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Abstract
We study the local theta correspondence for dual pairs of the form Aut(C) x F4 over a p-adic field, where C is
a composition algebra of dimension 2 or 4, by restricting the minimal representation of a group of type E. We
investigate this restriction through the computation of maximal parabolic Jacquet modules and the Fourier—Jacobi
functor.

As a consequence of our results, we prove a multiplicity one result for the Spin(9)-invariant linear functionals
of irreducible representations of F, and classify the Spin(9)-distinguished representations.
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1. Introduction

Let F be a p-adic field, that is, a nonarchimedean local field of characteristic 0 and residual characteristic
p > 0. We study the local theta correspondence for the group of F-points of the dual pair Aut(C) X Fy,
where C is a composition F-algebra of dimension 2 or 4, by restricting the minimal representation
(IT, V) of an adjoint group G¢ of absolute type E¢ if dimC = 2, and absolute type E7 if dimC = 4. For
this introduction we specialize to dim(C) = 4, for simplicity. In this case, the group G¢ is split when C
is split and the unique nonsplit form when C is anisotropic.

With a dual pair Aut(C) X F4 C G¢ one can lift representations from & = Aut(C)(F) to G = F4(F)
as follows. Given 7 € Irr(€) a smooth irreducible representation of &, the maximal 7-isotypic quotient
of V admits an action of G and factors as 7 ® ®(1), where O(7) is a smooth representation of G. The
representation ©(7) is called the big theta lift of 7. Its maximal semisimple quotient 8(7) (co-socle) is
called the small theta lift of 7. Note that one may reverse the roles of & and G. The primary objective
of this paper is to investigate the big and small theta lifts of the dual pair Aut(C) X F4 C G¢.

We begin by discussing the theta lift from Aut(C) to F4. Our first theorem gives a qualitative behavior
of the lift. It is a combination of Theorems 4.10, 6.2, and 6.3.

Theorem 1.1. Let 7 € Irr(Aut(C)). Then:

1. ©(1) # 0 and it is a finite-length representation of Fy.
2. If 7 is tempered then O(T) is irreducible.
3. If0(1) = 6(1’), where v’ € Irr(Aut(C)), thent = 7',

For lifting in the opposite direction, that is, from Fy to Aut(C), our main result is Theorem 7.4. It says
if o € Irr(Fy) such that ®(o) # 0, then (o) € Irr(Aut(C)).

For our second theorem, we specialize to the case where C is the algebra of 2 X 2 matrices, so
Aut(C) = PGL;. In this case, we can completely describe ®(7). In order to state the results, we note
that the F4 group in this paper is not realized as a Chevalley group but as the group of automorphisms
of a 27-dimensional exceptional Jordan algebra J. Thus Fy acts on the 26-dimensional subspace JO of
trace O elements in J and its maximal parabolic subgroups can be described as stabilizers of singular
subspaces of Jy [2]. In particular, F; has maximal parabolic subgroups Q and Q, stabilizing one-
and two-dimensional singular spaces, respectively. (We record that Levi subgroups of Q and Q> have
the type B3 and Az jong X Ajshort, Tespectively.) Observe that Q and Q», via their actions on the
stabilized one- and two-dimensional singular spaces, have quotients isomorphic to GL; and GL,,
respectively. In particular, a character y of GL(F) defines a degenerate principal series representation
Indg (x), and a supercuspidal representation 7 of PGL,(F) defines a family of degenerate principal

series representations Indg2 (t ®|det|*).

https://doi.org/10.1017/fms.2025.10108 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10108

Forum of Mathematics, Sigma 3

Theorem 1.2. Let T € Irr(PGL, (F)).

1. If T is a quotient of a principal series Ind%(x) then ©(t) is a quotient ofIndg (x)- (For the precise
statement see Theorems 6.2 and 6.3 and Proposition 6.4.)

2. If T is a supercuspidal representation, then ©(t) = 6(t) is the unique irreducible quotient of
Indg (7 ® |det [*/?).

In (1) (1) is always isomorphic to the co-socle of the degenerate principal series. Since the co-socle
of Indg(| - /2 is a sum of two irreducible representations the theta correspondence is not one to one,
and this is the only place where it fails.

Next we want to highlight some consequences of our results, as they relate to the relative Lang-
lands program of Sakellaridis—Venkatesh [25]. We prove that the rank one exceptional symmetric pair
(F4, Sping) over a p-adic field is a Gelfand pair, a long-time open problem:

Theorem 1.3. Let o € Irr(Fy). Then dimHomsgpin(9) (6, C) < 1. Moreover, the dimension is 1 if and
only if o is the theta lift of a generic representation of PGL, (F).

The study of symmetric spaces, and more generally spherical spaces, has a long history. In [29]
van Dijk proved that real forms of the symmetric pair (F4, Spin(9)) are generalized Gelfand pairs, a
slightly weaker statement, as it concerns unitary representations only. Recently Rubio [23] proved that
(Fy, Spin(9)) is a Gelfand pair over C. The usual approach involves invariant distributions, see [ 10] or [1]
for more information on this rich subject. On the other hand, Howe [11] used the dual pair SL, X O(n) to
analyze the symmetric pair (O(n), O(n—1)). It was observed in [26] that Howe’s strategy can be applied
to all rank-one symmetric pairs. In this paper, at long last, we execute this strategy for the exceptional
symmetric pair. Theorem 1.3 is a consequence of the fact that the theta correspondence relates the
Spin(9)-period on representations of Fy to the Whittaker period on representations of PGL; (F). More
precisely, we have

Homgyin(9) (6, C) = Homy , (0(0),C)

where (%, ) is a Whittaker datum for PGL, (F). Since we proved that ®(o) is irreducible (or zero)
Theorem 1.3 follows from uniqueness of the Whittaker functional for irreducible representations of
PGL,(F). Moreover, since the lift from PGL,(F) is completely known by Theorem 1.2, we have a
classification of Spin(9)-distinguished representations of Fy, consistent with predictions made in [25].

The primary tools in our analysis are computations of maximal parabolic Jacquet modules and
the Fourier—Jacobi functor. Similar Jacquet module computations were used to study several different
exceptional dual pairs in [6, 9, 19]. In particular, this type of Jacquet module computation provides an
important step in establishing Howe duality and dichotomy for exceptional dual pairs containing G,
which was recently completed in [9].

Our main new input is the use of the Fourier—Jacobi functor. This allows us to relate the Aut(C) X Fy
theta correspondence to a classical O(3) X Sp(6) theta correspondence. Using the well developed theory
of this classical theta correspondence we can efficiently derive results about the Aut(C) X Fy4 theta
correspondence.

Now we outline the contents of the paper and make a few more remarks on the proofs of our main
results. Section 2 introduces notation and recalls some preliminary material. Section 3 contains the
computations of (twisted) Jacquet modules of the minimal representation ) with respect to a maximal
Heisenberg parabolic of F,. These calculations are done using a filtration of }V with respect to a maximal
Heisenberg parabolic subgroup of E; (recalled in Theorem 3.1). This filtration was first studied in
Magaard-Savin [19]. In this section we also review the Fourier—Jacobi functor.

In Section 4 we apply the results of Section 3 to study the theta lift of 7 a supercuspidal representation
of Aut(C) to F4. The main result of this section Theorem 4.10 states that ®(7) is irreducible. The proof
is based on the Fourier—Jacobi functor, which is the main new input in our analysis. Its utility stems from
Proposition 4.3, which says that the Fourier—Jacobi functor applied to the minimal representation of E7 is
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isomorphic to the Weil representation as an SO(3) XSp(6)-representation. This is almost the setting of the
classical dual pair O(3) x Sp(6). We use the well-developed classical theory and basic properties of the
Fourier—Jacobi functor to deduce that ®(7) has at most two nontrivial constituents (Corollary 4.5). Then
we apply the calculations from Section 3 to show that ®(7) is irreducible. Specifically, we use the twisted
Jacquet module calculations to prove that ®(7) has at most one nontrivial constituent (Proposition 4.8),
and the untwisted Jacquet module to rule out the trivial representation (Proposition 4.9).

Next we specialize to the case when C is the algebra of 2 x 2 matrices, so Aut(C) = PGL,. Section 5
is roughly analogous to Section 3. The difference is that now we use a filtration of V with respect to a
maximal Siegel parabolic subgroup of E7 [26] (recalled in Theorem 5.1) to compute Jacquet modules
with respect to a Borel subgroup of PGL;.

In Section 6 we describe the theta lift of representations of PGL, to F4. This breaks up into two parts.
First we consider constituents of principal series. For this we apply the results of Section 5 on untwisted
Jacquet modules to lift the constituents of principal series of PGL, to Fy. Generically, the theta lift
of a PGL; principal series is a degenerate principal series of F4 induced from the maximal parabolic
subgroup Q. The complete description of the big theta lift is contained in Theorems 6.2 and 6.3; the
small theta lift is described in Proposition 6.4. The approach of this section builds upon [26].

Second, we consider supercuspidal representations in Subsection 6.4. From Theorem 4.10 we
know that the theta lift of a supercuspidal representation is irreducible. Here we refine this result in
Proposition 6.5 when Aut(C) = PGL,. Specifically, we show that the theta lift is a quotient of an explicit
representation of Fy induced from the maximal parabolic subgroup Q,. We note that this calculation
uses the G, X Fy C Eg dual pair studied in Magaard-Savin [19].

In Section 7 we consider the theta lift from F4 to Aut(C). The main result is Theorem 7.4, which
states that if o € Irr(F4) and O(0) # 0, then O(0) € Irr(Aut(C)).

In Section 8 we characterize the irreducible representations of F that are Spin(9)-distinguished,
that is, possess a Sping-invariant linear functional. The main result, Theorem 8.1, is proved using the
twisted Jacquet module calculations from Section 5. We also show in Proposition 8.4 that supercuspidal
representations of PGL, lift to Sping-relatively supercuspidal representations of Fj.

Section 9 concludes the paper with analogous (but easier) results when dimC = 2.

2. Notation
2.1. Representation theory of p-adic groups

Let F be a nonarchimedean local field of characteristic O and residual characteristic p > 0, with ring of
integers O and maximal ideal p. Let g be the order of the residue field. We normalize the absolute value
on F so that its value is g~ on any generator of p. We fix a nontrivial additive character ¢ : F — CX.

Let G be the group of F-points of a connected reductive group. Let M(G) be the category of
smooth G-representations and let Irr(G) be the set of isomorphism classes of irreducible objects. Given
m € M(G) we write 7 for the smooth contragradient representation of x.

If H c G is a closed subgroup and (o, W) is a smooth representation of H. We write Indg (o)
for the space of right G-smooth functions f : G — W such that for any g € G and h € H we
have f(hg) = o(h)f(g). This is a G-representation with the action (g - f)(g’) = f(g’g). We write
indg (o) C Indg (o) for the G-submodule of functions with compact support mod H.

Now suppose P = MN c G is a parabolic subgroup with a Levi decomposition, and (o, W) is a
smooth representation of M inflated to P. We fix dn a Haar measure on N and let 6p be the modular
character of P defined by d(pnp~') = 6p(p)dn. We write ’.1?/1 (o) = Indg (5}3/2 ® o) for normalized
parabolic induction.

Let (7, V) be a smooth G-representation. If H C G is a subgroup with a character y : H — C,
let V(u,,) denote the space of (H, y)-coinvariants. This space can be realized as the quotient of V
by the subspace span{h - v — y(h)v|v € V, h € H} and is a representation of the subgroup of the
normalizer of H that fixes y, which we write as Stabg (). If x is trivial we write Vg = V(g ,). We

write rp(V) = 6;,1/ 2 ® Vyy for the normalized Jacquet module of a parabolic subgroup P = MN C G.

https://doi.org/10.1017/fms.2025.10108 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10108

Forum of Mathematics, Sigma 5

2.2. Composition algebras

The theta-lift examined in this paper is based on exceptional dual pairs that can be constructed using
composition and Jordan algebras. We begin by collecting some information on these algebras.

Let C be a composition algebra over F with quadratic norm form nc. We write Be(x,y) =
nc(x +y) —nc(x) — nc(y) for the bilinear form associated to nc and ~ : C — C as x — X for
conjugation ([28], Section 1.3). The trace of an element of x € C is Tr¢(x) = x + X and nc(x) = xX.
Note that Tre (xy) = =Bc(x, y), forall x,y € C.

We write C° for the subspace of trace 0 elements of C. The group of F-algebra automorphisms
Aut(C) preserves the norm and acts on C°. Thus Aut(C) is contained in O(C, n¢) the orthogonal
group of the norm form.

Recall that dimg(C) = 1,2,4,8. Over the p-adic field F the possible composition algebras can
be described explicitly. When dimg (C) = 2, then C is either a quadratic field extension of F, or C
is isomorphic to the split quadratic algebra F @ F with norm form (x,y) + xy. In either case, the
automorphism group of Aut(C) is generated by the conjugate map x +— X and so is isomorphic to
Ho = {£1}.

When dim(C) = 4, C is either isomorphic to the split quaternion algebra, which can be realized as
the algebra of 2 X 2 matrices M (2, F)) with norm form given by the determinant; or C is isomorphic
to D, the unique (up to isomorphism) quaternion division algebra over F. The group of Aut(C) consists
of inner automorphisms (Skolem—Noether Theorem) and so is isomorphic to PC*. When C = M (2, F),
then Aut(C) = PGL,(F).

When dimg (C) = 8, then C is isomorphic to O the split octonion algebra over F. Its automorphism
group is the F-points of an algebraic group of type G,.

For more information on composition algebras the reader can refer to [12, 28].

2.3. Jordan algebras

Next we describe a family of Jordan algebras indexed by a composition algebra C. For more details, see
Pollack [22, Chapter 2, Section 2].
Let

cl X3 X2
j:jC:{X: X3 ¢ X |Cj€F,.Xj€C}.

X2 X] €3

Given A, B € J¢ the Jordan multiplication is defined by

where AB, BA denotes usual matrix multiplication. The algebra 7 is equipped with a cubic norm form
N7(X) = cicac3 — cinc(x1) — canc(x2) — eanc (x3) + Tr(x1x2x3).

The norm form uniquely defines a symmetric trilinear form (-, —,—)7 : J X J X J — F normalized
so that (X, X, X)7 = 6N 7(X).

We write Try : J — F for the map defined by Tr7(X) = ¢| + ¢ + ¢3. From this we define a
nondegenerate pairing (—,-)7 : J X J — Fby (X,X")7 =Tr7(X = X’).

There is also a map #. 7 — 7 defined by

# cac3—nc (X)) X2X1—C3X3  X3X1—C2X2
X" =1 xix-a¥ ciez-ne(x) XXa-cix
X1X3-C2X2  X2X3—C1X] c1ca—nc (x3)
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This map can be used to define the cross product
XxY=X+Y)"-x*— ()" (2.1
Alternatively X x Y € J is the unique element such that forall Y € J
(XxY,Z)7=(X,Y,2)7. 2.2)

There is a notion of rank for elements in 7. Every element X € 7 has rank at most 3. If N(X) =0,
then X has rank at most 2. If X* = 0, then x has rank at most 1. If X = 0, then X has rank 0. (Pollack
[22, Chapter 3, Section 3])

We write H¢ for the group of invertible linear transformations of 7 = J¢ that scale the norm form
N (i.e., the group of similitudes of the cubic form), and H lc for the subgroup preserving the norm
form. We have a subgroup Aut(C) x GL3(F) — H¢ where g € Aut(C) acts naturally on entries of
elements of 7, while & € GL3(F) actson X € 7 by

det(h) - (h"HTXh!,

where hT denotes the transpose of h. The similitude character of this transformation of 7 is det(h). If
C = F, then Hr = GL3(F). In general, Aut(C) x GL3(F) preserves the decomposition

Jc =Tr & Jco

where Jo is the subspace consisting of

0 x3 X3
J(x) = (M 0 xl),

X2 fl 0

where x = (x1,x2,x3) € (C°)3. The following proposition in essence restates the known fact that the
dual of the standard three-dimensional representation of GLj3 is isomorphic to the exterior square of the
standard representation twisted by determinant inverse. In any case it is easy to check.

Proposition 2.1. Let V3 be the standard representation of GL3(F). Then Jco = C° ® V3. Explicitly,
(g,h) € Aut(C) X GL3(F) acts on J(x) by J(gxh™).

2.4. Construction of exceptional Lie algebras

Let hc be the Lie algebra of H lc We define vector spaces

go,c =sl(3,F) ® ¢,
g1,c =V3® Jc,
g-1.c =V; ® J¢,

where V3 is the standard representation of sl3 and V3* the dual of V3. We identify 7, é with J¢ using the
trace form. Consider the vector space

g9c = 8o0,c ®81,c ®9-1,C-

The space g¢ can be given the structure of a Lie algebra that extends the Lie algebra structure on go c
and the natural action of go.c on g1,c ® g-1,c. (See [24], Section 1.3.) We write (—, —)¢ for the Killing
form of g¢. The Lie algebra gr is the split simple Lie algebra of type Fy4. The Lie algebra g¢ is a simple
Lie algebra of type E,,, where n = 6,7, 8 when dimp (C) = 2,4, 8, respectively.
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LetY € sI(3,F) and X € Jc, then X + YX + XY defines a Lie algebra action of sI(3, F) on
Jc extending the analogous action of sI(3, F) on Jr. This action induces an inclusion of Lie algebras
br = sl(3, F) — B¢, which induces an inclusion of Lie algebras gr < gc.

Next we describe a Heisenberg parabolic subalgebra in gc. Let t be the subalgebra of diagonal
matrices in sI(3, F') C go,c. The adjoint action of t on g¢ provides a decomposition

gc = @g)u

yet*

where g, = {X € gcl[h, X] = y(h)X forall h € t}. The weights y # 0 such that g, # O form a
relative root system @ of type G, ([7, Sections 9.2, 10.8]). Note that the long relative root spaces are
all isomorphic to F and sit in s1(3, F) while the short relative root spaces are isomorphic to Jc or J .
Finally, observe that go =t & bc.

We let {«, B} be a set of simple roots in the G relative root system so that « is long, 3 is short. Then
the maximal root @max = 2a + 38 is a long root. Thus, without loss of generality, we can assume that
h = diag(1,0,-1) € sl(3, F).

@max

The element & defines a Z-grading on g¢ supported on {0, +1, +2}. For j € Z, let

@max

ac (/) ={x € 8¢ | [hape-x] = jx}.
Let p = ®;>08c (/). Then p is a Heisenberg parabolic subalgebra with Levi subalgebra
m=gc(0)=tehc®gp© 94
and nilpotent radical n = ®;.0gc (j) with one-dimensional center
3=8c(2) = Gapu-

Let Gc = Aut(gc). If C # F then the connected component of G¢ is an adjoint group of type E,,.
The group G is F4. We omit the subscript C when no confusion can arise. Then the maximal parabolic
subalgebra p corresponds to a maximal parabolic subgroup P = MN in G. Let Z be the center of NV.
Then M acts on N'/Z = 1/3. The space 1/3 admits a symplectic and a quartic form, and M acts as a
group of similitudes of these two forms.
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2.5. A symplectic space

Using Pollack [22, Chapter 3] we give an explicit construction of the reductive group M and its
representation on the symplectic space 1n/3. In terms of the restricted root system, we have

/3 = 8o © Ga+p @ Gas28 D Ba3p-

We identify J and J* using the trace form, so g, = J for any short root y. Thus we can identify n/3
with

W=Wc=Fo0oJoJe&F.

So any element w € W is a quadruple w = (a, b, ¢,d), where a,d € F and b,c € J. The space W
comes with a symplectic form

{(a,b,c,d),(a’,b',c’,d)yw=ad —Te(bxc’)+Tr(c*xb")—da’,
and a quartic form
g(a,b,c,d) = (ad — Tr(b * ¢))* + 4aN(c) + 4dN (b) — 4Tr(b* * ).

Let (-, —, —, —)w be the unique symmetric 4-linear form on W such that (v, v,v,v) = 2¢g(v). Then M
is isomorphic to the group of similitudes

Mc ={(g,v) € GL(W) x GL{ (F)|{gv, gv'} = v{v,v"), q(gv) = v*q(v) for all v,v" € W}.

We write M, é for the subgroup of elements where the similitude factor v is equal to 1.

We highlight a few subgroups of M é If h € He with similitude factor A, then the map (a, b, ¢, d) —
(Aa, hb, he, /l_ld), where the action of 72 on 7 is defined through the identification of 7 with J* via
the trace pairing, defines an element of M é We abuse notation and let H¢ denote this subgroup.

For x € J let n(x) be the map defined by

n(x)(a,b,c,d) = (a,b+ax,c+bxx+ax®,d+Tr(c*x) +Tr(b = x") + aN(x)). 2.3)

The map n(x) € M7 and has similitude factor equal to 1. The group generated by these elements is
isomorphic to the unipotent group exp(gg) C M.
Similarly, for x € J let n(x) be the map defined by

n(x)(a,b,c,d) = (a+Tr(b =x)+Tr(c >x<)c#) +dN(x),b+cXxXx +dx, ¢ +dx,d).

The map n(x) € M¢ and has similitude factor equal to 1. The group generated by these elements is
isomorphic to the unipotent group exp(g-g) € M.

The two abelian groups generated by n(x) and 7(x), respectively, are unipotent radicals of two
opposite maximal parabolic subgroups in M, é with the Levi factor H¢. These two parabolic groups are
conjugate by

(a,b,c,d) — (=d,c,-b,a). 2.4)
If A € GL,(F), then
sy:(a,b,c,d)— (/lz,ﬁb,c, /l_ld)
and

syi(a,b,c,d)— (/l_l,b,/lc,/lzd)

https://doi.org/10.1017/fms.2025.10108 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10108

Forum of Mathematics, Sigma 9

are two elements of M¢ with the similitude factor v = A. Thus M is generated by Mé and any of
the two one-parameter groups s or s*. We have written down both of these two groups for the sake of
symmetry but also because they generate a two-dimensional torus whose Lie algebra is t € m.

Observe that Aut(C) ¢ M¢ where Aut(C) acts on the coordinates of W¢. The centralizer of Aut(C)
in Mc is MF, the Levi of the Heisenberg maximal parabolic of F4. This group is isomorphic to GSpg (F),
as one can see from root data, for example. We shall fix an isomorphism Mg = GSpg(F) as follows.
Recall that W is a symplectic space. Under the action of Aut(C) it decomposes as

We=Wr ® (Jco © Jco).

If Vi is a six-dimensional symplectic space then C° ® Vg is a symplectic space obtaining by tensoring
the quadratic space C° and the symplectic space V. We pick Vs so that

Tco ® Teo = C°® Vs, (2.5)

given by (J(x),J(y)) +— (x1,x2,x3,¥1,¥2,¥3), is an isomorphism of symplectic spaces. Since Mg
commutes with Aut(C), and Aut(C) acts on cv irreducibly, M must act on Vg, giving an identification
with GSpg(F). Let sim denote the usual similitude character of GSpg(F'). Observe that the similitude
character of M restricts to sim under the identification.

2.6. Orbits
We now describe orbits of M7 acting on W = W¢. Given v = (a,b,c,d) € W5 define o=
(ab, b, b, d") ([22, Proposition 1.0.3]), where

a® = —a(ad — Tr(b = ¢)) = 2N(b);

B* = —2¢ x b* + 2ac* — (ad = Tr(b * ¢))b;

& =2bxc* - 2bd* + (ad - Tr(b % ¢))c;

d’ = d(ad — Tr(b = ¢)) + 2N(c).
Over the algebraic closure the orbits are classified by the rank for elements in W, defined as follows.
Let v € W. The element v has rank at most 4. If g(v) = 0, then v has rank at most 3. If vP =0, then v
has rank at most 2. If (v, v, w,w’) = 0 for all w,w’ € (v)* (the orthogonal complement with respect to

(=, —)w), then v has rank at most 1. If v = 0, then v has rank 0.
We need the following proposition [8, Proposition 8.1] and a simple corollary.

Proposition 2.2. A nonzero element (a, b, c,d) € W has rank 1 if and only if

1. b* —ac=0,

2. ¢*—db =0,

3. ad = h(b) * h(c) for all h € H¢, where h is the dual action of h on J* identified with [J using the
trace form.

Corollary 2.3. E = (1, b, c,d) € W has rank I if and only if c = b* and d = N (b).

Proof. If E has rank 1, then Proposition 2.2 implies ¢ = b* and d = b * b* = N(b) (use h = 1 in (3)).
In the opposite direction use (b*)* = N(b) - b and h(b*) = h(b)* /v where v is the similitude factor
of h. m]

2.7. The dual pair Aut(C) X G in G¢

Observe that Aut(C) naturally acts on J¢ preserving the norm N 7. Thus Der(C), the Lie algebra of
Aut(C), is a subalgebra of hc. From the construction of g¢ in Subsection 2.4 it is evident that the
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centralizer of Der(C) in g¢ contains gr, the Lie algebra of Gr, the group of type Fu. This group is
simply connected with trivial center. Thus the inclusion of Lie algebras lifts to an inclusion Gr C Gc.

Lemma 2.4. Aut(C) X G is a maximal subgroup in Gc¢.

Proof. Observe that, under the adjoint action restricted to Der(C) & g,
ac = Der(C) ® gr & C° ® Va4

where C? and V»¢ are irreducible representations of Der(C) and g respectively. The irreducibility of
C° ® V4 implies that Der(C) @ gr is a maximal subalgebra of g.

First assume dim(C) # 2. Then Aut(C) X G is connected. Since Der(C) & gr is maximal, any
proper subgroup H of G¢ containing Aut(C) X Gr must have Aut(C) X G as its connected component
of identity. Now Aut(C) X G has no outer automorphisms, so if H is disconnected, then there exists
a semisimple finite-order element z € G¢ centralizing Aut(C) X Gg. Since C 0 @ Vg is irreducible, z
would have to act on it as —1. But the centralizer of the semisimple element z must contain a maximal
torus. Since Aut(C) X G has rank 5 and G¢ has rank 7, this is a contradiction.

Second, assume dim C = 2. Note that in this case G¢ is disconnected and the component group is
generated by the outerautomorphism of the E¢ Dynkin diagram, which has order 2. As above we can see
that Gy is maximal in gg, the connected component of the identity. Since the generator of Aut(C) = u»
is the outerautomorphism in G¢, the conclusion of the lemma holds in this case, too. m]

We are now in a position to understand rational G¢-conjugacy classes of Aut(C) X Gg C G¢ over F.
Over F, there is one conjugacy class, that is, any subgroup of G¢ isomorphic to Aut(C) X G is
conjugate to Aut(C) X G, this is due to Dynkin. By Lemma 2.4, the normalizer of Aut(C) X Gr in G¢
is Aut(C) X Gr, hence conjugacy classes over F correspond to the kernel of the map of pointed sets

H'(F,Aut(C)) x H'(F,Gr) — H'(F,Gc).

If F is p-adic, then H' (F, GF) is trivial, hence we are reduced to the map H' (F, Aut(C)) — H'(F, Gc).
This maps sends a rational form C” of C (i.e., an element of H! (F, Aut(C))) to G¢+. This map is clearly
injective, hence we have only one conjugacy class. Furthermore, injectivity implies that Aut(C) x Gr
can be a subgroup of G¢r only when C = C’.

In this paper we use two different constructions of the dual pair Aut(C) X Gr C G¢ to investigate
the theta correspondence. From the above these two subgroups are conjugate. Thus the results obtained
using each construction are compatible.

2.8. Degenerate principal series on F,

In this section, we collect the results of Choi—Jantzen [4] that describe the structure of degenerate
principal series on Fy. Henceforth we write G = G for the unique group of type F4 over F.

We note that in this paper we use the Bourbaki labeling of simple roots of Fy [3, Plate VIII], but
Choi-Jantzen [4] use the reverse order, that is, the two labelings are related by the permutation (14)(23),
written in disjoint cycle notation.

Proposition 2.5 (Theorems 3.1 and 6.1 [4]). Let x be a character of F* such that y = | — |* xo, where
Xo is a unitary character and s € C. Let Q be a maximal parabolic subgroup associated with the simple
root a4 and let wy be the fundamental weight that pairs nontrivially with ozX.

5

1. ig (x o @y) is reducible if and only if s = J_r%, +3 i% with xo trivial, or s = i% with o of order 2.

£3,
2. If s = J_r%, —%, J_r% and xq has order dividing 2, then ig (x o wy) has a unique irreducible quotient.
3. Ifs = % and xy is trivial, then ig (x o @4) has a maximal semisimple quotient of the form o+ @ o,

where ot and o~ are distinct irreducible representations of G.
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2.9. PGL,(F)
In this subsection, we recall basic facts about & = PGL; (F).
Lemma 2.6. The characters of & are in bijection with the quadratic characters of F*.

Let B = I % be a Borel subgroup of & and let B =T U be its opposite. We fix an identification
I = F* sothat I acts on % by multiplication. In particular, the modular character is 6(7) = |7[. Let

x be a character of I and define i%( X) = Ind%(é%z - x). Let St denote the Steinberg representation
of &. We have the following well-known result:
Lemma 2.7. Let x be a character of F* such that y = | — |* xo, where xq is a unitary character and

s € C. The representation i%( x) is irreducible unless s = £1/2 and yq is a quadratic character.

1. If s = 1/2 and xq is a quadratic character. Then i%()() has length 2. The unique irreducible
quotient is the one-dimensional representation obtained by inflating o to . The unique irreducible
submodule is St ® .

2. If s = —=1/2 and yy is a quadratic character. Then i%( x) has length 2. The unique irreducible
quotient is St ® yo. The unique irreducible submodule the one-dimensional representation obtained
by inflating yo to &.

2.10. Theta lifting preliminaries

In this subsection we establish preliminaries to discuss a theta lift for Aut(C) x F4 C E7.

Recall that associated to a quaternion algebra C we have the following groups: G is the F-points of a
connected semisimple adjoint group of type E7; G is the F-points of a connected semisimple group of
type Fy; € is the F-points of the automorphism group of C. Let (I1, V) = (ITpin, Vimin) be the minimal
representation of G. (See [14] for split groups; [7] for nonsplit.)

To begin we define the big theta lift. Let 7 be an irreducible smooth &-representation. The maximal
T-isotypic quotient of V is naturally a & x G-representation V. Furthermore, }V; admits a factorization
V: = 7 ® 0(1), where ©(7) is a G-representation. We call (1) the big theta lift of T with respect to
the restriction of V to & X G. (For details, see [20, Chapter 2, Section 3].) Let 6(7) be the maximal
semisimple quotient (cosocle) of O(7).

The main objective of this work is to investigate @(7) and 6(7). The following simple lemma is
important for our analysis. If V is a vector space, we write V* for its linear dual.

Lemma 2.8. Let 7 € Irr(¥). Let U C G be a unipotent subgroup with a character ¥ and let
H = Stabg (U, ¥). There is an H-module isomorphism

(O(1)w.,w)" = Homg (Vv w),7),

where the H acts on Homg (V(y w),7) by (h- f)(v) = f(h™' - v).
In particular, there is an isomorphism of G-modules

O(7)* = Homg (V, 7).

Proof. Because T is irreducible, it follows that ®(7) = (V ® T)y as G-modules. Taking (U, ¥)-
coinvariants gives O(7)y,w) = [(V ® T)g]w,w) as H-modules. Since H and ¥ commute we can
commute the coinvariants to get an H-module isomorphism O(7) w) = (Vv w) ® T)g. Next we take
the linear dual and apply the ®-Hom adjunction to get an isomorphism of H-modules

(O(1)w,w)" = Hom((Vw w) ® T)g,C) = Homg (Vv w), (T)").

Since V(y,w) is a smooth &¥-module we have Homg (Vv w), (T)*) = Homg(V(U,q;)ﬁ). Since 1 is
irreducible we have 7 = 7 as €-modules. Thus as H-modules O(T)w,w)" =Homg(Vy,w,7). O
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3. Jacquet modules I

Let G = Ge and G = Gr. Let Aut(C) X G be the dual pair described in subsection 2.7 and let P = MN

be the Heisenberg maximal parabolic subgroup in G. Since Aut(C) c M, the centralizer of Aut(C)

in P is the Heisenberg maximal parabolic P = MN in G. We write P = MA and P = MN for the
parabolic subgroups opposite to P and P, respectively.

Our study of the theta lifting is based on two tools. The first are functors of twisted co-invariants
of the minimal representation V of G. The second is the Fourier-Jacobi functor. To compute these
functors, we use a P-filtration of V due to Magaard-Savin [19, Theorem 6.1], which we now recall.
In the following, Q is the minimal nontrivial M-orbit in A'/Z. Under the isomorphism N'/Z = W¢, Q
is the set of rank 1 elements in W¢.

Theorem 3.1. Let (I1,V) be the minimal representation of G and let P = .Ai./T/' be the Heisenberg
parabolic subgroup of G opposite to P. Let Z be the center of N'. Then V has a P-filtration given by the
exact sequence

0—C2(Q) = V; = Vi — 0. 3.D

Furthermore, the action of P is described as Sfollows:

1. Let mn € MN and f € C2(Q). Then

[TL(7) f1(x) =g ((x, 1)) f(x);
[T(m) f1(x) =xc (m)|det(m)[*/* f (m™" - x).

2. Vg = [VM) ® |det|'/] @ yc|det|s/?, where V(M) is the minimal representation of M (center
acting trivially).

Here det is the determinant of the representation of M acting on N/Z; Xc Is a quadratic character,
trivial unless C is a quadratic field, and then corresponding to C by the local class field theory; d is the
dimension of N'/Z. The values of s, t, and d are given in the following table.

20

&
=)}
AW
IS

Remark: In Magaard-Savin [19], the groups are split. Nevertheless, their proof still appliesto G = G¢,
where C is a split or nonsplit composition algebra over F. The quadratic twist by yc was observed in [8].

Given 7 € Irr(€) there is a surjective map V - 7 ® O(t). To study ®(r) we apply the functor of
(N, ¥)-coinvariants to sequence (3.1), where W is a character of N.

Let My = Staby, (W). Let N(¥) = {n € Ny ((n, 7)) = ¥(71) forall @ € N}. Let Qy = Q N N (V).

Lemma 3.2. The restriction map C°(Q) — C°(Qyw) induces a & X My-module isomorphism
CE D) = C ().
Proof. The proof is the same as Magaard-Savin [19], Lemma 2.2. O

To describe C° (Qy) as a & X My-module we need an explicit description of Qy, which we take up
in the next subsection. When W is nontrivial, this gives a complete description of V(ﬁ ) as we see in
the next lemma.
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Lemma 3.3. Suppose that ¥ is nontrivial. By applying (N, W) coinvariants to the exact sequence (3.1)
we get a & X My-module isomorphism

Czo (Q)(ﬁ’q,) = V(ﬁ’\y).

Proof. Since the functor (—)(ﬁ’\y) is exact and (Vﬁ)(ﬁ,w) = 0 the result follows. o

3.1. Fiber calculation

The main objective of this section is to compute C;"’(Q)(ﬁ,q,), where W is of rank 3 or rank 0. This is
accomplished in Proposition 3.7 for rank 3, and Proposition 3.1 1 for rank 0. The rank of ¥ will be defined
in terms of the rank of elements of W (Subsection 2.5). We explain this after setting up some notation.

The map N'/Z — Hom(N/Z, C¥) defined by n — ¢ ({(n, —)) defines an isomorphism of A'/Z with
the Pontryagin dual of A//Z. Similarly, by restriction this map defines an isomorphism between N/Z
and the Pontryagin dual of N/Z.

We identify '/ Z with W and M with M¢ so that the adjoint action of M on N'/Z corresponds to
the action of M on W¢. This also fixes an identification of N/Z with Wg = W‘ém(c) andof M c M
with Mg € Mc. Thus we can view the character ¥ as an element of Wr. We define the rank of ¥ to
be the rank of its associated element in Wg.

Now we reinterpret the set N'(¥) as the fiber of a map F, defined below.

Letf : Jc — JF be the map defined by

Tr(x) Tr(z)
x a
( b )}—) Tr(x) Tr(y)
— 2 .
.y c Tr(z) Tr(
2

(a,b,c,d) — (a,f(b),f(c),d).

|

=l
S

sl
(SRR
|

o
<

LetF : We — Wg be defined by

With the identifications above, the natural restriction map from the Pontryagin dual of N/Z to the
Pontryagin dual of N/Z is realized as the map F : W — Wp. Viewing ¥ as an element of Wr, we
have V' (¥) = F~!(¥). Thus our next objective is to describe the intersection of the fibers of F with Q.

Proposition 3.4. Let C be any composition algebra. Let ¢ = (1,0,c,d) € Wg. The set F~'(£) N Q

consists of

(1,J(x),J(x)*, N7 (J(x)))

or all x = (x1,x2,x3) € (CO)3 such that
Je

1. ¢ = 3(Tr(xix;))
2.d= TI'()C]XQ)C3).

Proof. LetE = (a’,b’,c’,d’") e F1 (&) n Q.
Since E € F~1(&), it follows that Z = (1, ", ¢, d), where

b’ =J(x1,x2,x3), withx; € co.
f(c') =c.

Since B € Q, by Proposition 2.2, d = N(b’) = Tr(x1xpx3) and

2
, I =N (x1) X2Xx1  x3x) Xp o X2X1 XX
¢ = (b ) = x1x2 —-N(x2) X3%2 =| xix2 x% x3x2 |.

X1x3  xx3  —N(x3)

X1X3 X2X3 X§
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Thus
Tr(xlz) Tr(xyx3) Tr(x;x3)

c=1(c") = =| Tr(xix2) Te(x3) Tr(xoxs) |. O
Tr(xx3) Tr(xyx3) Tr(x%)

Now we describe F~!1((1,0, ¢, d)) N Q, where ¢ € Jr has rank 3 and dimC = 4.

Proposition 3.5. Assume dimC = 4. Let ¢ = (1,0,¢,d) € Wg such that ¢ € Jr has rank 3. Then
Qp = F~'(&) N Q is nonempty if and only if

1. Aut(C) = SO(3,¢),
2. d? = —4det(c), so that & has rank 3.

If that is the case, then Q¢ is a principal homogeneous space for Aut(C).
Proof. We start with a lemma.

Lemma 3.6. Let x = (x1,x2,x3) € (C%)3. Then we have the following identity of sextic polynomials
1
—4 det(ETr(xixj)) = [Tr(x1x2x3)]>.

Proof. Let g € GL3(F). Lety = (y1, y2,v3) € (C%)?3 defined by y = xg. It is clear that
det(Tr(y;y;)) = det(g)* - det(Tr(x;x;)).

On the other hand, Tr(xx,x3) is a nontrivial trilinear, skew-symmetric form. Since CY has dimension
3, the form induces an isomorphism of A3C? and F. Hence

Tr(y1y2y3) = det(g) - Tr(xix2x3).

Since GL3(F) acts transitively on the open set of all bases (xj, x3,x3) of CY, it suffices now to check
the identity on one basis of C°. So let us take usual i, j, k such that i® = a, j> = b, ij = k and k? = —ab.
Then both sides of the proposed identity are equal to (2ab)>. O

Now, the if and only if statement is a simple combination of the lemma and Proposition 3.4. For
the last statement, on the structure of the fiber, observe that the set of x such that ¢ = %(Tr(xixj)) is a
principal homogeneous space for O(C?). Since O(C?) = SO(C?) x {+1} and Tr((=x)(—x2)(—x3)) =
—Tr(x1x2x3), the additional equation d = Tr(x1x2x3) assures that the fiber Q is a principal homogenous
space for SO(C?) = Aut(C). O

We shed some light on Stab,, (W) for rank 3 characters. Recall that we have GL3(F) C M such that
g € GL3(F) actson & = &y = (1,0,¢,d) € W by

(det(g). 0. det(g)~'geg ", det(g) ™' d).
Hence g € Staby, (W) if and only if det(g) = 1 and gcg" = c. In other words the stabilizer of &
in GL3(F) is the group SO(3, c). Thus we have an action of Aut(C) x SO(3,c) on Q. Explicitly,
(g, h) € Aut(C) x SO(3,¢) acts on x = (x1,x2,x3) € Q¢ by
x > (gx1,8x2,8x3)h".

We have the following corollary to Proposition 3.5.
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Corollary 3.7. Assume dimC = 4. Let ¥ be a rank 3 character of N corresponding to
¢&=(1,0,c,d) € Wg such that SO(3,¢) = Aut(C), where SO(3,c) C Stabys (W) described above.
Then there are isomorphisms of Aut(C) x SO(3, ¢)-modules

Vi = C (@ = € (Qe) = CZ (Au(C) = C2(SO(3.¢))
where the last two isomorphisms depend on a choice of a point in Q ¢, giving identifications of Q¢ with
Aut(C) and SO(3, ¢), and an isomorphism SO(3, ¢) = Aut(C).
Next we give the analog of Proposition 3.5, where C is a quadratic composition algebra.

Proposition 3.8. Assume dimC = 2. Let ¢ = (1,0,c¢,d) € Wg. If the set Q¢ = F~1(¢) N Q is nonempty
then d = 0 and ¢ has rank at most one. If ¢ has rank one, then Q¢ is a principal homogeneous
Aut(C) = O(2)-space, possibly with no rational points.

Proof. This follows from Proposition 3.4 using that C° is one-dimensional. O

Now we discuss the rank 0 case, that is, ¥ is trivial. We begin by computing F~!(0) N Q. Observe
that F~1(0) = Jco0 ® Jco. Recall that we have identified M = GSp(Vj) such that

Jco @Jco = CO®V6

via the map (J(x), J(y)) — (x1,X2,X3, y1, Y2, y3) (Subsection 2.5).
Proposition 3.9. Let C be a composition algebra.

1. If C° is anisotropic then F~1(0) N Q = 0.
2. Suppose C is a split quaternion algebra. Then Qy = F~1(0) N Q consists of nonzero pure tensors

x®veC0®V6

where x% = (.
Proof. LetE € F1(0) = Jco ® Jco, then E = (0, b, ¢, 0), where

b =J(B1, B2, B3) € Tco,
c= 1(7’1,)’2,7’3) € jCO'

If 2 € Q, then by Lemma 2.2 we know that b or c is not equal to 0 and

b* =0,
=0,
bxc=0.

The equation b* = 0 implies that 7 = g7 = iB; = 0. Similarly, the equation ¢* = 0 implies that

7 = 7 =y =0.1IfC 0 is anisotropic then there are no nonzero nilpotent elements. This proves the
first clalm Now assume C = M(2, F), the algebra of 2 x 2 matrices. The equation b * ¢ = 0 implies
Biyj+7v;iBi = 0 forall i and j. We need the following lemma.

Lemma 3.10. Let B,y € M(2, F). If B2 = 0, ¥*> = 0 and By + ¥ = 0. Then B and y are proportional.

Proof. This is trivial if 8 or v is 0, so suppose not. Then ker 8 = Img and kery = Imy are one
dimensional. The equation By = —yS implies that y acts on ker 5. Thus ker 8 = Im8 = ker y = Imy and
so 8 and y are proportional. O

It follows that all 8; and y; are linearly dependent, proving the proposition. O

Now we can describe V.
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Proposition 3.11. Let C be a composition algebra over F.

1. If C° is anisotropic, then Vi = Vi
2. If C = M(2, F), write @ for PGL,y(F) = Aut(C), then V- has a composition series with a quotient
Vi and a submodule

J57GSPs

Ind BXO

(CZ(FX)) ® |sim]?
where B is a Borel subgroup of &, and Q is a maximal parabolic in GSp(F') stabilizing a line in
Ve, and sim is the similitude character of GSpg. The induction is not normalized.

Proof. By Theorem 3.1, Vi has a filtration with quotient V57 and submodule
Co(Q)y = C2 ().

Now we apply by Proposition 3.9. If C? is anisotropic then Qg is empty and we are done. So suppose
C =M(2, F). Then Qy ¢ C°® Vj consists of nonzero pure tensors x ® v such that x> = 0. Fix w = x®v.
The stabilizer in & of the line through x is a Borel subgroup 98, and the stabilizer in GSpg of the line
through v is a maximal parabolic subgroup Q. The stabilizer of x ® v is a subgroup of % x Q such that
the quotient is F*. Observe that C2°(Qp), as a & X GSpg(F)-module, is obtained by compact induction
of the trivial representation of the stabilizer of x ® v. Hence, using induction in stages,

©xGSpg

CEO(Q()) = Indgng

(C(F)
where the induction is not normalized. This completes the proof, after taking into account additional
twisting by the character of M in Theorem 3.1. O

We remark that the variant of the previous proposition, when C is an octonion algebra, was obtained
in [27].

3.2. Fourier-Jacobi functor

Now we recall the definition of the Fourier—Jacobi functor. (For more details, see Weissman [30].) By the
Stone-Von-Neumann theorem, the group N has a unique irreducible smooth representation with central
character ¢, denoted by (pg ,Wy). By [30, Proposition 2.5], there is a unique extension of (pg s Wy)
to a projective representation of M| N, where M, is the commutator subgroup of M. Furthermore,
Sp(14 F), the two-fold cover of the symplectic group Sp(14, F) where 14 = dim(N/Z), also acts on
Wy, via the Weil representation. So, M; = Sp(6 F), the metaplectic double cover of M| = Sp(6, F),
acts on Wy, through the Weil representation of Sp( 14, F).

We now make a brief comment on why the embedding M; < Sp(14, F) induced by the action of
M on N/Z induces an embedding M, — S p(14 F). The representation of M on N/Z is irreducible
and corresponds to the third fundamental weight of M| = Sp(6, F) (Bourbaki labeling). Let H C M| be
a long-root SL(2) subgroup. Then the restriction of the M;-representation N/Z to H decomposes into
four copies of the trivial representation and five copies of the unique two-dimensional representation
of SL(2). Thus the image of H in Sp(14, F) sits diagonally inside five commuting long-root SL(2)
subgroups of Sp(14). Since five is odd and each root is long, the preimage of H in S p( 14, F) does not
split. Therefore the preimage of M7 in S p( 14, F) does not split, giving the embedding M| — Sp p(14,F).

If (m,V) is a smooth representation of G, then the Fourier-Jacobi functor with respect to the
Heisenberg parabolic P sends 7 to

FJ(7T) = HomN (W(/,, V(Z,l//))'
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The space FJ(n) is an M,-module with the action defined by [m - fl(w) = n(m)f(m~'w), where
the action of My on V(7 ,) factors through M;. The Fourier-Jacobi functor does not depend on ¥
([30, Proposition 3.1]).

Remark. The work of Weissman [30] assumes that the groups involved are simply laced. How-
ever, the results that we require also hold for the non-simply laced group Fj. In particular we use
[30, Corollary 6.1.4], which states that if the Fourier—Jacobi functor kills an irreducible representation
then that representation is the trivial representation. In fact, this statement holds outside of type C,,.

We use the sequence (3.1) and the Fourier—Jacobi functor to investigate the constituents of @(7) via the
surjection V - 7®0O(7). This is done in two steps. First, we use the Fourier—Jacobi functor in conjunction
with a classical theta correspondence to show that ®(7) has at most two nontrivial constituents. Second,
by applying twisted coinvariants to the sequence (3.1) along with another application of the Fourier—
Jacobi functor we show that ®(7) has a single constituent, which is nontrivial, that is, ®(7) is nontrivial
and irreducible.

4. Lifting supercuspidal representations from Aut(C) to Fy

Our objective in this section is to investigate ®(7), where 7 is a supercuspidal representation of &, using
the tools of Section 3. The main result is Theorem 4.10, where we show that ®(7) is irreducible, and
O(11) = O(1y) implies that 7| = 1, where 71, and 1, are supercuspidal.

4.1. At most two nontrivial constituents

We begin by using the Fourier—Jacobi functor and a classical theta correspondence to show that ©(7)
has at most two nontrivial constituents. This is accomplished in Corollary 4.5.
Let M C M be the commutator subgroup. Let P; = M N

Lemma 4.1. Let p{[y be the unique irreducible smooth representation of N with central character .
As Pr-modules V(z y) = paf.

Proof. The canonical P;-module map HomN(p{/Y Vzy) ® paf — V(z,y) is an isomorphism by
[30, Proposition 3.2], and Hom/ (pfzf, V(z,4)) = C with trivial P;-action by [7, Definition 3.6]. O

Lemma 4.2. Let P; = M N. As an Aut(C) X Pi-module,
Viz.y) = Py ®wy,

where w,, is the Weil representation of 0(C% x §5(V6) as a dual pair in §[’)(C0 ® Vg). Under this
isomorphism, & acts on the second factor, while the action of M is on both factors. (We note that M,
does not act on either factor individually. Rather M, acts genuinely on both factors, thus the diagonal
action factors through M.)

Proof. By Lemma 4.1, V(7 4 = p{;/ as Pj-modules. We must describe the restriction to & X M.
Let N+ C N be the subgroup containing Z such that N*/Z is the orthogonal complement of the
symplectic subspace N/Z € N'/Z. By Moeglin-Vignéras-Waldspurger [20, Chapitre 2, 1.6 (2) and

II.1 (6)], it follows that p{;/ = p}) QZ),ofz’L as Sp(14, F)N x Sp(18, F)-modules. Note that & acts trivially

on N and so it acts trivially on p Q/ .

Recall from Subsection 2.5 the identification of N'/Z with W¢. This then identifies N/Z with
Wg, and N*/Z with Jco ® Jco. From the isomorphism Jo & Jeo = CY ® Vi of symplectic spaces
(line (2.5)), we see that the action of & x M| on p{;’ Cis through the action of the Weil representation

wy of EB(CO ® V) restricted to O(C°) X EB(V(,). O
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Using Lemma 4.2 we show in the next proposition that the Fourier—Jacobi functor with respect to
P applied to V is isomorphic to the Weil representation. This allows us to study ©(7) using a classical
0O(3) x Sp(6) theta correspondence.

Proposition 4.3. The € x M,-module FI(V) is isomorphic to the Weil representation wy of §f)(C '@ V)
restricted to € X M. (Recall that € = SO(C°) and M, = Sp(6, F).)

Proof. By definition FJ(V) = Homy (pg,V(z,,p)). By Lemma 4.2, Vz y = wy ® py as ¥ X M|N-
modules. Thus as & x M 1-modules

FI(V) = Homy (p)) , wy ® p}y).

Since p}) is a finitely generated N-module, Homy (p}), wy ®p})) = wy @ Homy ()}, p}) ). By Schur’s
lemma Homy (p}), p})) = C. Thus FI(V) = wy, as & X M;-modules. O

Now we introduce some notation to discuss the O(C®) x Sp(6, F) theta correspondence. Since
€ x M; = SO(C) x Sp(6, F), we almost have a classical dual pair. The representation T admits two
extensions to the group O(C?) = SO(CP) x {+ido} determined by whether —idco acts by +1. We
write 7* for the two extensions and O (r*) for the - big theta lift of 7* with respect to the action of
o(C% x Sp(6 F) on the Weil representation w,, of Sp(18 F).

Proposition 4.4. Let T € Irr(%). There is a surjective M -module homomorphism
e (") ®0®'(7) » FI(0(1)).

Proof. We apply the Fourier-Jacobi functor, which is exact, to the surjective map V - 7 ® O(7) to get
a map of & X M-modules

FI(V) » 1 ® FI(O(7)). “4.1)

By Propo‘sl'fion 4.3, we know that FI(V) = w, as & x M,-modules. Therefore, we have a surjective
0(C% x Sp(6, F)-module map

wy > (T80 () @ (" ®0'(r)).
Upon restricting to SO (C?) x §f)(6, F) =€ x M we get a surjective homomorphism

FIV) 2wy » 78 (0" (r") @ 0(17)).

Moreover, this is the surjection onto the maximal T-isotypic quotient of FJ()’). Thus the map from line
(4.1) factors through the maximal 7-isotypic quotient to give a surjection

7@ (07 (") @0 (r7)) » T ® FI(O(1)).
By construction, this map factors over the tensor product and the result follows. O

Corollary 4.5. Let 7 € Irr(€) be a supercuspidal. The G-module O(t) has at most two nontrivial
irreducible subquotients, each with multiplicity at most 1.

Proof. This follows from Proposition 4.4 and the following two results. First, when 7* is supercuspi-
dal, the M -modules ®(7*) and ®' (r7) are irreducible and distinct (Kudla [17]; Moeglin-Vignéras-
Waldspurger [20, Chapitre 3,1V, 4.]). Second, the Fourier—Jacobi functor is exact and the only irreducible
representation that it kills is the trivial representation. (See [30, Proposition 3.1; Corollary 6.1.4] and
our remark in Subsection 3.2.) |

https://doi.org/10.1017/fms.2025.10108 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2025.10108

Forum of Mathematics, Sigma 19

4.2. Unique nontrivial constituent

In this subsection, we show that ®(7) has exactly one nontrivial constituent.
Using Propositions 3.7 and 3.11 we can compute twisted coinvariants of @(7).

Proposition 4.6. Let (1,0,c,d) € Wg be an element of rank 3 such that SO(c, 3) = Aut(C). Let P
be the character of N|/Z corresponding to the element (1,0,c,+d) € Wg = N/Z. Let T € Irr(%) (not
necessarily supercuspidal). Then as SO(c, 3) C Stabys (¥*)-modules

@(T)(ﬁ,‘yi) = T.

and ©(1) must have a nontrivial constituent.
Furthermore, if p| and p, are distinct irreducible subquotients of ©(1), then

L. (pj)v,w+ = (pj)v,w-) as SO(c, 3)-modules, j =1,2;
2. for € € {x}, (p1)(v,we) and (p2)(n we) cannot both be nonzero.

Proof. The first part is a simple consequence of Corollary 3.7, and Lemma 2.8.
Suppose that py, p, are two distinct irreducible subquotients of @(7). Note that the characters ¥*
are M-conjugate, because s_(1,0,¢,d) = (1,0, ¢, —d). Thus

(Pj)(ﬁ,\w) = (Pj)(ﬁ,ly—)-

Finally (pl)(ﬁ’%) and (pz)(ﬁ’%) cannot both be nonzero because this would imply that the irre-
ducible Aut(C)-module @(T)<ﬁ’.{,+) = T has length greater than or equal to 2. )

The next lemma employs two Heisenberg parabolic subgroups in G. Let P = MN and P = M'N be
two Heisenberg parabolic subgroups LetZ c Nand Z C N’ be the centers of the Heisenberg groups.
Furthermore, suppose that Z (Z ) is the root subgroup associated to the G, relative root 2a + 38 (o +3p).

We also use the following notation. Let N be the subgroup of N generated by the root subgroups of
the roots {2a + 38, @ + 38,  + 23, o + 8} in the G, relative root system. Let N o3 = M’ N N, which is

the root subgroup of @ + 8. Let L € M be the subgroup generated by elements hs; (h)? where h € Hr.

For a character ¥ of N, we abuse notation and continue to write W for its restriction to N N and Nmﬁ.

Lemma 4.7. Let o be a smooth representation of G. Let ¥ be the character of N/Z corresponding to
the element (1,0,c,d) € Wr, where SO(3,¢) = &. Then as Staby (N, ¥)) = Staby ((N g4, ¥)) =
0(3, ¢)-modules

o) = FJ’(O—)(WMB,‘P)'

Proof. We begin with some preliminaries. Let W* be the subgroup of N generated by the root subgroups
of the relative roots {a + 28, @ + 38, 2a + 3B} in the G, relative root system. We extend the character
Y to W* so that it is trivial on the a + 28 and 2a + 38 root spaces, and continue to call this extended
character . Note that this is the restriction of ¥ to W*. Now we prove the lemma.

From Weissman [30, Proposition 3.2], we have o+~ v = = Homyy (py, T, l//)) ® py as M N-
modules. (Remember, M { acts genuinely on each factor.) It suffices for us to restrict the action of M| to
the subgroup L = GL(3, F).

Since W*/Z’ is a maximal isotropic subspace of N’/Z’, the (W*, y)-coinvariants of pg’ is a one-
dimensional space. Thus as Staby ((W*,¢)) = L-modules

~ N _
(O-(f"lp))(W*,W) = Homﬁ' (p(/, so-(f"l/,)) = FJ’(O—)-
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Applying (N(H.ﬁ, W¥)-coinvariants and using transitivity of coinvariants we get an isomorphism of
Staby (N, W)) = Stabz. (N 445, ¥)) = O(3, ¢)-modules

a-(ﬁ",ly) = [(O—(Z/,w))(WJUW)](ﬁatg,‘i’) = FJ/(O-)(ﬁmB,‘P)‘ O

Proposition 4.8. Let v € Irr(€) be supercuspidal. Then O(t) has a unique nontrivial irreducible
subquotient.

Proof. By Proposition 4.6, ©(7) has at least one nontrivial irreducible subquotient.
By Proposition 4.4 (applied using P’) we know that there is an M|-module surjection

O’ (r") ® O (r7) » FJI'(O(1)).

Since we are assuming that 7 is supercuspidal it follows that @ (7*) is an irreducible M {-module. Thus
FJ'(©(7)) is completely reducible of length at most 2.

Suppose that @(7) has two distinct irreducible subquotients o, o=~ different from the trivial repre-
sentation. Since o is not trivial FJ'(c*) # 0. Then without loss of generality we may assume that we
have Ml’—module isomorphisms ©' (%) = FJ/(c%).

We take (NM'B, W¥)-coinvariants and apply Lemma 4.7 to get O(3,c)-module isomorphisms
G)T(Ti)(ﬁa%lp) = (o-i)(ﬁn,\l,).

Now by an analog of Proposition 4.6 in the classical case, we have @T(Ti)(ﬁa%\y) = 7% as O(3, ¢)-
modules.

The natural SO(3, ¢)-module quotient maps (O'i)(ﬁa’\l,) - (o-i)(ﬁ,q,i) define an isomorphism

? = (U'i)(ﬁa’q‘) e (O—i)(ﬁ’\ll+) (&) (O—i)(ﬁ’wf)
of SO(3, ¢)-modules. But by Proposition 4.6, (O'E)(ﬁ"w) @(o-f)(ﬁ,\},_) = Oforatleastone € € {+}. Thus
7 = 0, a contradiction. Therefore, ©(7) must have at most one nontrivial irreducible subquotient. O
Finally, we rule out the existence of trivial irreducible subquotients of (7).

Proposition 4.9. Let 7 € Irr(€) be supercuspidal. Then ©(7) does not contain an irreducible subquo-
tient that is trivial.

Proof. Suppose that the trivial representation 1 is a subquotient of ©(7), then 7 ® 15 is a subquotient
of V. Observe that 1 is the trivial representation of M. By Proposition 3.11, V57 has a & x M-module
filtration with V57 as a quotient. From Theorem 3.1,

Vir 2 (VM) ® |det]/*?) @ |det|*?,

where the center of M acts trivially on V(M). Thus the center of M acts by two nontrivial characters
on the two summands of V7 hence the trivial representation of M cannot be a subquotient of V7. The
bottom part of the filtration, which appears if C is split, is a principal series representation of &, and
hence T cannot be a subquotient there. O

Now we prove our main theorem on the theta lift of super cuspidal representations.
Theorem 4.10. Let 71, 7p € Irr(&) where 1| is supercuspidal.

1. The theta lift ©(7y) is an irreducible representation of G.
2. If9(1)) = 0(1a), then 11 = 15.

Proof. (1) By Propositions 4.8 and 4.9 the representation @(7) is irreducible. (2) By the assumption,
and using (1), we have a surjection ®(1;) - (7). Then, by Proposition 4.6,

T = O(T) (v, w+) > O(T)(v,w+) = T1. o
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5. Jacquet modules II

In this section, we take C to be the split quaternion algebra M (2, F)) of 2 X 2 matrices with entries in
F. In particular, & = Aut(C) = PGL;,(F). The main objective of this section is to compute the Jacquet
module of the minimal representation of E7 with respect to a Borel subgroup of &. These calculations
are applied in Section 6 to compute the big theta lift of constituents of principal series of & to G.

Our approach follows the argument of Savin [26] and Magaard-Savin [ 19] utilizing the exact sequence
from [26, Theorem 6.5], which we recall after introducing some notation.

Fix a Borel subgroup B ¢ G, let P D B be the unique maximal parabolic subgroup corresponding
to the E¢ subdiagram inside the E; diagram. Fix a Levi decomposition P = M\ and note that A/ can
be given the structure of the exceptional cubic Jordan algebra J = Jo [15]. We identify A/ with 7 as
F-vector spaces. Under this identification M is the group of linear transformations of J that preserve
the cubic norm form of J up to scaling. The semisimple part of M is a group of type Eg. (For details
see [16].)

Let w be the set of singular points in 7 = A/, that is, the highest weight vectors for a Borel subgroup
in M. Equivalently, w is the set of rank 1 elements in .

Theorem 5.1 (Magaard-Savin [19], Theorem 1.1; Savin [26], Theorem 6.5). Let P = MN be the
maximal parabolic subgroup defined above. Let P = MN be its opposite. The minimal representation
(IL, V) of G has a P-invariant filtration

0—C(w) >V —Vg—0. 5.1

Here C°(w) denotes the space of locally constant, compactly supported functions on w, and V5z is the

space of N -coinvariants of V. Furthermore, the P-module structure is given by:

1. Let f € C¥(w) and let mn € P = MN.. Then

[T1(7) f1(x) = ¥ ({x, 7)) f (x) (5.2)
and
[TT(m) £1(x) = |det(m)|*/¢ f (m~"x). (5:3)
2.
Vi = V(M) @ |det|'/¢ + |det|*/, (5.4)

where V(M) is the minimal representation of M (center acting trivially).

Above (—, =) : N x N' = F is the F-valued pairing induced by the Killing form on Lie(G), and det
is the determinant of the representation of M on N, and d is the dimension of N'. The values of s and t
are given in the following table.

g s t
Eq 4 2

E; 6 3

It will be convenient to describe the dual pair & X G in terms of the parabolic subgroup P. If we
identify N' = 7 and M with the group of similitudes of the norm form, then G = Aut(J) sits in M.
Let & be the centralizer of G in G. Let B = 5 % c & be Borel subgroup defined by

T=¢nMand% =% nNN.
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Then 7 is the center of M and % the set of scalar matrices in J under the identification N = 7. Recall
that, for the purpose of describing representations of &, we identified 7~ with F* such that 7 acts on
% by multiplication, it follows that = F* acts on A = 7 by inverse scalar multiplication. Thus the
character |det(m)|*/? restricted to T is |t|6

5.1. Untwisted Jacquet modules

Our objective in this section is to describe the 7 X G-module r(C.°(w)). This is accomplished in
Proposition 5.5.
For § ¢ NV we write

={x e Ny ({x,s)) =1, forall s € S}.
Let 79 be the set of trace 0 elements in 7. Under the identification ' = 7, we have %l = 79 Let
wy=wnNJ 0,
Lemma 5.2. The restriction map CZ(w) — C°(wo) induces an isomorphism rZ(CZ(w)) = CZ(wo)

of (7 x G)-modules, where the action on C°(wy) is given by

L
((t,8) - N)(x) =12 f(g7" - xn), (1,8) € T xG.
Proof. The proof is the same as Magaard-Savin [19], Lemma 2.2. O

Lemma 5.3 (Aschbacher [2], section (8.6)). The action of 7 X G on wy is transitive.

Proof. This follows from translating Aschbacher’s terminology into ours. O

If x¢ € wy, then, as I X G-modules

C(wo) = | - |7 - ind3C (1)

Stabg xG (x0)

Next, we want to describe the stabilizer of a point in wg. The highest weight of the action of G on
J° ¢ J is the fundamental weight w; taking value 1 on the simple coroot ozX and 0 on the other simple
coroots. (We are using the Bourbaki labeling for simple roots [3, Plate VIII]. In particular, @4 is the
short simple root of degree 1 in the Dynkin diagram.) The next lemma follows directly from definitions.

Lemma 5.4. Let xy € wg be a highest weight vector with respect to the Borel subgroup B. Let Q 2 B
be the maximal parabolic subgroup of G obtained by removing a4 from the Fy Dynkin diagram. This
vields a parabolic subgroup of type Bs. Then

Stabgxg (x0) = {(1.q) € T X Q | 1t = w4(q)}.
By transitivity of induction, we have the X G-module isomorphism

indgfC (1) = Ind7 5 (indg 1@ J(1) = Ind7 5 (C(FX)).

StabgxG (X0 TxQ Stabgxc (X0 T*Q

In order to write the last module in terms of normalized parabolic induction, we need to replace C2° (F™)

by 63/2 - C®(F*). Recall that 652(61) = |@4(g)|~"/2. We also need to bring back the twist by |¢|'/2.
Observe that the two exponents are inverses of each other. Hence

rg(CS (W) =iZ 3G (C(F)), (5.5)
where the action of 7 x Q on CX(F*) is given by

(1, q) - £)(x) = f(wa(q " )xt). (5.6)

Putting everything together we have the following description of (V).
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Proposition 5.5. As a representation of I x G, the module r(V) has a filtration with successive
quotients

|- P2 vyMm)ye] -2

i756(CE(F)),

where the action of T x Q on C2(F*) is given by equation (5.0).

5.2. Twisted Jacquet modules

In this subsection we compute the twisted Jacquet modules of )V with respect to (%, ). (Recall that
U = F, so y defines a character of Z.) Note that G = Staby(((%, ¢)).

Lemma 5.6. The inclusion C°(w) < V (from line (5.1)) induces an isomorphism of G-modules.

Proof. Apply (%, )-coinvariants, which is exact, to line (5.1). Note that (Vﬁ)@ 0= 0. O

To study C°(w) @) Ve need to consider the set of rank 1 trace 1 elements in . Viewing w as the
set of rank 1 elements in J, we define w; = {x € w|Tr(x) = 1}.

R

Lemma 5.7. The restriction map C°(w) — CZ(w1) induces a G-module isomorphism Cé’o(a))(g o)
C2(w1). (The action of G on CZ°(wy) is the same as on line (5.3).)

O

Proof. This is proved as in Magaard-Savin [19], Lemma 2.2.

IR

Lemma 5.8. The action of G on w is transitive. Let vo = diag(1,0,0) € J, then Stabg(vo)
Spin(9, F) (split spin group). Thus the map G [Stabg (vg) — w; defined by gStabg (vg) — g - vp is a
bijection.

Proof. This is Corollary 5.8.2 and Theorem 7.1.3 in Spinger-Veldkamp [28]. We make a few remarks
and match our notation with Springer-Veldkamp.

Our v is the u in Springer-Veldkamp. The space Ej in loc. cit. is then the elements of 7 of the form
diag(0, b, —b) + J(x,0,0), where b € F and x € O. This is a nine-dimensional orthogonal space where
the quadratic form is the restriction of the trace form of J to Ey. This form on Ej is nondegenerate. So
by Springer-Veldkamp Theorem 7.1.3, we see that Stabg (vg) = Spin(Q, Ey). O

Remark: We note that the quadratic space in the previous lemma (Q, Ej) decomposes as an orthog-
onal sum of a one-dimensional quadratic space (Q;, F - v), where Q(|(v) = 2, and the eight-dimensional
quadratic space associated to the split octonion algebra O.

Lemma 5.9. Let vy = diag(1,0,0) € J.
There is an isomorphism of G-modules indgabG (%) (1) = CZ(w1) defined by

f (g vo f(g).

Proof. A direct calculation shows this map is a G-module homomorphism. Here we are using the fact
that any character of G is trivial.
One can directly check that the inverse map is given by F — (g — F(g~! - vp)). )

Proposition 5.10. By combining the isomorphisms of Lemmas 5.6, 5.7, and 5.9 we see that as G-modules
~ in 4G
V@’w) x 1ndStab(v0) (D).
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6. Lifting from PGL(2) to F,

We continue to use the notation from Section 5. In particular, C = M (2, F). In this section, we explicitly
describe the theta lift from & to G.

In Subsections 6.1 and 6.2 we compute the big theta lift of constituents of principal series; the small
theta lift is computed in Subsection 6.3. In subsection 6.4, we revisit the theta lift of supercuspidal
representations.

6.1. Principal series

Now we begin the calculation of Homg (V, 1), where 7 = i%( x) is a principal series (not necessarily

irreducible) of & induced from a character y :  — C*.
By Frobenius reciprocity,

Homg (V, 1) = Homg (r5(V), x)- 6.1)

Note that Stabg(?_l) = (J x G)N. Thus we apply the exact functor ro to sequence (5.1) to get a
sequence of J X G-modules

0= rz(C2(w) — rg(V) — %}/2 ® Vi — 0. (6.2)

We apply the functor Homg (-, y) to (6.2) to get a long exact sequence. Let X,Y, Z be the nonzero
I x G-modules in sequence (6.2) from left to right, respectively. Then the long exact sequence is:

0 — Homg(Z, y) —— Homg (Y, y) —— Homg (X, x)
(6.3)
—_— Ext}](Z,X)  — Extfq(Y,)() S — Ext(lj(X,X) e

The following lemma shows that ¢ is an isomorphism if y avoids a finite set of characters. It is a
simple consequence of Theorem 5.1.

Lemma 6.1. Assume that y # | - |*/* and | - |''/?. Then

Homg(6%/2 ® Vi x) = 0 and
Ext}]((%l/z ® Viz, x) =0,

and the map v in the long exact sequence (0.3) induces an isomorphism
Homg (r5(V), x) = Homg (rz(CZ(w)), x)-

Now we can prove the main result of this subsection.

Theorem 6.2. Let y be a character of T such that y # |- |™/? and | - |""V/2. Let n be an irreducible
quotient of i%()(). Then ©(r) is a quotient of ig (x o @y). Moreover, if i%()() is irreducible, then

O(Z(x)) =ig (x © ).

Proof. Observe that 7 is a submodule of i (y~!), since 7 is self-dual. By Lemma 2.8,

B

O(n)* = Homg (V, ) C Homg (V, %()ﬂ))
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and we are going to compute the latter space. By Frobenius reciprocity,
Homg (V,iZ (x™")) = Homg (rz (V). x 7).

|5/2 |11/2

Since y~! # |- and | - we can apply Lemma 6.1 to get

Homg (rz(V), x ') = Homg (r5(C2(w)), x 7).
By equation (5.5) we have
Homg (rZ(CZ (w)), x ") = Homg (i7 35 (CX(F)), x 7).

The maximal y~'-isotypic quotient of the I x Q-module C®(F*) is y~! ® y o @y. Thus by [5,
Lemma 9.4],

Homg (i7 g (CZ(FX)). x™') = Home(ig (x 0 @4).C) = ig (x o @a)". o

Any irreducible non-supercuspidal representation of & is either an irreducible quotient of i%( X),

where |y| = | — |* with s > 0, or it is a quadratic twist of Steinberg. But these representations are

quotients of 7 (y) such that |y| = | - |~/2, so Theorem 6.2 applies to all irreducible non-supercuspidal

B
representations. However, it does not provide a full understanding of the big theta lift of constituents of

reducible principal series. We resolve this point in the next subsection.

6.2. Trivial and Steinberg
In this subsection we study the theta lifts of the trivial and Steinberg representations of &, along with
their twists.

12

Theorem 6.3. Let y be a character of I suchthat y = yo|—|"'=, where x is a quadratic character. Then

1. ©(xo) is the unique irreducible quotient ofig (x o @y).

2. O(St® xo) is the unique irreducible submodule ofi(Q; (x o @4).

Proof. We already know that ®(xo) is a quotient of ig( x o @4) and O(St ® yp) is a quotient of
ig (x~! o @y), which is the same as a submodule of ig (x © @4). (The representations ig( y o @) and

i%(x~! o @wy) each have length 2. Moreover, the irreducible sub of one is the quotient of the other
[4, Theorem 6.1].)
We work with both cases simultaneously. By Proposition 4.6,

®(X0)(ﬁ’\y) = X(;l and @(St®/\(o)(ﬁ’\p> = St®,\(51.
Thus x, lis a quotient of ig (x o zm)(ﬁ’q,) while St ® x, ! is a submodule. This implies that neither

©(xo) nor O(St ® yp) could be isomorphic to ig (x o @y). O

6.3. Small theta

In this section we describe 6(r), where 7 is a constituent of a principal series of &. The next proposition
follows from Propositions 2.5, 6.3, and Theorem 6.2.

Proposition 6.4. Let x be a character of I so that y = | — |* - xo, where s > 0 and xy is a unitary
character of 7.
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1. If s # % or xo is not of order dividing 2, then i%()() is irreducible, and

(@ ifs # %, i% or xy is not trivial, then ig (x o @y) is irreducible, so 6’(1’%(/\{)) = @(i%(/\{)) =
iS(x o m);

(b) ifs = % and xy is trivial, then 9(1’%()()) is the unique irreducible quotient ofig(| - |% o wy),
which is the trivial representation of G.

(o) if s = % and yq is trivial, then 9(1'%(,\/)) is the unique semisimple quotient ofig(| - |% o wy),
which has the form o @& o~ where ot and o~ are distinct irreducible representations of G.

2. If s = % and o has order dividing 2, then:
(a) 9(xo) = O(xo) is the unique irreducible quotient ofig (x o @y);

(b) 8(St® xo) = O(St® xo) is the unique irreducible submodule ofig (x o @y).

6.4. Supercuspidal representations

In this subsection we revisit the theta lift of supercuspidal representations of PGL; (F'). This calculation
involves the F4 X G, dual pair inside of Eg.

For this subsection we maintain our previous notation with the following exceptions. We redefine P,
M, and N below. We write (I1,,, V,,) for the the minimal representation of E,,.

Let 7 be a supercuspidal representation of PGL, (F). Then o := ©(7) is irreducible by Theorem 4.10.
Let 0> ¢ G be the maximal parabolic that stabilizes a two-dimensional singular (also called amber)
subspace in the 26-dimensional representation. The standard Q, (corresponding to a fixed choice of
positive roots) is the stabilizer of the amber space spanned by the weights @y and w4 — 4. We note that
the Levi of Q5 has type Az jong X A1 short. Observe that Q> has a quotient isomorphic to GL, given by
the action of Q, on the stabilized amber space. With this identification, det can be naturally viewed as
a character of Q,, and 7 can be inflated to Q. The modular character is pg, (g) = | det(g) |7/2. We have
the following:

Proposition 6.5. o is the unique irreducible quotient of Indg2 (t ® | det |3/?).

Proof. Let P = MN C G, be the Heisenberg parabolic. Then M = GL; and G x GL,; is a subgroup of
the Levi factor E7 in Eg such that the quotient by the center of the Levi gives the dual pair G x PGL,
in the adjoint E7. In Magaard-Savin [19, Theorem 7.6], rp(Vg) was shown to have a G X GL,-module
filtration with three pieces. The top (quotient) is

V@ |det|’? @1 @ |det|?

Since o ® 7 is a quotient of V7, by Frobenius reciprocity, o ® Indg2 (t ® | det |/?) is a quotient of Vg.
Here we are using that Indg2 (t ® | det|*) reduces only for s = +1/2, in particular, Indg2 (t ® | det|?/?)
is irreducible. Hence o is a quotient of @(Indg2 (t ® | det|*/?)) and this is what we shall compute. To
that end, since Indgz(r ® | det|3/?) = Indgz(f ® | det|~3/?) (using an intertwining operator), we are
computing

Homg, (Vs, Ind% (7 ® | det| /%)) = Homgr, (rp (Vs), 7 ® | det|/?).

Since —3/2 # 3/2,7/2, we see that the top quotient of the filtration of rp()3) can be ignored. Since T
is supercuspidal, the intermediate subquotient can be ignored as well, so the computation reduces to the
bottom of the filtration of rp (V) where it follows at once that

O(Ind* (1 ® | det [*/?)) = Ind§ (7 ® | det [*/?).
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Thus o is a quotient of Indg2 (t ® | det [>/?). This induced representation is a quotient of a standard

module for the parabolic subgroup contained in O, with the Levi A| ghort. Thus Indg2 (t ® | det |>?) has
a unique irreducible quotient. O

7. Lifting from F; to Aut(C)

In this section, we study the theta lift from Fy to Aut(C). Specifically, let o € Irr(G). We study ©(o")
with respect to the minimal representation (I, V) on G, utilizing our results on the lifting from & to G.
To begin, we show that the lifting from G to & has finite length.

Proposition 7.1. Let o € Irr(G). Then ©(o) has finite length.

Proof. We prove this assuming that € = PGL;(F); the nonsplit case (i.e., when C is anisotropic) is
easier. If ®(o) = 0 we are done, so suppose that @(o") # 0.
Since supercuspidal representations can be split off, the &-representation decomposes as

®(0-) = ®(o-)ps @ ®(0-)sc,

where ©(0 ). is the submodule generated by all of the supercuspidal submodules and ® (o), is the
complement all of whose constituents are constituents of principal series. (When C is anisotropic,
©(0)ps = 0.) To prove the proposition it suffices to show that ®(o),s and ©(o ), have finite length.

We begin with @(0 ). Recall that ©(o ). is completely reducible. Thus if @(o)s # 0, then there
is a supercuspidal representation 7 € Irr(¥) such that there is a surjective & X G map I1 -» 7 ® 0. By
Theorem 4.10 part (1), ©(x) is irreducible, so o = @(x). Moreover, by Theorem 4.10 part (2) it follows
that ©(0)sc = n. In particular, ®(0 ), has finite length. (This proves the result when C is anisotropic.)

Next we consider ®(c),s. Note that if p is any smooth representation of &, then p, is of finite
length if and only if pg; is finite dimensional. By Lemma 2.8 (©(0)5)* = Homg (Il5;, o). So we show
that Homg (I3, o) is finite dimensional.

It suffices to analyze the hom-space for each piece of the filtration of I13; from Proposition 5.5. The
quotient I3z is finite length as a G-module by Theorem 5.1 and Corollary 9.2 (which does not depend
on this result). So, Homg (Il57, o) is finite dimensional.

Now we consider the submodule ig:ig(Cg"(FX)) = ig(Cﬁ"(FX)). Let L be a Levi subgroup of Q.
By Bernstein’s second adjointness, we have

Homg (ig (CZ (FX)), o) = Homy (CZ (FX), rg (o).

The action of L on CZ(F*) factors through the fundamental weight @, : L - F*. Thus L acts on
C2 (F*) through the geometric action of F*. Since dim(Hompx (CZ° (F*), x)) = 1 for any character y, it
follows that dim(Homp, (CZ (F™), ra((r))) is no larger than the number of one-dimensional constituents
of ré(cr). O

In a moment we shall make the computation of HomG(H%, o) more precise, but first note the
following corollary:

Corollary 7.2. If ©(o) # 0, then o is a quotient of O(r) for some n € Irr(Z). Moreover 0(o) is
irreducible and 6(o) = 0(07) # 0 implies o = 07 except in one case when oy ® 0 is the co-socle of

. H
ig(| = |2 o @y).

Proof. Since ®(o) has finite length, it has an irreducible quotient 7. Then clearly o is a quotient of
O(). The other statements are now trivial consequences of what we know about the lift from . O

Lemma 7.3. Let 7 € Irr (%) such that o &f O(n) € Irr(G). Then O(o) = .
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Proof. Let ¥ be a rank 3 character of N as in Corollary 3.7. We apply (N, ¥)-coinvariants to the natural
surjective map V -» ©(o) ® o to get a surjective map Vnw > O(0)® T w)- By Corollary 3.7 we
have V(ﬁ’\p) = C*(¥) and by Proposition 4.6 we have TN = 7. Thus (o) = 7. O

Remark: In the previous lemma, the assumption that o is irreducible is required for the definition
of @(o).

Theorem 7.4. Let o € Irr(G) such that ©(c) # 0. Then (o) € Irr(€).

Proof. By Proposition 7.1, ®(o) is finite length. So, there exists 7 € Irr(€) such that (o) —» .
If ©(x) is irreducible, then oo = (), and thus Lemma 7.3 implies that 7 = @(0).

It remains to consider the case where ®(rx) is reducible. By Theorem 4.10, part (1), this can occur
only if € = PGL,(F). Moreover, by Proposition 6.4, we see that 7 must be isomorphic to i7 (| — |*),

%
%, 12—1 }. Thus o is a quotient of O () = ig (x o wy), which by Proposition 2.5 implies that o

is one of three possible representations. When s = %, then o is the trivial representation; when s = %,

where s € {

then o is one of the two irreducible representations of the co-socle of ig (- |% o @y), which we call o*
and o~. Moreover, ©(o) has the irreducible principal series i%(l —[*) asaquotient, so dim(®(0)z;) > 2.

From the proof of Proposition 7.1 dim(®(0)); is less than or equal to a + b, where
a = dim(Homg (V47, o)) and b is the number of constituents of ro (o) of dimension 1. In either case,
a = 1 by Theorem 5.1 and Corollary 9.2 (which does not depend on this result).

Suppose that ¢ is trivial (so s = %). Then b = 1 and the result follows in this case.

Suppose that o = o* (so s = %). We claim that b = 1 in this case too, from which the result follows.
The representations o and o~ have Iwahori-fixed vectors, and the corresponding Hecke algebra
Hg-modules are Eg and Eg» in [18, page 640]. On the level of Hg-modules, the functor ) correspond
to restricting to the Hecke algebra H; C Hg of the Levi subgroup L. Now it is easy to check that Eg
and Eg~» embed into ig(l - |‘% o @y), giving us the claimed identification with o* and o~, and that
ré(cri) are of length two, with only one one-dimensional summand, each, as desired. O

8. Spin (9) distinguished representations of F;

The objective of this section is to prove a multiplicity one result for Spin(9)-invariant linear functionals
and characterize the Spin(9)-distinguished representations of Fy as those arising from the theta lift
of generic representations on PGL,(F). We continue to use the notation of Section 5. In particular,
% = PGL,(F). Let H = Stabg (vg) = Spin(9, F). (Recall Lemma 5.8.)

Theorem 8.1. Let o be an irreducible representation of G. Then the dimension of Hompy (&, C) is at
most 1. Moreover, & is H-distinguished if and only if ©(0) is generic.

Proof. By Lemma 2.8 there is an isomorphism

(9(0—)@,¢))* = Homg (V o).

(%.y)

By Proposition 5.10,

Homg (V o) = Homg (ind$ (1), o).

(.w)
By taking duals and applying Frobenius reciprocity we have

Homg (ind,(_;, (1),0) = Homg (7, C).
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By Theorem 7.4, ©(o) is irreducible, if nonzero. Thus by the multiplicity one theorem for Whittaker
functionals, dim((@(o-)@ sl/))*) < 1. Thus dim(Hompg (6,C)) < 1. O

In fact, we can remove reference to the smooth dual in Theorem 8.1, because the F4 representations
that arise as lifts from PGL, are self-dual.

Proposition 8.2. IfO(o) # 0, then o = o

Proof. Since (o) # 0 there exists 7 € Irr(€) such that o is a constituent of @ (). We prove the result
by considering two cases.

First suppose that r is a supercuspidal representation of &. Since supercuspidal representation split
off, there is a ¥-module decomposition such that V = V™ @ V™4, where V7 is the maximal r-isotypic
subspace of V and V™ is the canonical complementary &-submodule. Since the actions of ¥ and
G commute we see that G acts on both V™ and V™. Since all of the constituents of V™* are not
isomorphic to r it follows that the & X G-module surjection

YV » 1 ®0(n)
is trivial on Y™+ and so we have a € X G-module surjection
V™ - 1 0(n). 8.1)

Since by definition 7 ® ©(x) is the maximal n-isotypic quotient of V it follows that (8.1) is an
isomorphism V™ = 7 ® ©(x). Since V is a unitary G-representation and V™ C V it follows that V7 is a
unitary & X G-representation. Thus we have &€ X G-module isomorphisms

T®O(n) = VT = P = YT = YT,

All irreducible representations of & are self-dual, so we have 7 = . From the above chain of isomor-
phisms it follows that @ () is self-dual.

Since 7 is supercuspidal, Theorem 4.10 implies ®@(x) = o. Thus o is self-dual.

Now suppose that 7 is a constituent of the principal series i%( X)- Then by Theorem 6.2, o is a
constituent of ig (x o @y4).

We claim that all of the constituents of i g (x o @) are self-dual. By Choi—Jantzen [4], Theorem 6.1,

the length of ig (x o @y) is less than 3. In each of the following three cases we use that there is a nonzero
intertwining operator ig (x* omy) — ig (™ omy) = ig (x*' o wy).
When i g (x o@y) is irreducible we are done. When i g (x o @y4) has length 2, then [4, Theorem 6.1,1.]

implies that ig (x*' o @4) has a unique irreducible sub and a unique irreducible quotient, which are
distinct. Thus the nonzero intertwining operators imply the self-duality of the irreducible constituents
of ig (x*' o wy).

When ig()(il o @) has length 3, then y = | — |*3. In this case, ig(l — |73 o @4) has a unique
irreducible quotient, and the intertwining operator shows that it is self dual. There is also a decomposible
submodule with two distinct constituents, call them o+ and -~ Using the uy X G dual pair considered
in Section 9 we can show that o* and o~ are self-dual. Specifically, Vg the minimal representation of
E¢ decomposes under the action of uy X G as Vg = o+ @ o~ (Theorem 9.3). Now if [ is an Iwahori
subgroup of G, then dim((o*)!) = 5 and dim((0~)!) = 2. Thus o* and o~ are self-dual. o

Combining Theorem 8.1 and Proposition 8.2 directly gives the following corollary, which simply
restates Theorem 8.1 with & replaced by o.

Corollary 8.3. Let o be an irreducible representation of G. Then the dimension of Hompg (o, C) is at
most 1. Moreover, o is H-distinguished if and only if (o) is generic.
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Let o be an irreducible H-distinguished representation of G. Pick a nonzero 4 € Hompg (o, C).
Recall, from [21], that o is an H-relatively supercuspidal representation if one (or equivalently every)
generalized matrix coefficient g — A(gv) is a compactly supported function on H\G. As a consequence
of our results, we have the following:

Proposition 8.4. Let o be an irreducible representation of G. If o is a theta lift of a supercuspidal
representation of PGL, (F), then o is H-relatively supercuspidal.

Proof. Observe that o is H-relatively supercuspidal if and only if o is a submodule of C2°(H\G). Now
write oo = © () where 7 € Irr(¥) is supercuspidal. Since r is supercuspidal, as in Proposition 8.2, we
have an embedding of &€ X G-modules 7 ® ©(7) — V. By taking (%, ¥)-coinvariants and applying
Proposition 5.10 we get an embedding of G-modules @ () — CZ(H\G), where H = Spin(9). Thus
o = O(n) is H-relatively supercuspidal.

We give a second proof of this proposition. If o is not H-relatively supercuspidal then, by a result
of Kato and Takano [13, Theorem 7.1], o must be a subquotient of ig (x o wy). This contradicts that
o is a theta lift of a supercuspidal representation of PGL, (F). Here we used that any 6-split parabolic
subgroup for the rank one symmetric space H\G is in the G-conjugacy class of Q, see [25, A3.6]. O

9. Dual pair yy X F4 C E¢

In this section, we study the theta lift associated to the dual pair u, X F4 C Eg, where Ejg is of adjoint
form with two connected components where the action of the nontrivial component is through the outer
automorphism of Eg. This situation arises from the construction of Subsection 2.4 by taking C to be a
quadratic composition algebra.

The analysis of this case is similar to and simpler than the case of E; considered in Section 4, so we
will be brief. We note that the results of Subsection 9.1 could have been proved after Section 3, but our
proof of the result of Subsection 9.2 utilizes Theorem 6.2.

Let G be the F-points of the adjoint form of E¢ constructed using the quadratic composition algebra C
with two connected components where the nontrivial component acts through the outer automorphism
associated with a choice of simple roots A. Let (I, V) be the minimal representation of G. Let G be
the fixed points in the identity component of G under the action of the outer automorphism. Then if we
identify u, with the subgroup of G generated by the outer automorphism, then pp X G C G is a dual pair.

Let 7% and 7~ be the trivial and nontrivial characters of u;, respectively. There is a surjective map
Y —-» 1* @ O(r*). The goal of this section is to compute @ = O(7*).

9.1. Lifting from p; to Fy
Theorem 9.1. The G-module ©* is irreducible and ©* z O~.

Proof. First, we show that FJ(©*) = wi, where w;, and w,, are the even and odd Weil representation of
Sp(6, F), respectively. This follows from the analogs of Lemmas 4.1 and 4.2 and Propositions 4.3 and 4.4.
The main difference in this case is that the dimension of N1/Z is 6, so w  is the Weil representation of
Sp(6, F), and Aut(C) = p; is the full orthogonal group O(C?) (as opposed to SO(C?)). Since wj, % wj,
it follows that @ % ©~.

From this we also see that ®* has exactly one nontrivial constituent, since the Fourier-Jacobi functor
is exact and only kills the trivial representation.

Second, we show that @* does not contain the trivial representation as a constituent. If it does, then
V- contains the trivial representation of M as a constituent. However, by Proposition 3.11 part (1) and
Theorem 3.1,

Ve = V(M) ® |det|”* @ ycldet|?.
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We see that the center of M acts by nontrivial characters on the two summands of V7, thus Vﬁ
cannot contain the trivial representation of M as a constituent. Therefore V cannot contain the trivial
representation of G as a constituent.

From this it follows that ® is irreducible. O

Corollary 9.2. As a u; X G-module, V = 0* & O~.

92. C=FoF

In this section we use our results on the PGL(2) X F; C E7 dual pair to make the lift of u; to Fy induced
from the split form of E¢ explicit.
Throughout we use the notation of Section 5 and we write V,, for the minimal representation of E,.
We apply % -coinvariants to sequence (5.1) to get the surjective X G-module map

Vg > Mg =Vso|-Pel-"»0e |-
Thus Frobenius reciprocity with respect to BCE yields a nonzero & x G-module map

V; — Ind%(@i ®-).

Since J is the center of M it acts trivially on Vg, thus Ind%(@)i Q|- ) = i%(l - |%) ® ©*. Note that

i%(l —| %) ®0®* is an irreducible € x G-module. Thus by Theorem 6.2, there is a surjective G-module map
. 5 ) s .
ig(I=12 omy) = @)(%(I -1?)) » 6.

By applying Proposition 2.5 we get the following theorem.

Theorem 9.3. There is a bijection between the irreducible G-modules {©®*, ©~} and the two irreducible
summands of the unique semisimple quotient of i8(| - |% o wy).
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