐 (𝜔) → 𝐶∞
𝑐 (𝜔0) induces an isomorphism 𝑟

ℬ
(𝐶∞

𝑐 (𝜔)) � 𝐶∞
𝑐 (𝜔0)

of (𝒯 × 𝐺)-modules, where the action on 𝐶∞
𝑐 (𝜔0) is given by

((𝑡, 𝑔) · 𝑓 ) (𝑥) = |𝑡 |6−
1
2 𝑓 (𝑔−1 · 𝑥𝑡), (𝑡, 𝑔) ∈ 𝒯 × 𝐺.

Proof. The proof is the same as Magaard-Savin [19], Lemma 2.2. �

Lemma 5.3 (Aschbacher [2], section (8.6)). The action of 𝒯 × 𝐺 on 𝜔0 is transitive.
Proof. This follows from translating Aschbacher’s terminology into ours. �

If 𝑥0 ∈ 𝜔0, then, as 𝒯 × 𝐺-modules

𝐶∞
𝑐 (𝜔0) � | − |

11
2 · ind𝒯×𝐺

Stab𝒯×𝐺 (𝑥0)
(1)

Next, we want to describe the stabilizer of a point in 𝜔0. The highest weight of the action of G on
J 0 ⊂ J is the fundamental weight 𝜛4 taking value 1 on the simple coroot 𝛼∨

4 and 0 on the other simple
coroots. (We are using the Bourbaki labeling for simple roots [3, Plate VIII]. In particular, 𝛼4 is the
short simple root of degree 1 in the Dynkin diagram.) The next lemma follows directly from definitions.
Lemma 5.4. Let 𝑥0 ∈ 𝜔0 be a highest weight vector with respect to the Borel subgroup B. Let 𝑄 ⊇ 𝐵
be the maximal parabolic subgroup of G obtained by removing 𝛼4 from the 𝐹4 Dynkin diagram. This
yields a parabolic subgroup of type 𝐵3. Then

Stab𝒯×𝐺 (𝑥0) = {(𝑡, 𝑞) ∈ 𝒯 ×𝑄 | 𝑡 = 𝜛4 (𝑞)}.

By transitivity of induction, we have the 𝒯 × 𝐺-module isomorphism

ind𝒯×𝐺
Stab𝒯×𝐺 (𝑥0)

(1) � Ind𝒯×𝐺
𝒯×𝑄 (ind𝒯×𝑄

Stab𝒯×𝐺 (𝑥0)
(1)) � Ind𝒯×𝐺

𝒯×𝑄 (𝐶∞
𝑐 (𝐹×)).

In order to write the last module in terms of normalized parabolic induction, we need to replace 𝐶∞
𝑐 (𝐹×)

by 𝛿−1/2
𝑄 · 𝐶∞

𝑐 (𝐹×). Recall that 𝛿1/2
𝑄 (𝑞) = |𝜛4 (𝑞) |

−11/2. We also need to bring back the twist by |𝑡 |11/2.
Observe that the two exponents are inverses of each other. Hence

𝑟
ℬ
(𝐶∞

𝑐 (𝜔)) � 𝑖𝒯×𝐺
𝒯×𝑄 (𝐶∞

𝑐 (𝐹×)), (5.5)

where the action of 𝒯 ×𝑄 on 𝐶∞
𝑐 (𝐹×) is given by

((𝑡, 𝑞) · 𝑓 ) (𝑥) = 𝑓 (𝜛4(𝑞
−1)𝑥𝑡). (5.6)

Putting everything together we have the following description of 𝑟
ℬ
(V).
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Proposition 5.5. As a representation of 𝒯 × 𝐺, the module 𝑟
ℬ
(V) has a filtration with successive

quotients

| − |5/2 · V (M) ⊕ | − |11/2,

𝑖𝒯×𝐺
𝒯×𝑄 (𝐶∞

𝑐 (𝐹×)),

where the action of 𝒯 ×𝑄 on 𝐶∞
𝑐 (𝐹×) is given by equation (5.6).

5.2. Twisted Jacquet modules

In this subsection we compute the twisted Jacquet modules of V with respect to (𝒰, 𝜓). (Recall that
𝒰 � 𝐹, so 𝜓 defines a character of 𝒰.) Note that 𝐺 = StabM ((𝒰, 𝜓)).

Lemma 5.6. The inclusion 𝐶∞
𝑐 (𝜔) ↩→ V (from line (5.1)) induces an isomorphism of G-modules.

𝐶∞
𝑐 (𝜔)

(𝒰,𝜓)
� V

(𝒰,𝜓)
. (5.7)

Proof. Apply (𝒰, 𝜓)-coinvariants, which is exact, to line (5.1). Note that (VN )
(𝒰,𝜓)

= 0. �

To study 𝐶∞
𝑐 (𝜔)

(𝒰,𝜓)
we need to consider the set of rank 1 trace 1 elements in J . Viewing 𝜔 as the

set of rank 1 elements in J , we define 𝜔1 = {𝑥 ∈ 𝜔|Tr(𝑥) = 1}.

Lemma 5.7. The restriction map 𝐶∞
𝑐 (𝜔) → 𝐶∞

𝑐 (𝜔1) induces a G-module isomorphism 𝐶∞
𝑐 (𝜔)

(𝒰,𝜓)
�

𝐶∞
𝑐 (𝜔1). (The action of G on 𝐶∞

𝑐 (𝜔1) is the same as on line (5.3).)

Proof. This is proved as in Magaard-Savin [19], Lemma 2.2. �

Lemma 5.8. The action of G on 𝜔1 is transitive. Let 𝑣0 = diag(1, 0, 0) ∈ J , then Stab𝐺 (𝑣0) �
Spin(9, 𝐹) (split spin group). Thus the map 𝐺/Stab𝐺 (𝑣0) → 𝜔1 defined by 𝑔Stab𝐺 (𝑣0) ↦→ 𝑔 · 𝑣0 is a
bijection.

Proof. This is Corollary 5.8.2 and Theorem 7.1.3 in Spinger-Veldkamp [28]. We make a few remarks
and match our notation with Springer-Veldkamp.

Our 𝑣0 is the u in Springer-Veldkamp. The space 𝐸0 in loc. cit. is then the elements of J of the form
diag(0, 𝑏,−𝑏) + 𝐽 (𝑥, 0, 0), where 𝑏 ∈ 𝐹 and 𝑥 ∈ O. This is a nine-dimensional orthogonal space where
the quadratic form is the restriction of the trace form of J to 𝐸0. This form on 𝐸0 is nondegenerate. So
by Springer-Veldkamp Theorem 7.1.3, we see that Stab𝐺 (𝑣0) � Spin(𝑄, 𝐸0). �

Remark: We note that the quadratic space in the previous lemma (𝑄, 𝐸0) decomposes as an orthog-
onal sum of a one-dimensional quadratic space (𝑄 ′

0, 𝐹 · 𝑣), where 𝑄 ′
0 (𝑣) = 2, and the eight-dimensional

quadratic space associated to the split octonion algebra O.

Lemma 5.9. Let 𝑣0 = diag(1, 0, 0) ∈ J .
There is an isomorphism of G-modules ind𝐺

Stab𝐺 (𝑣0)
(1) → 𝐶∞

𝑐 (𝜔1) defined by

𝑓 ↦→ (𝑔−1 · 𝑣0 ↦→ 𝑓 (𝑔)).

Proof. A direct calculation shows this map is a G-module homomorphism. Here we are using the fact
that any character of G is trivial.

One can directly check that the inverse map is given by 𝐹 ↦→ (𝑔 ↦→ 𝐹 (𝑔−1 · 𝑣0)). �

Proposition 5.10. By combining the isomorphisms of Lemmas 5.6, 5.7, and 5.9 we see that as G-modules

V
(𝒰,𝜓)

� ind𝐺
Stab(𝑣0)

(1).
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6. Lifting from PGL(2) to 𝐹4

We continue to use the notation from Section 5. In particular, 𝐶 = 𝑀 (2, 𝐹). In this section, we explicitly
describe the theta lift from 𝒢 to G.

In Subsections 6.1 and 6.2 we compute the big theta lift of constituents of principal series; the small
theta lift is computed in Subsection 6.3. In subsection 6.4, we revisit the theta lift of supercuspidal
representations.

6.1. Principal series

Now we begin the calculation of Hom𝒢 (V , 𝜏), where 𝜏 = 𝑖𝒢
ℬ
(𝜒) is a principal series (not necessarily

irreducible) of 𝒢 induced from a character 𝜒 : 𝒯 → C×.
By Frobenius reciprocity,

Hom𝒢 (V , 𝜏) � Hom𝒯 (𝑟
ℬ
(V), 𝜒). (6.1)

Note that StabP (𝒰) = (𝒯 × 𝐺)N . Thus we apply the exact functor 𝑟
ℬ

to sequence (5.1) to get a
sequence of 𝒯 × 𝐺-modules

0 → 𝑟
ℬ
(𝐶∞

𝑐 (𝜔)) → 𝑟
ℬ
(V) → 𝛿−1/2

ℬ
⊗ VN → 0. (6.2)

We apply the functor Hom𝒯 (−, 𝜒) to (6.2) to get a long exact sequence. Let 𝑋,𝑌, 𝑍 be the nonzero
𝒯 × 𝐺-modules in sequence (6.2) from left to right, respectively. Then the long exact sequence is:

0 Hom𝒯 (𝑍, 𝜒) Hom𝒯 (𝑌, 𝜒) Hom𝒯 (𝑋, 𝜒)

Ext1𝒯 (𝑍, 𝜒) Ext1𝒯 (𝑌, 𝜒) Ext1𝒯 (𝑋, 𝜒) ...

𝜄

(6.3)

The following lemma shows that 𝜄 is an isomorphism if 𝜒 avoids a finite set of characters. It is a
simple consequence of Theorem 5.1.

Lemma 6.1. Assume that 𝜒 ≠ | · |5/2 and | · |11/2. Then

Hom𝒯 (𝛿−1/2
ℬ

⊗ VN , 𝜒) = 0 and

Ext1𝒯 (𝛿−1/2
ℬ

⊗ VN , 𝜒) = 0,

and the map 𝜄 in the long exact sequence (6.3) induces an isomorphism

Hom𝒯 (𝑟
ℬ
(V), 𝜒) � Hom𝒯 (𝑟

ℬ
(𝐶∞

𝑐 (𝜔)), 𝜒).

Now we can prove the main result of this subsection.

Theorem 6.2. Let 𝜒 be a character of 𝒯 such that 𝜒 ≠ | · |−5/2 and | · |−11/2. Let 𝜋 be an irreducible
quotient of 𝑖𝒢

ℬ
(𝜒). Then Θ(𝜋) is a quotient of 𝑖𝐺𝑄 (𝜒 ◦ 𝜛4). Moreover, if 𝑖𝒢

ℬ
(𝜒) is irreducible, then

Θ(𝑖𝒢
ℬ
(𝜒)) = 𝑖𝐺𝑄 (𝜒 ◦𝜛4).

Proof. Observe that 𝜋 is a submodule of 𝑖𝒢
ℬ
(𝜒−1), since 𝜋 is self-dual. By Lemma 2.8,

Θ(𝜋)∗ � Hom𝒢 (V , 𝜋) ⊆ Hom𝒢 (V , 𝑖𝒢
ℬ
(𝜒−1))
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and we are going to compute the latter space. By Frobenius reciprocity,

Hom𝒢 (V , 𝑖𝒢
ℬ
(𝜒−1)) � Hom𝒯 (𝑟

ℬ
(V), 𝜒−1).

Since 𝜒−1 ≠ | · |5/2 and | · |11/2 we can apply Lemma 6.1 to get

Hom𝒯 (𝑟
ℬ
(V), 𝜒−1) � Hom𝒯 (𝑟

ℬ
(𝐶∞

𝑐 (𝜔)), 𝜒−1).

By equation (5.5) we have

Hom𝒯 (𝑟
ℬ
(𝐶∞

𝑐 (𝜔)), 𝜒−1) � Hom𝒯 (𝑖𝒯×𝐺
𝒯×𝑄 (𝐶∞

𝑐 (𝐹×)), 𝜒−1).

The maximal 𝜒−1-isotypic quotient of the 𝒯 × 𝑄-module 𝐶∞
𝑐 (𝐹×) is 𝜒−1 ⊗ 𝜒 ◦ 𝜛4. Thus by [5,

Lemma 9.4],

Hom𝒯 (𝑖𝒯×𝐺
𝒯×𝑄 (𝐶∞

𝑐 (𝐹×)), 𝜒−1) � HomC(𝑖𝐺𝑄 (𝜒 ◦𝜛4),C) = 𝑖𝐺𝑄 (𝜒 ◦𝜛4)
∗. �

Any irreducible non-supercuspidal representation of 𝒢 is either an irreducible quotient of 𝑖𝒢
ℬ
(𝜒),

where |𝜒 | = | − |𝑠 with 𝑠 ≥ 0, or it is a quadratic twist of Steinberg. But these representations are
quotients of 𝑖𝒢

ℬ
(𝜒) such that |𝜒 | = | · |−1/2, so Theorem 6.2 applies to all irreducible non-supercuspidal

representations. However, it does not provide a full understanding of the big theta lift of constituents of
reducible principal series. We resolve this point in the next subsection.

6.2. Trivial and Steinberg

In this subsection we study the theta lifts of the trivial and Steinberg representations of 𝒢, along with
their twists.

Theorem 6.3. Let 𝜒 be a character of𝒯 such that 𝜒 = 𝜒0 |− |
1/2, where 𝜒0 is a quadratic character. Then

1. Θ(𝜒0) is the unique irreducible quotient of 𝑖𝐺𝑄 (𝜒 ◦𝜛4).
2. Θ(St ⊗ 𝜒0) is the unique irreducible submodule of 𝑖𝐺𝑄 (𝜒 ◦𝜛4).

Proof. We already know that Θ(𝜒0) is a quotient of 𝑖𝐺𝑄 (𝜒 ◦ 𝜛4) and Θ(St ⊗ 𝜒0) is a quotient of
𝑖𝐺𝑄 (𝜒−1 ◦ 𝜛4), which is the same as a submodule of 𝑖𝐺𝑄 (𝜒 ◦ 𝜛4). (The representations 𝑖𝐺𝑄 (𝜒 ◦ 𝜛4) and
𝑖𝐺𝑄 (𝜒−1 ◦ 𝜛4) each have length 2. Moreover, the irreducible sub of one is the quotient of the other
[4, Theorem 6.1].)

We work with both cases simultaneously. By Proposition 4.6,

Θ(𝜒0)(𝑁 ,Ψ) � 𝜒−1
0 and Θ(St ⊗ 𝜒0)(𝑁 ,Ψ) � St ⊗ 𝜒−1

0 .

Thus 𝜒−1
0 is a quotient of 𝑖𝐺𝑄 (𝜒 ◦ 𝜛4)(𝑁 ,Ψ) while St ⊗ 𝜒−1

0 is a submodule. This implies that neither
Θ(𝜒0) nor Θ(St ⊗ 𝜒0) could be isomorphic to 𝑖𝐺𝑄 (𝜒 ◦𝜛4). �

6.3. Small theta

In this section we describe 𝜃 (𝜋), where 𝜋 is a constituent of a principal series of𝒢. The next proposition
follows from Propositions 2.5, 6.3, and Theorem 6.2.

Proposition 6.4. Let 𝜒 be a character of 𝒯 so that 𝜒 = | − |𝑠 · 𝜒0, where 𝑠 ≥ 0 and 𝜒0 is a unitary
character of 𝒯.
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1. If 𝑠 ≠ 1
2 or 𝜒0 is not of order dividing 2, then 𝑖𝒢

ℬ
(𝜒) is irreducible, and

(a) if 𝑠 ≠ 5
2 ,±

11
2 or 𝜒0 is not trivial, then 𝑖𝐺𝑄 (𝜒 ◦ 𝜛4) is irreducible, so 𝜃 (𝑖𝒢

ℬ
(𝜒)) = Θ(𝑖𝒢

ℬ
(𝜒)) �

𝑖𝐺𝑄 (𝜒 ◦𝜛4);
(b) if 𝑠 = 11

2 and 𝜒0 is trivial, then 𝜃 (𝑖𝒢
ℬ
(𝜒)) is the unique irreducible quotient of 𝑖𝐺𝑄 (| − |

11
2 ◦ 𝜛4),

which is the trivial representation of G.
(c) if 𝑠 = 5

2 and 𝜒0 is trivial, then 𝜃 (𝑖𝒢
ℬ
(𝜒)) is the unique semisimple quotient of 𝑖𝐺𝑄 (| − |

5
2 ◦ 𝜛4),

which has the form 𝜎+ ⊕ 𝜎− where 𝜎+ and 𝜎− are distinct irreducible representations of G.
2. If 𝑠 = 1

2 and 𝜒0 has order dividing 2, then:
(a) 𝜃 (𝜒0) = Θ(𝜒0) is the unique irreducible quotient of 𝑖𝐺𝑄 (𝜒 ◦𝜛4);
(b) 𝜃 (St ⊗ 𝜒0) = Θ(St ⊗ 𝜒0) is the unique irreducible submodule of 𝑖𝐺𝑄 (𝜒 ◦𝜛4).

6.4. Supercuspidal representations

In this subsection we revisit the theta lift of supercuspidal representations of PGL2(𝐹). This calculation
involves the 𝐹4 × 𝐺2 dual pair inside of 𝐸8.

For this subsection we maintain our previous notation with the following exceptions. We redefine P,
M, and N below. We write (Π𝑛,V𝑛) for the the minimal representation of 𝐸𝑛.

Let 𝜏 be a supercuspidal representation of PGL2(𝐹). Then 𝜎 := Θ(𝜏) is irreducible by Theorem 4.10.
Let 𝑄2 ⊂ 𝐺 be the maximal parabolic that stabilizes a two-dimensional singular (also called amber)
subspace in the 26-dimensional representation. The standard 𝑄2 (corresponding to a fixed choice of
positive roots) is the stabilizer of the amber space spanned by the weights 𝜛4 and 𝜛4 −𝛼4. We note that
the Levi of 𝑄2 has type 𝐴2,long × 𝐴1,short. Observe that 𝑄2 has a quotient isomorphic to GL2 given by
the action of 𝑄2 on the stabilized amber space. With this identification, det can be naturally viewed as
a character of 𝑄2, and 𝜏 can be inflated to 𝑄2. The modular character is 𝜌𝑄2 (𝑔) = | det(𝑔) |7/2. We have
the following:

Proposition 6.5. 𝜎 is the unique irreducible quotient of Ind𝐺
𝑄2

(𝜏 ⊗ | det |3/2).

Proof. Let 𝑃 = 𝑀𝑁 ⊂ 𝐺2 be the Heisenberg parabolic. Then 𝑀 � GL2 and 𝐺 × GL2 is a subgroup of
the Levi factor 𝐸7 in 𝐸8 such that the quotient by the center of the Levi gives the dual pair 𝐺 × PGL2
in the adjoint 𝐸7. In Magaard-Savin [19, Theorem 7.6], 𝑟𝑃 (V8) was shown to have a 𝐺 × GL2-module
filtration with three pieces. The top (quotient) is

V7 ⊗ | det |3/2 ⊕ 1 ⊗ | det |7/2.

Since 𝜎 ⊗ 𝜏 is a quotient of V7, by Frobenius reciprocity, 𝜎 ⊗ Ind𝐺2
𝑃 (𝜏 ⊗ | det |3/2) is a quotient of V8.

Here we are using that Ind𝐺2
𝑃 (𝜏 ⊗ | det |𝑠) reduces only for 𝑠 = ±1/2, in particular, Ind𝐺2

𝑃 (𝜏 ⊗ | det |3/2)

is irreducible. Hence 𝜎 is a quotient of Θ(Ind𝐺2
𝑃 (𝜏 ⊗ | det |3/2)) and this is what we shall compute. To

that end, since Ind𝐺2
𝑃 (𝜏 ⊗ | det |3/2) � Ind𝐺2

𝑃 (𝜏 ⊗ | det |−3/2) (using an intertwining operator), we are
computing

Hom𝐺2 (V8, Ind𝐺2
𝑃 (𝜏 ⊗ | det |−3/2)) � HomGL2 (𝑟𝑃 (V8), 𝜏 ⊗ | det |−3/2).

Since −3/2 ≠ 3/2, 7/2, we see that the top quotient of the filtration of 𝑟𝑃 (V8) can be ignored. Since 𝜏
is supercuspidal, the intermediate subquotient can be ignored as well, so the computation reduces to the
bottom of the filtration of 𝑟𝑃 (V8) where it follows at once that

Θ(Ind𝐺2
𝑃 (𝜏 ⊗ | det |3/2)) � Ind𝐺

𝑄2
(𝜏 ⊗ | det |3/2).
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Thus 𝜎 is a quotient of Ind𝐺
𝑄2

(𝜏 ⊗ | det |3/2). This induced representation is a quotient of a standard
module for the parabolic subgroup contained in 𝑄2 with the Levi 𝐴1,short. Thus Ind𝐺

𝑄2
(𝜏 ⊗ | det |3/2) has

a unique irreducible quotient. �

7. Lifting from 𝐹4 to Aut(𝐶)

In this section, we study the theta lift from 𝐹4 to Aut(𝐶). Specifically, let 𝜎 ∈ Irr(𝐺). We study Θ(𝜎)
with respect to the minimal representation (Π,V) on G, utilizing our results on the lifting from 𝒢 to G.
To begin, we show that the lifting from G to 𝒢 has finite length.

Proposition 7.1. Let 𝜎 ∈ Irr(𝐺). Then Θ(𝜎) has finite length.

Proof. We prove this assuming that 𝒢 = PGL2 (𝐹); the nonsplit case (i.e., when C is anisotropic) is
easier. If Θ(𝜎) = 0 we are done, so suppose that Θ(𝜎) ≠ 0.

Since supercuspidal representations can be split off, the 𝒢-representation decomposes as

Θ(𝜎) = Θ(𝜎)𝑝𝑠 ⊕ Θ(𝜎)𝑠𝑐 ,

where Θ(𝜎)𝑠𝑐 is the submodule generated by all of the supercuspidal submodules and Θ(𝜎)𝑝𝑠 is the
complement all of whose constituents are constituents of principal series. (When C is anisotropic,
Θ(𝜎)𝑝𝑠 = 0.) To prove the proposition it suffices to show that Θ(𝜎)𝑝𝑠 and Θ(𝜎)𝑠𝑐 have finite length.

We begin with Θ(𝜎)𝑠𝑐 . Recall that Θ(𝜎)𝑠𝑐 is completely reducible. Thus if Θ(𝜎)𝑠𝑐 ≠ 0, then there
is a supercuspidal representation 𝜋 ∈ Irr(𝒢) such that there is a surjective 𝒢 × 𝐺 map Π � 𝜋 ⊗ 𝜎. By
Theorem 4.10 part (1), Θ(𝜋) is irreducible, so 𝜎 � Θ(𝜋). Moreover, by Theorem 4.10 part (2) it follows
that Θ(𝜎)𝑠𝑐 � 𝜋. In particular, Θ(𝜎)𝑠𝑐 has finite length. (This proves the result when C is anisotropic.)

Next we consider Θ(𝜎)𝑝𝑠. Note that if 𝜌 is any smooth representation of 𝒢, then 𝜌𝑝𝑠 is of finite
length if and only if 𝜌

𝒰
is finite dimensional. By Lemma 2.8 (Θ(𝜎)

𝒰
)∗ � Hom𝐺 (Π

𝒰
, 𝜎). So we show

that Hom𝐺 (Π
𝒰
, 𝜎) is finite dimensional.

It suffices to analyze the hom-space for each piece of the filtration of Π
𝒰

from Proposition 5.5. The
quotient ΠN is finite length as a G-module by Theorem 5.1 and Corollary 9.2 (which does not depend
on this result). So, Hom𝐺 (ΠN , 𝜎) is finite dimensional.

Now we consider the submodule 𝑖𝒯×𝐺
𝒯×𝑄

(𝐶∞
𝑐 (𝐹×)) � 𝑖𝐺𝑄 (𝐶∞

𝑐 (𝐹×)). Let L be a Levi subgroup of Q.
By Bernstein’s second adjointness, we have

Hom𝐺 (𝑖𝐺𝑄 (𝐶∞
𝑐 (𝐹×)), 𝜎) � Hom𝐿 (𝐶

∞
𝑐 (𝐹×), 𝑟𝑄 (𝜎)).

The action of L on 𝐶∞
𝑐 (𝐹×) factors through the fundamental weight 𝜛4 : 𝐿 � 𝐹×. Thus L acts on

𝐶∞
𝑐 (𝐹×) through the geometric action of 𝐹×. Since dim(Hom𝐹× (𝐶∞

𝑐 (𝐹×), 𝜒)) = 1 for any character 𝜒, it
follows that dim(Hom𝐿 (𝐶

∞
𝑐 (𝐹×), 𝑟𝑄 (𝜎))) is no larger than the number of one-dimensional constituents

of 𝑟𝑄 (𝜎). �

In a moment we shall make the computation of Hom𝐺 (Π
𝒰
, 𝜎) more precise, but first note the

following corollary:

Corollary 7.2. If Θ(𝜎) ≠ 0, then 𝜎 is a quotient of Θ(𝜋) for some 𝜋 ∈ Irr(𝒢). Moreover 𝜃 (𝜎) is
irreducible and 𝜃 (𝜎1) � 𝜃 (𝜎2) ≠ 0 implies 𝜎1 � 𝜎2 except in one case when 𝜎1 ⊕ 𝜎2 is the co-socle of
𝑖𝐺𝑄 (| − |

5
2 ◦𝜛4).

Proof. Since Θ(𝜎) has finite length, it has an irreducible quotient 𝜋. Then clearly 𝜎 is a quotient of
Θ(𝜋). The other statements are now trivial consequences of what we know about the lift from 𝒢. �

Lemma 7.3. Let 𝜋 ∈ Irr(𝒢) such that 𝜎 def
= Θ(𝜋) ∈ Irr(𝐺). Then Θ(𝜎) � 𝜋.
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Proof. Let Ψ be a rank 3 character of 𝑁 as in Corollary 3.7. We apply (𝑁,Ψ)-coinvariants to the natural
surjective map V � Θ(𝜎) ⊗ 𝜎 to get a surjective map V(𝑁 ,Ψ) � Θ(𝜎) ⊗ 𝜎(𝑁 ,Ψ) . By Corollary 3.7 we
have V(𝑁 ,Ψ) � 𝐶∞

𝑐 (𝒢) and by Proposition 4.6 we have 𝜎(𝑁 ,Ψ) � 𝜋̃. Thus Θ(𝜎) � 𝜋. �

Remark: In the previous lemma, the assumption that 𝜎 is irreducible is required for the definition
of Θ(𝜎).

Theorem 7.4. Let 𝜎 ∈ Irr(𝐺) such that Θ(𝜎) ≠ 0. Then Θ(𝜎) ∈ Irr(𝒢).

Proof. By Proposition 7.1, Θ(𝜎) is finite length. So, there exists 𝜋 ∈ Irr(𝒢) such that Θ(𝜎) � 𝜋.
If Θ(𝜋) is irreducible, then 𝜎 � Θ(𝜋), and thus Lemma 7.3 implies that 𝜋 � Θ(𝜎).

It remains to consider the case where Θ(𝜋) is reducible. By Theorem 4.10, part (1), this can occur
only if 𝒢 � PGL2 (𝐹). Moreover, by Proposition 6.4, we see that 𝜋 must be isomorphic to 𝑖𝒢

ℬ
(| − |𝑠),

where 𝑠 ∈ { 5
2 ,

11
2 }. Thus 𝜎 is a quotient of Θ(𝜋) � 𝑖𝐺𝑄 (𝜒 ◦𝜛4), which by Proposition 2.5 implies that 𝜎

is one of three possible representations. When 𝑠 = 11
2 , then 𝜎 is the trivial representation; when 𝑠 = 5

2 ,
then 𝜎 is one of the two irreducible representations of the co-socle of 𝑖𝐺𝑄 (| − |

5
2 ◦𝜛4), which we call 𝜎+

and 𝜎−. Moreover,Θ(𝜎) has the irreducible principal series 𝑖𝒢
ℬ
(|−|𝑠) as a quotient, so dim(Θ(𝜎)

𝒰
) ≥ 2.

From the proof of Proposition 7.1 dim(Θ(𝜎))
𝒰

is less than or equal to 𝑎 + 𝑏, where
𝑎 = dim(Hom𝐺 (VN , 𝜎)) and b is the number of constituents of 𝑟𝑄 (𝜎) of dimension 1. In either case,
𝑎 = 1 by Theorem 5.1 and Corollary 9.2 (which does not depend on this result).

Suppose that 𝜎 is trivial (so 𝑠 = 11
2 ). Then 𝑏 = 1 and the result follows in this case.

Suppose that 𝜎 � 𝜎± (so 𝑠 = 5
2 ). We claim that 𝑏 = 1 in this case too, from which the result follows.

The representations 𝜎+ and 𝜎− have Iwahori-fixed vectors, and the corresponding Hecke algebra
𝐻𝐺-modules are 𝐸G and 𝐸G′′ in [18, page 640]. On the level of 𝐻𝐺-modules, the functor 𝑟𝑄 correspond
to restricting to the Hecke algebra 𝐻𝐿 ⊂ 𝐻𝐺 of the Levi subgroup L. Now it is easy to check that 𝐸G
and 𝐸G′′ embed into 𝑖𝐺𝑄 (| − |−

5
2 ◦ 𝜛4), giving us the claimed identification with 𝜎+ and 𝜎−, and that

𝑟𝑄 (𝜎±) are of length two, with only one one-dimensional summand, each, as desired. �

8. Spin (9) distinguished representations of 𝐹4

The objective of this section is to prove a multiplicity one result for Spin(9)-invariant linear functionals
and characterize the Spin(9)-distinguished representations of 𝐹4 as those arising from the theta lift
of generic representations on PGL2(𝐹). We continue to use the notation of Section 5. In particular,
𝒢 = PGL2(𝐹). Let 𝐻 = Stab𝐺 (𝑣0) � Spin(9, 𝐹). (Recall Lemma 5.8.)

Theorem 8.1. Let 𝜎 be an irreducible representation of G. Then the dimension of Hom𝐻 (𝜎̃,C) is at
most 1. Moreover, 𝜎̃ is H-distinguished if and only if Θ(𝜎) is generic.

Proof. By Lemma 2.8 there is an isomorphism

(Θ(𝜎)
(𝒰,𝜓)

)∗ � Hom𝐺 (V
(𝒰,𝜓)

, 𝜎).

By Proposition 5.10,

Hom𝐺 (V
(𝒰,𝜓)

, 𝜎) � Hom𝐺 (ind𝐺
𝐻 (1), 𝜎).

By taking duals and applying Frobenius reciprocity we have

Hom𝐺 (ind𝐺
𝐻 (1), 𝜎) � Hom𝐻 (𝜎̃,C).
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By Theorem 7.4, Θ(𝜎) is irreducible, if nonzero. Thus by the multiplicity one theorem for Whittaker
functionals, dim((Θ(𝜎)

(𝒰,𝜓)
)∗) ≤ 1. Thus dim(Hom𝐻 (𝜎̃,C)) ≤ 1. �

In fact, we can remove reference to the smooth dual in Theorem 8.1, because the 𝐹4 representations
that arise as lifts from PGL2 are self-dual.

Proposition 8.2. If Θ(𝜎) ≠ 0, then 𝜎 � 𝜎̃.

Proof. Since Θ(𝜎) ≠ 0 there exists 𝜋 ∈ Irr(𝒢) such that 𝜎 is a constituent of Θ(𝜋). We prove the result
by considering two cases.

First suppose that 𝜋 is a supercuspidal representation of 𝒢. Since supercuspidal representation split
off, there is a 𝒢-module decomposition such that V = V 𝜋 ⊕ V 𝜋,⊥, where V 𝜋 is the maximal 𝜋-isotypic
subspace of V and V 𝜋,⊥ is the canonical complementary 𝒢-submodule. Since the actions of 𝒢 and
G commute we see that G acts on both V 𝜋 and V 𝜋,⊥. Since all of the constituents of V 𝜋,⊥ are not
isomorphic to 𝜋 it follows that the 𝒢 × 𝐺-module surjection

V � 𝜋 ⊗ Θ(𝜋)

is trivial on V 𝜋,⊥ and so we have a 𝒢 × 𝐺-module surjection

V 𝜋 � 𝜋 ⊗ Θ(𝜋). (8.1)

Since by definition 𝜋 ⊗ Θ(𝜋) is the maximal 𝜋-isotypic quotient of V it follows that (8.1) is an
isomorphism V 𝜋 � 𝜋 ⊗ Θ(𝜋). Since V is a unitary G-representation and V 𝜋 ⊆ V it follows that V 𝜋 is a
unitary 𝒢 × 𝐺-representation. Thus we have 𝒢 × 𝐺-module isomorphisms

𝜋̃ ⊗ �Θ(𝜋) � Ṽ 𝜋 � V 𝜋 � V 𝜋̄ � V 𝜋 .

All irreducible representations of 𝒢 are self-dual, so we have 𝜋̃ � 𝜋. From the above chain of isomor-
phisms it follows that Θ(𝜋) is self-dual.

Since 𝜋 is supercuspidal, Theorem 4.10 implies Θ(𝜋) = 𝜎. Thus 𝜎 is self-dual.
Now suppose that 𝜋 is a constituent of the principal series 𝑖𝒢

ℬ
(𝜒). Then by Theorem 6.2, 𝜎 is a

constituent of 𝑖𝐺𝑄 (𝜒 ◦𝜛4).
We claim that all of the constituents of 𝑖𝐺𝑄 (𝜒 ◦𝜛4) are self-dual. By Choi–Jantzen [4], Theorem 6.1,

the length of 𝑖𝐺𝑄 (𝜒 ◦𝜛4) is less than 3. In each of the following three cases we use that there is a nonzero

intertwining operator 𝑖𝐺𝑄 (𝜒±1 ◦𝜛4) → 𝑖𝐺𝑄 (𝜒∓1 ◦𝜛4) � 𝑖𝐺𝑄 (𝜒±1 ◦𝜛4).
When 𝑖𝐺𝑄 (𝜒◦𝜛4) is irreducible we are done. When 𝑖𝐺𝑄 (𝜒◦𝜛4) has length 2, then [4, Theorem 6.1,1.]

implies that 𝑖𝐺𝑄 (𝜒±1 ◦ 𝜛4) has a unique irreducible sub and a unique irreducible quotient, which are
distinct. Thus the nonzero intertwining operators imply the self-duality of the irreducible constituents
of 𝑖𝐺𝑄 (𝜒±1 ◦𝜛4).

When 𝑖𝐺𝑄 (𝜒±1 ◦ 𝜛4) has length 3, then 𝜒 = | − |±
5
2 . In this case, 𝑖𝐺𝑄 (| − |−

5
2 ◦ 𝜛4) has a unique

irreducible quotient, and the intertwining operator shows that it is self dual. There is also a decomposible
submodule with two distinct constituents, call them 𝜎+ and 𝜎−. Using the 𝜇2 × 𝐺 dual pair considered
in Section 9 we can show that 𝜎+ and 𝜎− are self-dual. Specifically, V6 the minimal representation of
𝐸6 decomposes under the action of 𝜇2 × 𝐺 as V6 � 𝜎+ ⊕ 𝜎− (Theorem 9.3). Now if I is an Iwahori
subgroup of G, then dim((𝜎+)𝐼 ) = 5 and dim((𝜎−)𝐼 ) = 2. Thus 𝜎+ and 𝜎− are self-dual. �

Combining Theorem 8.1 and Proposition 8.2 directly gives the following corollary, which simply
restates Theorem 8.1 with 𝜎̃ replaced by 𝜎.

Corollary 8.3. Let 𝜎 be an irreducible representation of G. Then the dimension of Hom𝐻 (𝜎,C) is at
most 1. Moreover, 𝜎 is H-distinguished if and only if Θ(𝜎) is generic.
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Let 𝜎 be an irreducible H-distinguished representation of G. Pick a nonzero 𝜆 ∈ Hom𝐻 (𝜎,C).
Recall, from [21], that 𝜎 is an H-relatively supercuspidal representation if one (or equivalently every)
generalized matrix coefficient 𝑔 ↦→ 𝜆(𝑔𝑣) is a compactly supported function on 𝐻\𝐺. As a consequence
of our results, we have the following:

Proposition 8.4. Let 𝜎 be an irreducible representation of G. If 𝜎 is a theta lift of a supercuspidal
representation of PGL2(𝐹), then 𝜎 is H-relatively supercuspidal.

Proof. Observe that 𝜎 is H-relatively supercuspidal if and only if 𝜎 is a submodule of 𝐶∞
𝑐 (𝐻\𝐺). Now

write 𝜎 = Θ(𝜋) where 𝜋 ∈ Irr(𝒢) is supercuspidal. Since 𝜋 is supercuspidal, as in Proposition 8.2, we
have an embedding of 𝒢 × 𝐺-modules 𝜋 ⊗ Θ(𝜋) ↩→ V . By taking (𝒰,Ψ)-coinvariants and applying
Proposition 5.10 we get an embedding of G-modules Θ(𝜋) ↩→ 𝐶∞

𝑐 (𝐻\𝐺), where 𝐻 � Spin(9). Thus
𝜎 = Θ(𝜋) is H-relatively supercuspidal.

We give a second proof of this proposition. If 𝜎 is not H-relatively supercuspidal then, by a result
of Kato and Takano [13, Theorem 7.1], 𝜎 must be a subquotient of 𝑖𝐺𝑄 (𝜒 ◦ 𝜛4). This contradicts that
𝜎 is a theta lift of a supercuspidal representation of PGL2 (𝐹). Here we used that any 𝜃-split parabolic
subgroup for the rank one symmetric space 𝐻\𝐺 is in the G-conjugacy class of Q, see [25, A3.6]. �

9. Dual pair 𝜇2 × 𝐹4 ⊂ 𝐸6

In this section, we study the theta lift associated to the dual pair 𝜇2 × 𝐹4 ⊂ 𝐸6, where 𝐸6 is of adjoint
form with two connected components where the action of the nontrivial component is through the outer
automorphism of 𝐸6. This situation arises from the construction of Subsection 2.4 by taking C to be a
quadratic composition algebra.

The analysis of this case is similar to and simpler than the case of 𝐸7 considered in Section 4, so we
will be brief. We note that the results of Subsection 9.1 could have been proved after Section 3, but our
proof of the result of Subsection 9.2 utilizes Theorem 6.2.

Let G be the F-points of the adjoint form of 𝐸6 constructed using the quadratic composition algebra C
with two connected components where the nontrivial component acts through the outer automorphism
associated with a choice of simple roots Δ . Let (Π,V) be the minimal representation of G. Let G be
the fixed points in the identity component of G under the action of the outer automorphism. Then if we
identify 𝜇2 with the subgroup of G generated by the outer automorphism, then 𝜇2 ×𝐺 ⊂ G is a dual pair.

Let 𝜏+ and 𝜏− be the trivial and nontrivial characters of 𝜇2, respectively. There is a surjective map
V � 𝜏± ⊗ Θ(𝜏±). The goal of this section is to compute Θ± = Θ(𝜏±).

9.1. Lifting from 𝜇2 to 𝐹4

Theorem 9.1. The G-module Θ± is irreducible and Θ+ � Θ−.

Proof. First, we show that FJ(Θ±) � 𝜔±
𝜓 , where 𝜔+

𝜓 and 𝜔−
𝜓 are the even and odd Weil representation of

Sp(6, 𝐹), respectively. This follows from the analogs of Lemmas 4.1 and 4.2 and Propositions 4.3 and 4.4.
The main difference in this case is that the dimension of 𝑁⊥/𝑍 is 6, so 𝜔𝜓 is the Weil representation of
Sp(6, 𝐹), and Aut(𝐶) � 𝜇2 is the full orthogonal group O(𝐶0) (as opposed to SO(𝐶0)). Since 𝜔+

𝜓 � 𝜔−
𝜓

it follows that Θ+ � Θ−.
From this we also see that Θ± has exactly one nontrivial constituent, since the Fourier–Jacobi functor

is exact and only kills the trivial representation.
Second, we show that Θ± does not contain the trivial representation as a constituent. If it does, then

V𝑁 contains the trivial representation of M as a constituent. However, by Proposition 3.11 part (1) and
Theorem 3.1,

V𝑁 � V (M) ⊗ |det|2/20 ⊕ 𝜒𝐶 |det|4/20.
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We see that the center of M acts by nontrivial characters on the two summands of V𝑁 , thus V𝑁
cannot contain the trivial representation of M as a constituent. Therefore V cannot contain the trivial
representation of G as a constituent.

From this it follows that Θ± is irreducible. �

Corollary 9.2. As a 𝜇2 × 𝐺-module, V � Θ+ ⊕ Θ−.

9.2. 𝐶 = 𝐹 ⊕ 𝐹

In this section we use our results on the PGL(2) ×𝐹4 ⊂ 𝐸7 dual pair to make the lift of 𝜇2 to 𝐹4 induced
from the split form of 𝐸6 explicit.

Throughout we use the notation of Section 5 and we write V𝑛 for the minimal representation of 𝐸𝑛.
We apply 𝒰-coinvariants to sequence (5.1) to get the surjective 𝒯 × 𝐺-module map

(V7)𝒰 � (V7)N � V6 ⊗ | − |3 ⊕ | − |6 � Θ± ⊗ | − |3.

Thus Frobenius reciprocity with respect to ℬ ⊂ 𝒢 yields a nonzero 𝒢 × 𝐺-module map

V7 → Ind𝒢
ℬ
(Θ± ⊗ | − |3).

Since 𝒯 is the center of M it acts trivially on V6, thus Ind𝒢
ℬ
(Θ± ⊗ | − |3) � 𝑖𝒢

ℬ
(| − |

5
2 ) ⊗ Θ±. Note that

𝑖𝒢
ℬ
(|− |

5
2 )⊗Θ± is an irreducible𝒢×𝐺-module. Thus by Theorem 6.2, there is a surjective G-module map

𝑖𝐺𝑄 (| − |
5
2 ◦𝜛4) � Θ(𝑖𝒢

ℬ
(| − |

5
2 )) � Θ±.

By applying Proposition 2.5 we get the following theorem.

Theorem 9.3. There is a bijection between the irreducible G-modules {Θ+,Θ−} and the two irreducible
summands of the unique semisimple quotient of 𝑖𝐺𝑄 (| − |

5
2 ◦𝜛4).
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