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The Action of a Plane Singular
Holomorphic Flow on a Non-invariant
Branch

P. Fortuny Ayuso and J. Ribón

he ûrst author wishes to dedicate this paper to A. Palacios and L. Vallín for their

constant support during its preparation.

Abstract. We study the dynamics of a singular holomorphic vector ûeld at (C2 , 0). Using the asso-
ciated �ow and its pullback to the blow-up manifold, we provide invariants relating the vector ûeld,
a non-invariant analytic branch of curve, and the deformation of this branch by the �ow. his leads
us to study the conjugacy classes of singular branches under the action of holomorphic �ows. In par-
ticular, we show that there exists an analytic class that is not complete, meaning that there are two
elements of the class that are not analytically conjugated by a local biholomorphism embedded in a
one-parameter �ow. Our techniques are new and oòer an approach dual to the one used classically to
study singularities of holomorphic vector ûelds.

1 Introduction

he classical study of singularities of plane holomorphic vector ûelds, since the work
of Seidenberg [17], has focused on the local structure of the associated foliation and its
leaves (i.e., the invariant curves of the vector ûeld); index-like results [2], the Separa-
trixheorem of Camacho and Sad [3], studies of holonomy [15] (being very succinct),
etc. dealmainlywithwhat onemight call the static structure of the invariant sets of the
vector ûeld. Generalizations of these studies to higher dimension like [4] or [7] and
even recent works on real-analytic singularities in dimension 3 like Cano, Moussu,
and Sanz’s study on the relation between oscillation and spiraling [6] or the related
[5] apply the blow-up technique in such a way that the ensuing exceptional divisor
becomes an invariant set but not composed of invariant points.

However, the dynamical nature of the vector ûeld as the inûnitesimal generator of
a �ow is lost the very moment the equation of the exceptional divisor is “factored out”
from the local equation of the pullback of the vector ûeld to the blow-up manifold.
his prevents the classical techniques from applying to the study of the �ow associated
with a holomorphic vector ûeld in the neighbourhood of an equilibrium point.
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In this work, we present what we deem to be the ûrst study of these dynamics.
Given a singular point of a plane holomorphic vector ûeld, we study how its associated
�ow behaves a�er a ûnite chain of point blow-ups. Speciûcally, we study how that �ow
“moves” a non-invariant branch passing through the equilibrium point.
Consider a singular holomorphic vector ûeld X deûned in an open neighbourhood

U of (0, 0) ∈ C2 and an irreducible germ of analytic curve Γ contained in the same
open set U , say Γ ≡ ( f = 0) for some f ∈ O(C2 ,0). Let {ψs}s∈C be the one-parameter
group whose inûnitesimal generator is X. Let є ∈ C; deûne

ψ−є(Γ) ∶= Γє ≡ ( f ○ ψє(x , y) = 0) .

By expanding f ○ ψє as a Taylor power series in the variable є we obtain

(1.1) Γє ≡ (
∞

∑
n=0

єn

n!
X

n( f )(x , y) = 0) ,

where X0( f ) = f , and we set X j+1( f ) = X(X j( f )) for j ≥ 0 recursively. We shall
call {Γє} the holomorphic deformation of Γ by X (or by {ψє}). he coeõcient of x i y j

for f ○ ψє is an entire function of є for any i + j ≥ 0. Assume for simplicity that the
tangent cone of Γ is not x = 0. he curve Γє has a Puiseux parametrization of the
form (tn ,∑∞j=n a j(є)t

j) for any є in a small neighborhood of 0 in C where n is the
multiplicity of Γ at (0, 0). If Γ is not invariant by X, there is a ûrst index k such that
ak(є) is not a constant function. We call k = (X , Γ)(0,0) the contact order between X

and Γ and prove the following theorem.

heorem 1.1 We have

(1.2) k ∶= (X , Γ)(0,0) = (X( f ), f )
(0,0) − n − c + 1,

where (X( f ), f )(0,0) is the intersection multiplicity of f and X( f ), or in other words

the tangency order of X with Γ, and c is the conductor of Γ. Moreover, the function

ak ∶ C → C is locally injective and of the form λє + µ or λeγє + µ where λ, γ ∈ C∗ and

µ ∈ C. he function ak is linear if X is nilpotent.

he previous theorem provides the value of k = (X , Γ)(0,0) and the form of the
coeõcient ak . Since ak is locally injective, we can interpret k as the vanishing multi-
plicity of the Lie derivative of the Puiseux parametrization of Γ with respect to X.

Property (1.2) is not obvious: a priori the value of (X , Γ)(0,0) could have depended
on other terms of the Taylor power series expansion of f ○ ψє . For instance, consider
the intersection multiplicity (Γ, Γє)(0,0). It is equal to min{(Xn( f ), f )(0,0) ∶ n ≥ 1}
for є ∈ C∗ in a small neighborhood of 0 by equation (1.1). he minimum can be real-
ized for n > 1, as is the case for Γ = (y2−x3 = 0) and X = x

∂
∂y where (X( f ), f )(0,0) = 5

and (X2( f ), f )(0,0) = 4.
Another novel concept is that of the path shared between X and Γ: the sequence

(Pi)
n
i=0 of inûnitely near points of Γ such that the pullback X i is singular at all Pi

except at Pn . his sequence exists because a�er a ûnite chain of blow-ups following a
non-invariant curve, the vector ûeld becomes non-singular (and hence, gives rise to a
non-trivial �ow on the exceptional divisor). We also provide a Noether-like formula
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for the sequence of contact exponents (X i , Γi)Pi , where Γi is the strict transform of Γ
at Pi .

he previous discussionmotivates the study of the action of one-parameter groups
on irreducible curves. Consider an equivalence class C for the equivalence relation
given by the analytic conjugacy of plane branches. We say that two curves Γ1 , Γ2 ∈ C
are connected by a geodesic if they are conjugated by the time 1 �ow, exp(X), of a
germ of holomorphic singular vector ûeld. We say that C is complete if given any two
curves Γ1 , Γ2 ∈ C, they are connected by a geodesic. he term complete is motivated
by analogy with the case of ûnite dimensional Lie groups G that have a bi-invariant
metric where geodesics are of the form t ↦ exp(tX) ⋅ g where X belongs to the Lie
algebra of G, g ∈ G and t varies in R. An example of a complete class C is the class of
smooth curves (Proposition 4.5).

One could deûne a notion of formal completeness in which X is a formal vector
ûeld, (a derivation of C[[x , y]] preserving its maximal ideal). he deûnitions are, in
fact, equivalent.

heorem 1.2 Let C be a class of analytic conjugacy of plane branches. hen C is

complete if and only if C is formally complete.

Since unipotent biholomorphisms are always embedded in the one-parameter
group of a formal vector ûeld (cf. Remark 4.8), any conjugacy class modulo such dif-
feomorphisms is complete, byheorem 1.2. Moreover, since any analytic conjugacy φ

between curves Γ1 and Γ2 may be written in the form D0φ○ψ, where ψ ∶= (D0φ)
−1 ○φ

has linear part equal to the identity (see Corollary 4.14), we deduce that Γ1 and Γ2
can be connected by two “segments of geodesic”. More precisely, there exist germs
of singular holomorphic vector ûelds X, Y such that (exp(Y) ○ exp(X))(Γ1) = Γ2
(Corollary 4.9). A class of analytic conjugacy C of a plane branch Γ is identiûed with
the set of le� cosets of DiòO(C2 , 0)/ Stab(Γ), where DiòO(C2 , 0) is the group of
germs of holomorphic diòeomorphisms deûned in a neighborhood of 0 ∈ C2 and
Stab(Γ) = {φ ∈ DiòO(C2 , 0) ∶ φ(Γ) = Γ} is the stabilizer of Γ. here exist local bi-
holomorphisms that cannot be embedded in the �ow of a formal vector ûeld ([16,20]),
but to show that a class is not complete, we need to prove a stronger result: that there
exists a le� coset φ ○ Stab(Γ) in DiòO(C2 , 0)/ Stab(Γ) such that none of its elements
can be embedded in the �ow of a formal vector ûeld. We will show that there exist
local biholomorphisms φ0 such that any φ ∈ DiòO(C2 , 0) sharing the same second
jet as φ0 is not embedded in the �ow of a formal vector ûeld. hen we shall prove that
there are plane branches Γ such that its stabilizer is small: any element of Stab(Γ) has
second jet equal to the identity map. Combining these two results we obtain that no
element of φ0 ○Stab(Γ) is embedded in the �ow of a formal vector ûeld. By following
the previous ideas, we obtain the following proposition.

Proposition 1.3 Let Γ be the plane branch with Puiseux parametrization (t6 , t7 +
t10 + t11). hen the class C of analytic conjugacy of Γ is non-complete.

Wecan provide a topology in the classC of a plane branch Γ by considering a topol-
ogy in DiòO(C2 , 0) and the corresponding quotient topology in the set
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DiòO(C2 , 0)/ Stab(Γ). A natural choice is the Krull topology (also called m-adic
topology, where m is the maximal ideal of C[[x , y]]), where the sets Sk ,φ of elements
of DiòO(C2 , 0) whose k-jet coincides with the k-jet of φ provide a base of open sets
of the topology by varying φ in DiòO(C2 , 0) and k inN. Proposition 1.3 can be rein-
terpreted as a genericity property in the class C.

Proposition 1.4 LetC be the analytic class of the plane branch Γwith Puiseux parame-

trization (t6 , t7 + t10 + t11). Let

C′ = {Γ′ ∈ C ∶ Γ and Γ′ are connected by a geodesic}.

hen C ∖ C′ contains an open set of C for the Krull topology. In other words, C′ is not

dense in C.

he previous result does not hold for other natural topologies.

Proposition 1.5 Let Γ be a plane branch and let C be its analytic class of conjugacy.

Let Γ′ ∈ C. hen there exist a holomorphic deformation Γ′є of Γ′ by a holomorphic

vector ûeld, deûned in a neighborhood of є = 0, Γ′0 = Γ′ and a simple continuous curve

γ ∶ [0, 1] → C such that γ(0) = 0 and Γ is connected by a geodesic to Γ′γ(t) for any
t ∈ (0, 1].

We obtain, in passing, a �ow-based solution to the moduli problem for plane
branches [19], solved by Hefez and Hernandes [11] using Lie-group methods.

Notice, ûnally, that our techniques are quite diòerent from those of classical defor-
mation theory [10]: in this, one is concerned with deformations by adding a “small”
parameter to the equation of the curve, and the aim is to study the geometric and
topological properties of the moduli so obtained. We are speciûcally concerned with
deformations caused by �ows, so that (in a rough sense) we are adding the parameter
at all the orders of the equation.

2 Notation and Definitions

Our base ring is O = OP , the ring of germs of holomorphic functions in a neighbour-
hood of a point P of a two-dimensional complex-analytic manifold, whose base “set”
we shall usually denote, as is the custom, by (C2 , 0). he maximal ideal of O will be
denoted bym0,P or simplym0 when no confusion arises. Assume P = (0, 0) ∈ C2 for
simplicity. We denote C[[x , y]] by Ô and its maximal ideal bym.

Deûnition 2.1 We say that f , g ∈ Ô have the same k-jet, and we let jk f = jk g if
f − g ∈ mk+1.

Let ( fk)k≥1 be a sequence in Ô. hen it converges to f ∈ Ô in them-adic topology
(or also the Krull topology) if for any l ≥ 1, there exists k0 ≥ 1 such that jl fk = jl f for
any k ≥ k0.

Deûnition 2.2 We say that X is a (local holomorphic) vector ûeld if is aC−derivation
X ∶ OP → OP continuous for themP−adic topology. It is singular if X(mP) = mP and
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regular otherwise. In the case P = (0, 0) ∈ C2, we write

X = A(x , y)
∂

∂x
+ B(x , y)

∂

∂y
,

where A ∶= X(x) and B ∶= X(y) belong to O. Analogously, by replacing O and m0

with Ô andm, we can deûne formal vector ûelds.

Remark For the sake of simplicity, a local holomorphic vector ûeld will frequently
be called simply a vector ûeld. We never consider non-holomorphic vector ûelds.

Deûnition 2.3 Let X be a formal singular vector ûeld. We say that X is nilpotent if
its linear part is a nilpotent vector ûeld.

We also say that P is a singular point for X (especially, but not only, when X can be
understood as a vector ûeld on a larger analytic manifold). Finally, X is truly singular

at P (or P is a true singularity of X) if it is singular and there do not exist a regular
vector ûeld Y and a regular holomorphic function f ∈ OP such that X = f mY for
some positive integer m (this is related to what is called a strictly singular point in
[14]). Note that all these deûnitions are given for the local case; we shall be explicit
when dealing with non-local situations.

he multiplicity of a formal vector ûeld X is the largest non-negative integer m

such that X(m) ⊂ mm . hus, a non-singular vector ûeld has multiplicity 0, and in
general, if X = a(x , y) ∂

∂x + b(x , y)
∂
∂y , then the multiplicity of X is the smallest of the

multiplicities of a(x , y) and b(x , y).
An analytic branch (simply branch) at P is any reduced and irreducible curve

Γ ⊂ (C2 , 0). Unless otherwise speciûed, all our curves will be analytic branches,
and they will be deûned either by a reduced and irreducible holomorphic function
f ∈ mP or by a Puiseux expansion φ(t) = (x(t), y(t)) when local coordinates at
P are already chosen. All the results related to desingularisation of plane branches
(and, as a requirement, ûnite sequences of point blow-ups, exceptional divisors, etc.)
and their topological (not analytic) structure are assumed known; two good modern
references are [8, 18].
Consider a point P belonging to a two-dimensional complex analytic manifoldM.

Denote byMP the germ ofM at P (which is, essentially, the same thing as (C2 , 0)). As
our work is based on the process of point blow-ups, we need the following deûnition.

Deûnition 2.4 Let X be a singular vector ûeld at P and let π ∶ X→MP be the blow-
up with centre P. he unique holomorphic vector ûeld X on the whole X such that
π∗(X) = X outside of the exceptional divisor π−1(P) is called the pullback of X to X.

he fact that X exists is due to the singularity of X at P: otherwise, X is not deûned
(it has “poles” on the exceptional divisor).

Remark Notice that we are taking the “true” pullback of X on X; we are interested
in the dynamics of X, not just in the geometric structure of its integral curves. hus,
if (x , y) are local coordinates at P and one looks at the chart of π with equations
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x = x , y = xy and

X = a(x , y)
∂

∂x
+ b(x , y)

∂

∂y

for some a(x , y), b(x , y) ∈ mP , then on the chart (x , y), the local equation of X is
given by

X = a(x , xy)
∂

∂x
+

1
x
(−ya(x , xy) + b(x , xy))

∂

∂y
,

an expression that shows why X must have a singularity at P in order to admit a pull-
back to X. As the reader will have noticed, we do not eliminate the possible common
factor x in the expression of X. his implies that, usually, the pullback of a singular
vector ûeld will not be truly singular; it will have some true singularities on the ex-
ceptional divisor, but most of the points will be just equilibrium points such that, near
them, X is of the form x

m
Y for some non-negative integer m and non-singular vector

ûeld Y .
he reader familiar with the theory of plane holomorphic foliations will notice

the similarity and the diòerences between our approach and the one common in
those works. his diòerence is exactly what makes our technique useful for studying
deformations.

Anyway, we can consider the desingularisation of the underlying foliation of a sin-
gular vector ûeld. he following result is a restatement of the main one in [17].

heorem 2.5 (cf. [17]) Let X be a singular vector ûeld at P ∈ MP . here is a ûnite

sequence of blow-ups π ∶ X→MP ,

X = XN
πN−1
ÐÐ→ XN−1

πN−2
ÐÐ→ ⋅ ⋅ ⋅

π1
Ð→ X1

π0
Ð→ (C2 , 0),

π = π0 ○⋅ ⋅ ⋅○πN−1, whose centres (Pi)
N−1
i=0 are singular points for the respective pullbacks

of X and such that the pullback X of X on X has a ûnite number of true singularities

and at any of these, say Q, X admits an expression of the form

x
a
y
b(µx

∂

∂x
+ λy

∂

∂y
+ h.o.t.) ,

where (x , y) are local coordinates at Q and the exceptional divisor is included in xy = 0,
µ ≠ 0, and λ/µ /∈ Q>0. he shortest non-empty sequence of blow-ups for which this

happens is called the minimal reduction of singularities of X.

Let Γ and X be an analytic branch and a singular vector ûeld at (C2 , 0). Let X0 =

(C2 , 0), Γ0 = Γ, and P0 = (0, 0). We deûne recursively the blow-up π i ∶ Xi+1 → Xi
with centre Pi , where Pi is the intersection of the strict transformof Γ (by π0○⋅ ⋅ ⋅○ π i−1)
with the corresponding exceptional divisor for i ≥ 1. he next result follows easily
from the fact that Γ is analytic.

Proposition 2.6 With the notation of the last paragraph, Γ is invariant by X if and

only if Pi is a singular point of the pullback X i of X to Xi for any i ≥ 0. In particular, if

Γ is not invariant by X then there exists i0 ≥ 0 such that Pi is a singular point of X i of

X for any 0 ≤ i ≤ i0, but Pi0+1 is a regular point of X i0+1.
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his result provides the following deûnition.

Deûnition 2.7 he path shared by a non-invariant analytic branch Γ and a singular
vector ûeld X is the sequence (P0 , P1 , . . . , Pi0+1) given by Proposition 2.6. Notice that
we include in the shared path the point at which the pullback of X is non-singular.

Remark he last point shared by X and Γ could be a singular point of the strict
transform of Γ; we only require it to be a regular point for the pullback of X.

he following result will be important in the study of the relation between a curve
and its deformation.

Lemma 2.8 Let (Pi)
N
i=0 be the shared path between Γ and a singular vector ûeld X.

he last point PN is not a corner of the exceptional divisor.

Proof his is because a�er blowing up a singular point, the exceptional divisor is
always invariant for the pullback. If PN were a corner, then the pullback X at PN would
possess at least two invariant curves: both components of the exceptional divisor. his
would imply that PN is singular for X, which contradicts the deûnition. ∎

We now introduce our main object of study.

Deûnition 2.9 Given a singular germ of analytic vector ûeld X and an irreducible
germ of analytic plane curve Γ at (C2 , 0) with Γ ≡ ( f = 0) for f ∈ O, we deûne the
deformation of Γ caused by X or by the �ow associated with X as the family

Γє ≡ (
∞

∑
n=0

єn

n!
X

n( f ) = 0) ≡ ( f +
∞

∑
n=1

єn

n!
X

n( f ) = 0) .

We will refer to the entire family as well as to each of its members as “the deformation
of Γ”.

Notice that, because X is singular, if its multiplicity is greater than 1, then the local
equation of Γє is, roughly speaking, a higher order deformation of the local equation
of Γ, in the sense that the terms added to f are of order at least one more than the
vanishing order of f . In any case, it is clear that the deformation of a non-singular
analytic branch by a singular vector ûeld is non-singular for any є ∈ C.

he following consequence of the formula for the higher derivative of a product
is what makes blow-ups a sensible tool for studying deformations caused by vector
ûelds.

Lemma 2.10 Let X be a singular vector ûeld at (C2 , 0), π ∶ X→ (C2 , 0) be the blow-

up with centre (0, 0) and X the pullback of X by π. If Γ ≡ ( f = 0) is an analytic

branch through (0, 0) and Γ is its strict transform by π, then Γє = Γє ; that is, the strict
transform of the deformation of Γ by X is the deformation of the strict transform Γ by
X. his generalises to any ûnite sequence of blow-ups with centres singular points of X

and its successive pullbacks.
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Finally, the one-parameter group of biholomorphisms induced by a vector ûeld
and the one of its pullback are essentially the same object.

Lemma 2.11 Let X be a singular vector ûeld at (C2 , 0) and {ψX ,s(z)}s its one-

parameter group of germs of biholomorphisms. Let π ∶ X → (C2 , 0) be a sequence of

blow-ups whose centres are singular points of each pullback of X and let X be the pull-

back of X to X. he biholomorphism associated with X for the value s of the param-

eter is the unique holomorphic extension ψX ,s to the whole X of the biholomorphism

π−1 ○ ψX ,s ○ π deûned on X ∖ π−1(0, 0).

3 Main Results

he deformation Γє of an analytic branch Γ caused by a singular vector ûeld X (which
is, obviously, analytically conjugated to Γ) has a nice behaviour due to the Cauchy–
Kowalewski heorem.

Proposition 3.1 Let X be a singular analytic vector ûeld at (C2 , 0) and let Γ be an
analytic plane branch that is not invariant for X. hen Γє and Γ share the same path

with X except possibly the last point: for є small enough, the last shared point is certainly

diòerent.

Proof Let (Pi)
N
i=0 be the path shared by X and Γ. By Lemma 2.8, PN is not a corner

of the exceptional divisor. By deûnition, the vector ûeld X is non-singular at PN , and
it is tangent to the exceptional divisor E = π−1(0, 0). his implies that Γє meets the
exceptional divisor away from PN for є small enough. ∎

For the sake of clarity let us recall the deûnition of intersection multiplicity.

Deûnition 3.2 Let ∆ ≡ (g(x , y) = 0) be an analytic curve in (C2 , 0) that does not
contain Γ. he intersection multiplicity (Γ ∩ ∆)(0,0) (also denoted by ( f , g)(0,0)) of Γ
and ∆ at (0, 0) is the (ûnite) number

(Γ ∩ ∆)(0,0) = dimCC{x , y}/( f , g).

In the case we are dealing with, where Γ is a branch, this number can be computed as

(Γ ∩ ∆)(0,0) = ordt (g(φ(t))) ,

where φ(t) is any irreducible Puiseux parametrization of Γ. he sub-index (0, 0) is
usually omitted.

he following corollary is a direct consequence of Proposition 3.1.

Corollary 3.3 Let Γ ≡ ( f = 0) be a (possibly singular) analytic branch at (C2 , 0) that

is not invariant by a singular analytic vector ûeld X. If n0 , n1 , . . . , nN is the sequence

of multiplicities of Γ at the points of the path it shares with X, then the intersection

multiplicity of Γ and Γє is given by

(Γ, Γє)(0,0) =
N−1

∑
i=0

n
2
i = min{(Xn( f ), f )(0,0) ∶ n ≥ 1}

for 0 < ∣є∣ ≪ 1.
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Proof As the sequence of inûnitely near points shared by Γ and Γє is the shared path
between X and Γ except the last point (for є ≪ 1), Noether’s formula (see, for example,
[8]) gives

(Γ, Γє)0,0 =
N−1

∑
i=0

n inPi (Γє),

where nPi (Γє) denotes the multiplicity of the strict transform of Γє at Pi . Since Γ and
Γє are topologically equivalent (as they are analytically conjugated), their sequence of
multiplicities at their inûnitely near points are the same: nPi (Γє) = n i , and the ûrst
equality follows. Notice that we need to set є ≪ 1, because Γ and Γє might share more
points for є not small enough. For the second equality, let k = min{(Xn( f ), f )(0,0) ∶
n ≥ 1}. Certainly, k ≤ (Γ, Γє)(0,0). Notice that

(Γ, Γє)(0,0) = ordt ( ∑
r∈Tk

єr

r!
ar t

k + h.o.t.) ,

whereTk = {r ∈ N ∶ ( f , X r( f ))(0,0) = k} and ar is the termof order k in X r( f )(φ(t)),
for a parametrization φ(t) of Γ ≡ ( f = 0). If (Γ, Γє)(0,0) were strictly greater than k

for some є ≠ 0 in every pointed neighborhood of 0, then

∑
r∈Tk

ar

r!
є
r = 0

for all є ∈ C by the isolated zeros principle, so that ar = 0 for all r, against the assump-
tion. ∎

Deûnition 3.4 he tangency order between X and Γ is deûned as tang
(0,0)(X , Γ) =

(X( f ), f )(0,0) (see [1]).

Lemma 3.5 We have

tang
(0,0)(X , Γ) = (Γ, Γє)

for 0 < є ≪ 1 when Γ is non-singular.

Proof We can assume that Γ is not invariant by X, since otherwise tang
(0,0)(X , Γ)

= ∞ and Γ = Γє for any є ∈ C. As Γ is non-singular and is not invariant for X, a�er a
change of coordinates, we can assume that f = y and X(y) /∈ (y). Writing

X = A(x , y)
∂

∂x
+ B(x , y)

∂

∂y
,

we obtain B(x , y) = a(xk + h.o.t.) + y(B(x , y)) for some k > 0 and a ≠ 0. As
A(0, 0) = 0, an easy inductive argument implies that

ordx (Xk(y)(x , 0)) ≥ k,

which is what we need, by Corollary 3.3. ∎
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3.1 Vector Fields, Differential Forms, and Curves

Now consider a branch Γ which, for the sake of simplicity, we assume tangent to the
OX axis, so Γ ≡ ( f (x , y) = 0)with f (x , y) = yn+ h.o.t. It is well known that Γ admits
what is called an irreducible Puiseux parametrization

φ(t) ≡ (x(t), y(t)) = (tn ,∑
i≥n
a i t

i) ,

where φ(t) is not of the form φ(tk) for any k ≥ 2; the greatest common divisor of
n and the exponents appearing in y(t) is 1. Up to replacing Γ with its conjugate by
some local biholomorphism of the form (x , y) ↦ (x , y + a(x)), one easily deduces
that there exists what we shall call a prepared Puiseux parametrization.

Deûnition 3.6 A prepared Puiseux parametrization of Γ is an irreducible Puiseux
parametrization such that m > n and n ∤ m, where m = ordt(y(t)).

Before proceeding any further, let us recall some deûnitions.

Deûnition 3.7 he semigroup SΓ (or simply S) associated with Γ is the set

SΓ = {(Γ ∩ ∆)(0,0) ∶ ∆ ≡ ( f (x , y) = 0), f (x , y) ∈ C{x , y}, Γ /⊂ ∆} .

It is a sub-semigroup of N. It is well known (due to the fact that Γ is a branch) that
there is c ∈ SΓ such that p ≥ c implies p ∈ SΓ . he least c satisfying this property is
called the conductor of Γ.

Given a diòerential form ω ∈ Ω1
O, say ω = a(x , y)dx + b(x , y)dy, the contact of ω

with Γ is deûned (as in [19]) as

υΓ(ω) = ordt (a(x(t), y(t))ẋ(t) + b(x(t), y(t)) ẏ(t)) + 1,

which does not depend on the parametrization of Γ. On the other hand, given a vector
ûeld X, say X = A(x , y) ∂

∂x + B(x , y)
∂
∂y , let us calculate tang

(0,0)(X , Γ). We have
∂ f
∂y ≠ 0 and (certainly) ẋ(t) ≠ 0. Since f (x(t), y(t)) = 0, we deduce that

(3.1)
∂ f

∂x
ẋ(t) +

∂ f

∂y
ẏ(t) = 0,

which can be rewritten as
∂ f

∂x
= −

ẏ(t)

ẋ(t)

∂ f

∂y
,

so that, when computing the tangency order tang
(0,0)(X , Γ), one gets

X( f )(x(t), y(t)) = A(x(t), y(t))
∂ f

∂x
(x(t), y(t)) + B(x(t), y(t))

∂ f

∂y
(x(t), y(t)),

which, substituting (3.1), gives

X( f )(x(t), y(t)) ẋ(t) =
∂ f

∂y
(x(t), y(t))(−A(x(t), y(t)) ẏ(t)+B(x(t), y(t))ẋ(t)),
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that leads to the following valuative formula:

ordt (X( f )(x(t), y(t))) + ordt(ẋ(t)) = ordt (
∂ f

∂y
(x(t), y(t))) + υΓ(ω) − 1,

for ω = B(x , y)dx − A(x , y)dy. It is well known (see, for example, [19]) that

ordt (
∂ f

∂y
(x(t), y(t))) = c + n − 1,

where c is the conductor of SΓ . Hence, we get

tang
(0,0)(X , Γ) + (n − 1) = c + (n − 1) + υΓ(ω) − 1,

that is,
tang

(0,0)(X , Γ) = υΓ(ω) + c − 1.

hus, we might deûne υΓ(X) ∶= tang
(0,0)(X , Γ) − c + 1 and obtain, in a natural way,

υΓ(X) = υΓ(ω). Dually, we obtain the following formula for the conductor.

Corollary 3.8 Let Γ ≡ ( f = 0) be a singular branch at (C2 , 0) and let X = A(x , y)
∂
∂x + B(x , y)

∂
∂y be any singular vector ûeld. If ω = −B(x , y)dx + A(x , y)dy, then

c = tang
(0,0)(X , Γ) − υΓ(w) + 1.

he next result follows from a simple (classical) computation.

Lemma 3.9 Let ω be a singular diòerential form in (C2 , 0) and let π ∶ X → (C2 , 0)
be the blow-up of (C2 , 0) with centre (0, 0) with equations x = x , y = xy. Let Γ be
a branch (singular or not) at (C2 , 0) whose tangent cone is not x = 0. Consider the

diòerential form on X given by ω = (π∗ω)/x (which is the dual form of the pullback of

X toX) and the strict transform Γ of Γ whose intersection with π−1(0, 0) is P. If n is the

multiplicity of Γ at (0, 0), then

υΓ(ω) = υΓ(ω) + n.

Corollary 3.10 Let Γ be an analytic branch at (C2 , 0) that is not invariant by a

singular analytic vector ûeld X = A(x , y) ∂
∂x + B(x , y)

∂
∂y . Let ω = −B(x , y)dx +

A(x , y)dy be the “dual” diòerential form of X. hen

υΓ(ω) = nN−1 +
N−1

∑
j=0

n j ,

where n0 , n1 , . . . , nN is the sequence of multiplicities of Γ at the points of the path it

shares with X.

Notice that X (and hence ω) is only relevant to the formula, because its pullback
must be nonsingular at PN . In this sense, the formula is “independent” of X; it only
depends on Γ and N .
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Proof Let (Pj)
N
j=0 be the path shared by X and Γ and n j the multiplicity of the strict

transform Γ j of Γ at Pj . For each j = 0, . . . ,N , if we denote by X j the pullback of X to
the respective space (so that X0 = X) and ω j its dual form. We have

υΓ j
(ω j) = υΓ j−1

(ω j−1) − n j−1 , for j = 1, . . . ,N − 1,

by Lemma 3.9. We can assume that ΓN−1 = (tnN−1 , tq + h.o.t.)with q > nN−1. As XN−1

does not preserve the tangent cone of ΓN−1 (because PN is not a singular point of XN ),
the form ωN−1 can be written as

ωN−1 = (ax + by + h.o.t.)dx + (cx + dy + h.o.t.)dy

with a ≠ 0, which gives υΓN−1(ωN−1) = 2nN−1 and, from Lemma 3.9, we get

υΓN
(ωN) = nN−1 ,

and then
nN−1 = υΓN

(ωN) = υΓ(ω) − n0 − n1 − ⋅ ⋅ ⋅ − nN−1 ,

and the result follows. ∎

3.2 The Shared Path and Puiseux’s Expansion

he concept of the path shared by a singular vector ûeld and an analytic branch is
deeply related to the Puiseux expansion of the branch and the contact between the
branch and the vector ûeld (or the branch and its deformation).

Start with an analytic branch Γ at (C2 , 0) that is not tangent to the OY axis, so that
it admits a Puiseux expansion1 of the form

Γ ≡ φ(t) = (tn ,∑
i≥n
a i t

i) ,

where Γ is regular if and only if n = 1. Let X be a singular vector ûeld at (C2 , 0). We
need a technical result.

Lemma 3.11 Let a(z) = ∑i≥n a i(z)t
i be a power series with integer exponents such

that n ≥ 1 and each a i(z) is a holomorphic function in z (each with its own radius of

convergence), with an(0) ≠ 0. If r(z) = ∑i≥1 r i(z)t
i is such that r(z)n = a(z), then

r i(z) are also holomorphic functions in z and r1(0) ≠ 0.

Proof he proof is done by induction on i or, what amounts to the same, by the
method of indeterminate coeõcients. Actually, one can prove that there exist poly-
nomials Pj(z) in j − 1 variables such that

r(z)n = (r1(z)
n
t
n +

∞

∑
j=2

(nr1(z)
n−1

r j(z) + Pj(r1(z), . . . , r j−1(z))) t
n+ j−1)

from which the result follows. ∎

1We always assume the parametrizations to be irreducible.
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Deûnition 3.12 Assume that X is a singular vector ûeld. Let P and Q be the points
deûned in the divisor of the blow-up of the origin by the tangent cone of Γ and x = 0
respectively. We say that X is prepared relative to Γ if either P or Q is a singular point
of X.

Remark 3.13 Given a vector ûeld X we can assume that it is prepared up to a linear
change of coordinates that preserves the tangent cone of Γ at (0, 0), which is assumed
to be y = 0. he preparation guarantees that no curve of the form Γє has the OY axis
as its tangent cone. Given a vector ûeld X = a(x , y) ∂

∂x + b(x , y)
∂
∂y , it is prepared

relative to Γ if and only if ∂a
∂y (0, 0) = 0 or ∂b

∂x (0, 0) = 0. he transform X of a singular
vector ûeld X is of the form

X = xA(x , y)
∂

∂x
+ (µ0 + µ1 y + µ2 y

2 + xB(x , y))
∂

∂y
,

and X is prepared if and only if µ0 = 0 or µ2 = 0.

Consider the deformation Γє of Γ by X.

Proposition 3.14 Assume that X is prepared relative to Γ. he deformation Γє admits

an irreducible Puiseux parametrization,

Γє ≡ φє(t) = (tn , ∑
i≥n
ã i(є)t

i) .

with ã i(є) being an entire function in є and ã i(0) = a i for all i ≥ n.

Proof Let {ψs}s∈C the one-parameter group associated with X. Let (γ1(t), γ2(t)) =

(tn ,∑i≥n a i t
i) be a Puiseux parametrization. We deûne the map

(γ1(s, t), γ2(s, t)) = ψs(γ1(t), γ2(t)) .

It is well deûned and holomorphic in a neighborhood of t = 0. As a consequence,
γ1(s, t) and γ2(s, t) are of the form γ1(s, t) = ∑∞j=1 b j(s)t

j and γ2(s, t) = ∑∞j=1 c j(s)t
j ,

where b j and c j are entire functions for any j ≥ 1. Since the multiplicity of every
curve Γs is equal to n for s ∈ C, all coeõcients b j and c j with j < n are identically
0. Moreover, bn is a nowhere vanishing entire function, otherwise the tangent cone
of Γs would be x = 0 for some s ∈ C. Lemma 3.11 implies that there exists β(s, t) =
∑
∞

j=1 b̃ j(s)t
j such that β(s, t)n = γ1(s, t), where b̃ j is an entire function for any j ≥ 1

and b̃1 is nowhere vanishing. Denote by (s, α(s, t)) the inverse map of (s, β(s, t)).
It is well-deûned in a neighborhood of t = 0 since b̃1 is nowhere vanishing. he
parametrization that we are looking for is (tn , γ2(s, α(s, t))). ∎

As a corollary we obtain the following result.

Corollary 3.15 For є small enough, the deformation Γє admits an irreducible Puiseux

parametrization:

Γє ≡ φє(t) = (tn , ∑
i≥n
ã i(є)t

i) .

with ã i(є) holomorphic in є and ã i(0) = a i for all i ≥ n.
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he algebraic counterpart to the geometric concept of the shared path is the contact
exponent.

Deûnition 3.16 he contact exponent of a singular vector ûeld X with an analytic
branch Γ at a point P of a complex analytic surface M, denoted by (X , Γ)P , is the
least i such that ã i(є) is not constant in Proposition 3.14 (for any irreducible Puiseux
parametrization of Γ).

Remark 3.17 he contact exponent is independent of the choice of coordinates.
Consider a local biholomorphism ϕ ∈ DiòO(C2 , 0) such that the linear part D0ϕ at
the origin does not send the tangent line to Γ at 0 to the OY axis. It can be shown that
(X , Γ)(0,0) = (ϕ∗X , ϕ(Γ))(0,0) by a simple calculation.

Remark 3.18 Assume Γ has an irreducible Puiseux expansion (tn , atm+ h.o.t.)with
a ≠ 0 and n < m. If j = (X , Γ)(0,0) < m, then j must be a multiple of n; otherwise, the
topological types of Γ and Γє would be diòerent, which is impossible, because they are
analytically equivalent.

One has a formula analogous to that of Lemma 3.9, which provides the relation
between the shared path and the contact exponent.

Lemma 3.19 Assume Γ is not invariant for X and let π ∶ X→ (C2 , 0) be the blow-up

with centre (0, 0) and Γ the strict transform of Γ by π, which meets π−1(0, 0) at P. Let
X be the pullback of X to X. Let n be the multiplicity of Γ at (0, 0) and n that of Γ at P.
hen

● either X is non-singular at P and (X , Γ)(0,0) = n,

● or X is singular at P and

(X , Γ)(0,0) = (X , Γ)P + n.

Proof If X is non-singular at P, the result is straightforward as X does not ûx the
tangent cone of Γ. Assume, then, that P is singular for X.

Take a prepared irreducible Puiseux parametrization of Γє ,

(3.2) Γє ≡ φє(t) = (tn , ∑
m≤i< j

a i t
i + α j(є)t

j + h.o.t.)

with j = (X , Γ)(0,0), as in Proposition 3.14. Let π ∶ X → (C2 , 0) be the blow-up with
centre (0, 0)with equations x = x , y = xy, for which Γ meets π−1(0, 0) at y = 0. here
are two cases.

● If m ≥ 2n, the curve Γє has the same Puiseux parametrization as (3.2) except
that the y−coordinate has all the exponents subtracted by n. he multiplicity of
Γє (and hence Γ) is n, and the result follows.

● If n < m < 2n, then, am ≠ 0 and, by Remark 3.18, we have j ≥ m (otherwise,
j = n and X would not be singular at P), and we can write

Γє ≡ φє(t) = (tn , ∑
m≤i< j

a i t
i−n + a j(є)t

j−n + h.o.t.)
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(with either j > m and am ≠ 0 or j = m and a j(0) ≠ 0), which is not of irre-
ducible Puiseux type (as m − n < n). In order to transform it to an irreducible
Puiseux parametrization, one needs to extract m − n−th roots of the second
coordinate:

u = m−n

¿
Á
ÁÀ

∞

∑
i=m

a i(є)t i−n .

Notice that such a root is a holomorphic function deûned in a neighborhood of
(є, t) = (0, 0) since am(0) ≠ 0. We obtain

t = ∑
1≤i< j−m+1

α iu
i + α j(є)u

j−m+1 + h.o.t.,

where α j(0) ≠ 0 if j = m. From this, an irreducible Puiseux parametrization of
Γє is given by

Γє ≡ φє(u)

= ( ∑
n≤i< j−(m−n)

a iu
i + a j(є)u

j−(m−n) + h.o.t., um−n) .

with a j(є) not constant. Hence, (X , Γ)(0,0) = (X , Γ)P +m − n, and n is, in this
case, m − n, which ûnishes the proof. ∎

Lemma 3.19 states that if P0 = (0, 0), P1 , . . . , PN is the shared path between X and
Γ, then

(X , Γ)(0,0) =
⎧⎪⎪
⎨
⎪⎪⎩

ν0(Γ) if N = 1,
νP1(Γ1) + (X1 , Γ1)P1 otherwise,

where X1 and Γ1 are, respectively, the pullback of X and the strict transform of Γ at P1.

Corollary 3.20 Let P0 , . . . , PN be the shared path between X and Γ. hen

(X , Γ)(0,0) = nN−1 +
N−1

∑
j=1

n j ,

where n0 , n1 , . . . , nN is the sequence of multiplicities of Γ at the points of the path it

shares with X. So that the contact order between X and Γ depends only on Γ and N.

Furthermore, the contact order of a vector ûeld X with a branch Γ is essentially
that of the dual diòerential form with Γ.

heorem 3.21 Let X = A(x , y) ∂
∂x + B(x , y)

∂
∂y be a singular vector ûeld at (C2 , 0)

and Γ be an analytic branch at (C2 , 0) with multiplicity n, not invariant for X. Let

ω = −B(x , y)dx + A(x , y)dy be the “dual” diòerential form of X. hen

υΓ(ω) = (X , Γ)(0,0) + n.

he result is an immediate consequence of Corollaries 3.10 and 3.20.
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Proposition 3.26 will essentially provide the analytic classiûcation of plane
branches except for Zariski’s invariant, which requires a speciûc deûnition. Consider
an analytic branch Γ having irreducible Puiseux expansion

Γ ≡ φ(t) = (x(t), y(t)) = (tn ,∑
i≥n
a i t

i)

and let X be a singular vector ûeld at (C2 , 0) such that (X , Γ)(0,0) = j. Now ûx a chain
of blow-ups

X = XN
πN−1
ÐÐ→ XN−1

πN−2
ÐÐ→ ⋅ ⋅ ⋅

π1
Ð→ X1

π0
Ð→ (C2 , 0)

with each π i having centre Pi belonging to E i = π−1
i−1(Pi−1), the exceptional divisor

corresponding to the blow-up of Pi−1. We call X i the pullback of X to Xi , which we
assume is singular at Pi for i = 0, . . . ,N − 1 (writing X0 = X and P0 = P), and we
assume PN is a non-singular point of XN in EN = π−1

N−1(PN−1). We know that all the
exceptional divisors E1 , . . . , EN are invariant for XN . We let π = π0 ○ ⋅ ⋅ ⋅ ○ πN−1. We
require some lemmas. he next result can be seen as a corollary of the Poincaré–Hopf
formula.

Lemma 3.22 Let X be a singular analytic vector ûeld at (C2 , 0) and let π ∶ X →
(C2 , 0) be a ûnite sequence of blow-ups whose centres are singular points for each pull-

back of X. If E is an irreducible component of the exceptional divisor in π−1(0, 0) that is

not composed of singular points of the pullback X of X by π, then there are exactly two

singular points for X in E counting multiplicities.

Lemma 3.23 If the pullback X of X to X has a single singularity in EN , then X ∣EN
is

analytically conjugated to ∂/∂z in the chart not containing that singularity.

Proof he vector ûeld X ∣EN has a singular point with multiplicity 2, by Lemma 3.22.
It is analytically conjugated to ∂/∂z, where z is a complex coordinate in the chart
P1C ∖ {∞} of P1C. ∎

Deûnition 3.24 A divisor E i is free if either i = 1 or Pi−1 ∈ Ek implies k = i − 1. In
other words, if E i meets only one other exceptional divisor inXi , or what amounts to
the same, if Pi−1 is not the intersection of two exceptional divisors.

3.3 Action of a Flow on a Puiseux Parametrization

We can calculate the general form of the term of the Puiseux parametrization asso-
ciated with the contact exponent. As a consequence, we can deduce that the Puiseux
expansion of a singular branchmay be simpliûed by “removing” coeõcients bymeans
of a holomorphic �ow, which parallels Zariski’s approach to the moduli problem [19].

Lemma 3.25 With the setting above, assume that N > 1 (or (X , Γ)(0,0) > n, which

is the same thing). Let Γ̃ be another singular branch at (C2 , 0), topologically equivalent
to Γ, admitting a parametrization

Γ̃ ≡ φ̃(t) = (x̃(t), ỹ(t)) = (tn , ∑
i≥n
ã i t

i) .

850

https://doi.org/10.4153/S0008414X19000221 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000221


Holomorphic Flows and Non-invariant Branches

Let (Pi)
N
i=0, (P̃i)

Ñ
i=0 be the paths shared by X and Γ, Γ̃, respectively. hen there is an

n-th root of unity ξ ∈ C with ã i = a i ξ
i for all n ≤ i < j = (X , Γ)(0,0) (resp. n ≤ i ≤ j) if

and only if N = Ñ and Pk = P̃k for k = 0, . . . ,N − 1 (resp. k = 0, . . . ,N).

Proof he intersection multiplicity (Γ, Γ̃)(0,0) is given by Halphen’s formula
(cf. [10, Proposition 3.10 of Chapter 1]):

(Γ, Γ̃)(0,0) =
1
n

n−1

∑
j=0

n−1

∑
k=0

ordt (y(e
2πi j
n t) − ỹ(e

2πik
n t)) .

We deûne

Λ( j) =
1
n

n−1

∑
l=0

n−1

∑
k=0

min (ordt(y(e
2πi l
n t) − y(e

2πik
n t)), j) .

For Γ ≠ Γ̃ let j = j(Γ, Γ̃) be the natural number such that there exists ξ ∈ C with
ξn = 1 satisfying ã l = a l ξ

l for all n ≤ l < j, but no such ξ satisûes ã l = a l ξ
l for all

n ≤ l ≤ j. In such a case, Halphen’s formula provides (Γ, Γ̃)(0,0) = Λ( j). Notice that
Λ( j) is a strictly increasing function of j, since for instance, ordt(y(t) − y(t)) = ∞.
he intersection multiplicity (Γ, Γ̃)(0,0) is also a strictly increasing function of the
number of common inûnitely near points of Γ and Γ̃ by Corollary 3.3.

Let {ψs}s∈C be the one-parameter family associated with X. We let Γs = ψs(Γ).
Consider s0 ∈ C∗ close to 0. By construction (Γ, Γs0)(0,0) is equal to Λ((X , Γ)(0,0)).
Notice that exactly the ûrst N inûnitely near points of Γ and Γs0 coincide by Propo-
sition 3.1. herefore, the previous discussion implies (Γ, Γ̃)(0,0) = Λ((X , Γ)(0,0)) is
equivalent to N = Ñ , Pk = P̃k for k = 0, . . . ,N − 1 and PN ≠ P̃N and also equivalent to
j(Γ, Γ̃) = (X , Γ)(0,0). Moreover, (Γ, Γ̃)(0,0) > Λ((X , Γ)(0,0)) is equivalent to N = Ñ ,
Pk = P̃k for k = 0, . . . ,N and also equivalent to j(Γ, Γ̃) > (X , Γ)(0,0). ∎

Next, we provide the general expression of the j-th term of the Puiseux parametri-
zation of a curve Γ under the action of a local vector ûeld X such that (X , Γ)(0,0) = j.
Such a term can be eliminated from a Puiseux parametrization of Γ (meaning that it
is zero for one of the images of X by a biholomorphism in the one parameter �ow of
X) as long as X has a single singularity on the last divisor EN of the shared path. It
can never be removed if X has two singularities and EN is not free.

Proposition 3.26 With the same setting, let {ψs}s∈C be the one parameter group

associated with X. We let Γs = ψs(Γ) and j = (X , Γ)(0,0). hen we have

Γs ≡ φs(t) = (xs(t), ys(t)) = (tn , ∑
i≥n
ã i(s)t

i)

with ã i ≡ a i for n ≤ i < j, and ã j is a locally injective function. Moreover ã j(s) is of the

form λs+ µ (λ ∈ C∗ , µ ∈ C) if X has a single singularity in EN , and of the form λeγs + µ

(λ, γ ∈ C∗ , µ ∈ C), otherwise. In particular, in the former case, there exists a unique

s0 ∈ C such that ã j(s0) = 0. In the latter case, we get µ = 0 if EN is non-free.

Proof By deûnition, ã j(s) is not a constant function. Let

R = {λ j ∶ λn = 1 and λ
k = 1 for any n ≤ k < j such that ak ≠ 0}.
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Notice thatR = {1}, unless a j is the coeõcient associatedwith a Puiseux characteristic
exponent. Since all the curves Γs are topologically conjugated, we deduce that R ≠ {1}
implies that ã j is a nowhere vanishing function.
Consider s, s′ ∈ C. he N-th inûnitely near points of Γs and Γs′ are equal if and

only if ã j(s)
ã j(s′)

∈ R, by Lemma 3.25 (the condition ã j(s)
ã j(s′)

∈ R should be interpreted as

ã j(s) = ã j(s
′) if R = {1}). Since X is regular at the point of EN in the strict transform

of Γs for any s ∈ C, it follows that ã j is locally injective.
Assume that X has a single singularity at EN . By Lemma 3.23, X ∣EN is globally

analytically conjugated to ∂/∂z away from that singularity. Since the one-parameter
�ow {ηs}s∈C of ∂/∂z satisûes ηs(z) = s + z, the map s ↦ ηs(z0) is injective for every
choice of z0 ∈ C. Hence, the Nth-inûnitely near points of Γs and Γs′ are diòerent if
s, s′ ∈ C and s ≠ s′. herefore, ã j is an injective function. It is well known that an
injective holomorphic function of C is linear.

Suppose that X has two singularities at EN . If we place those singularities at 0
and ∞ for some coordinate z in the Riemann sphere, the vector ûeld X is of the
form αz

∂
∂z for some α ∈ C∗. Since the �ow in time s of X is esαz, we deduce that

ã j(z +
2πi
α )/ã j(z) ≡ β ∈ R for any z ∈ C (or ã j(z +

2πi
α ) = ã j(z) if R = {1}). If β has

order k, we obtain

ã j(z +w) = ã j(z) ⇐⇒ ∃l ∈ Z such that w = l k
2πi

α
.

Hence, the function â j ∶= ã j ○
k ln s
α is an injective function ofC∗. Such a function has

to be equal to either λs + µ or λ
s + µ, where λ ∈ C∗ and µ ∈ C. herefore ã j is of the

form λe
αs
k + µ or λe

−αs
k + µ.

Suppose that EN is non-free and X has two singularities in EN that are necessarily
its corners. Since the strict transform of Γ intersects EN in a non-corner point, t j is a
monomial of y(t) corresponding to a Puiseux characteristic exponent and cannot be
erased by any ψs . hus, ã j is nowhere vanishing, and hence µ = 0. ∎

Remark 3.27 Consider the vector ûelds Y = λ
∂
∂z and Z = γ(z − µ) ∂

∂z whose �ows
we denote by {ψs}s∈C and {ηs}s∈C, respectively. We have λs+µ = ψs(µ) and λeγs+µ =
ηs(λ + µ) for any s ∈ C. hus the values of ak(s) are obtained through the action of
a holomorphic vector ûeld in the Riemann sphere with one or two singular points,
respectively.

he following technical results will be useful later on.

Lemma 3.28 If Y is a nilpotent singular vector ûeld at (C2 , 0) admitting two trans-

verse non-singular invariant curves, then its multiplicity is strictly greater than 1.

Proof Since Y has two transverse non-singular invariant curves, its linear part must
be diagonalisable. Since this linear part is nilpotent by hypothesis, it must be zero; i.e.,
Y has multiplicity at least 2. ∎

As a consequence, nilpotent vector ûelds become regular only at free divisors.
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Lemma 3.29 With the above notation, assume X is nilpotent. hen EN (the divisor

containing PN , point at which XN is regular) is a free divisor. Moreover, there is only

one singularity of XN in EN and if N > 1, it is the intersection of EN with the only other

divisor it meets (actually, EN−1).

Proof If N ≤ 2, then EN is automatically free, and the statement holds. Assume
then that N > 2. A simple computation shows that X i has nilpotent linear part at
Pi for all i = 1, . . . ,N − 1. If EN were not free, then PN−1 would belong to EN−1 and
another Ek for k ≠ N − 1. As all the exceptional divisors are invariant, PN−1 would
be a singular point for XN−1 with two transverse non-singular invariant curves. We
know that XN−1 has nilpotent linear part, hence XN−1 would have multiplicity at least
2, by Lemma 3.28. his prevents PN from being regular for XN , as the multiplicity of
a singular vector ûeld decreases at most by one a�er a single blow-up.

he existence of a single singularity in EN is a consequence of the existence of a
single eigenvector for the linear part of XN−1 at PN−1. If N > 1, then the intersection of
EN with the only other divisor itmeets (which is, of necessity, EN−1)must be a singular
point for XN , as there are two invariant varieties passing through that point. ∎

A straightforward application of Lemma 3.29 gives the following proposition.

Proposition 3.30 Let Γ be a branch through (C2 , 0) and X let be a nilpotent singular

vector ûeld at (C2 , 0) for which Γ is not invariant. Assume (Pi)
N
i=0 is the path shared

by Γ and X. hen PN is a non-singular point of EN , XN has a single singular point in

EN and if N > 1, then this singular point is EN ∩ EN−1.

Proof of Theorem 1.1 he formula for k = (X , Γ)(0,0) is a consequence of Corollary
3.8 and heorem 3.21. he properties of ak are a consequence of Proposition 3.26. If
X is nilpotent, Propositions 3.30 and 3.26 imply that ak is linear. ∎

Remark 3.31 Let Γ be an analytic branch with irreducible Puiseux parametrization

Γ ≡ φ(t) = (x(t), y(t)) = (tn , ∑
i≥n
a i t

i) .

We can assume an = 0 up to replacing Γ with exp(−anx
∂
∂y )(Γ). Furthermore, since

(Γ, xk)(0,0) = (xk∂/∂y, Γ)(0,0) = kn for k ≥ 1, we can also assume that the Puiseux
parametrization of Γ is prepared by conjugating it with holomorphic diòeomorphisms
embedded in the one-parameter groups of the nilpotent vector ûelds x2 ∂

∂y , x
3 ∂
∂y , . . . ,

by Propositions 3.26 and 3.30. So in order to transform Γ to normal form by using
biholomorphisms embedded in the �ows of nilpotent vector ûelds, we can assume
that the Puiseux parametrization is prepared.

Hence, any exponent corresponding to the contact with a nilpotent vector ûeld can
be removed from the Puiseux expansion by means of a �ow; or what is the same, the
inûnitely near point of Γ at the corresponding exceptional divisor can be “moved to
the origin” of that divisor by a �ow.

853

https://doi.org/10.4153/S0008414X19000221 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000221


P. Fortuny Ayuso and J. Ribón

Corollary 3.32 Let Γ be an analytic branch with prepared irreducible Puiseux para-

metrization

Γ ≡ φ(t) = (x(t), y(t)) = (tn , ∑
i≥m

a i t
i)

and let X be a nilpotent singular analytic vector ûeld at (C2 , 0). Assume the contact

exponent j = (X , Γ)(0,0) between X and Γ is greater than m. hen Γ is analytically

equivalent via a biholomorphism in the holomorphic �ow associated with X to a branch

Γ̃ with parametrization

Γ̃ ≡ φ̃(t) = (x̃(t), ỹ(t)) = (tn , ∑
i≥m

ã i t
i)

with ã i = a i for i < j and ã j = 0.

Any exponent corresponding to the semigroup of Γ is the contact with a nilpotent
vector ûeld and, hence, can be removed by a �ow.

Corollary 3.33 Let Γ and φ(t) be as in Corollary 3.32. If j > m is the intersection

multiplicity of a singular analytic curve ∆ with Γ, then there exists a singular vector

ûeld X, with vanishing linear part, such that (X , Γ)(0,0) = j. In particular, the same

conclusion as in Proposition 3.26 holds (i.e., the term a j can be eliminated from the

parametrization φ without aòecting the previous ones).

Proof Consider f ∈ C{x , y} such that j = (Γ, f )(0,0). We obtain that the multi-
plicity at the origin is greater than 1, since otherwise (Γ, f )(0,0) ≤ m. he vector ûeld
X = f (x , y) ∂

∂y has vanishing linear part at (0, 0). Byheorem 3.21, this X has contact
exponent (X , Γ)(0,0) = j. Applying Corollary 3.32, we are done. ∎

From all the previous discussions we know that a ûnite composition of local holo-
morphic diòeomorphisms embedded in �ows (including a linear one, intended to
make the tangent cone of Γ at (0, 0) diòerent from the OX axis), sends Γ to a curve
that has a prepared Puiseux expansion of the form

φ(t) = (x(t), y(t)) = (tn , ∑
i≥m

a i t
i) ,

where n < m, n ∤ m, am ≠ 0, and if i is in the semigroup associated with Γ and
m < i ≤ c, where c is the conductor of Γ, then a i = 0, and we also have a i = 0 if i ≤ c
is the contact exponent with a nilpotent vector ûeld.

Proposition 3.34 Under the conditions of the last paragraph, let λ be the least ex-

ponent λ > m such that aλ ≠ 0 and c the conductor of Γ. Assume λ < c. Let X be a

non-nilpotent singular vector ûeld. hen (X , Γ)(0,0) ≤ λ. Moreover, (X , Γ)(0,0) < λ

implies that (X , Γ)(0,0) is of the form (pn + qm) − n, where p ≥ 0, q ≥ 0 and m − n ≠
(pn + qm) − n ≥ n.

Proof Let X = A(x , y) ∂
∂x + B(x , y)

∂
∂y . Write

A(x , y) = a10x + a01 y + A(x , y) and B(x , y) = b10x + b01 y + B(x , y).
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Consider φ∗ω, where ω is the dual form ω = −B(x , y)dx + A(x , y)dy:

φ
∗
ω = −(b10 t

n + b01(am t
m + aλ t

λ + h.o.t.) + B(φ(t)))ntn−1
dt

+ (a10 t
n + a01(am t

m + aλ t
λ + h.o.t.)

+ A(φ(t)))(mam t
m−1 + λaλ t

λ−1 + h.o.t.)dt.

Let j = (X , Γ)(0,0), so that j + n = νΓ(ω) by heorem 3.21. We can assume that
j /∈ {n,m}, since n = (2n + 0 ⋅m) − n and m = (n +m) − n.

We have b10 = 0, since otherwise νΓ(ω) = 2n, and we would have j = n. he
property νΓ(ω) < n + m implies that νΓ(ω) is a multiple of n. In particular, we get
νΓ(ω) ≠ m and j ≠ m − n. Moreover, j is a multiple of n greater or equal than n. So
we can assume νΓ(ω) ≥ n + m from now on. Indeed, we obtain νΓ(ω) > n + m and
j > m, since j ≠ m. his implies that b01n = a10m. Since X is non-nilpotent, it follows
that a10 ≠ 0 and b01 ≠ 0. he pullback φ∗ω satisûes

tφ
∗
ω = (g(t) + (a10λ − b01n)aλ t

n+λ + O(tn+λ+1))dt,

where a10λ − b01n ≠ 0 and the exponents of all monomials with non-vanishing coef-
ûcients of the Taylor power series expansion of g(t) belong to the semigroup

S
′ ∶= {pn + qm ∶ p ≥ 0, q ≥ 0, p + q ≥ 1}.

We claim that n + λ does not belong to S′. Otherwise, n + λ = pn + qm. If p ≥ 1,
then λ belongs to S, a contradiction. If p = 0, then q ≥ 2 and λ is the contact order
(yq−1∂/∂x , Γ)(0,0) of Γ with a nilpotent vector ûeld, again a contradiction.

Since λ + n /∈ S′ and a10λ − b01n ≠ 0, it follows that m < j ≤ λ. Moreover, j < λ

implies j ∈ S′ − n. ∎

hus, we can transform the Puiseux expansion of Γ into one inwhich any exponent
less than c, corresponding to the contact with a holomorphic �ow is zero, except for
λ, by means of a composition of �ows.

heorem 3.35 Under the same conditions as above, if j > λ is the contact exponent

of Γ with an analytic vector ûeld X, then the term of order j can be eliminated from a

prepared Puiseux expansion via a biholomorphism in a nilpotent holomorphic �ow.

Proof Let X be a singular vector ûeld such that (X , Γ)(0,0) = j. Since j > λ, X is
nilpotent by Proposition 3.34. Apply Corollary 3.32 to ûnish the proof. ∎

Weend this sectionwith a characterization of Zariski’s λ invariant of a plane branch
Γ in terms of tangency orders (or contact orders) of vector ûelds with Γ.

heorem 3.36 (Zariski’s λ invariant) Under the conditions of Proposition 3.34, let
λ be the least exponent λ > m such that aλ ≠ 0 and c is the conductor of Γ. hen

λ + n = υΓ(mydx − nxdy). Indeed if λ < c, then m and λ are the unique positive

integers j such that j is the contact exponent of a singular vector ûeld with Γ but is not
the contact exponent of a nilpotent vector ûeld with Γ. As a consequence, λ is an analytic

invariant of Γ if λ < c.
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Proof Let λ < ∞ be as in the statement, and let ω = mydx − nxdy. By direct
substitution:

υΓ(ω) = ordt (( ∑
i≥m

mna i t
i+n−1) − ( ∑

i≥m
nia i t

i+n−1)) + 1

so that

υΓ(ω) = (nx
∂

∂x
+my

∂

∂y
, Γ)

(0,0)
= ordt ((mn − nλ)am t

λ+n−1 + h.o.t.) + 1

= λ + n,

which gives the ûrst part of the statement. Moreover, m is also a contact exponent,
sincem = (x∂/∂x , Γ)(0,0). It cannot be expressed as a contact with a nilpotent vector
ûeld, since the coeõcient of tm in y(t) can not be erased (Corollary 3.32).
Assume that there exists j /∈ {m, λ} satisfying the hypotheses. We obtain j < λ and

j+n = (pn+qm) ≥ 2n for some p ≥ 0 and q ≥ 0 with (p, q) /∈ {(1, 0), (0, 1), (1, 1)} by
Proposition 3.34. he vector ûeld x p−1 yq∂/∂y is nilpotent if p ≥ 1, since (p, q) ≠ (1, 0)
and (p, q) ≠ (1, 1). It satisûes (x p−1 yq∂/∂y, Γ)(0,0) = j, and so we get a contradic-
tion. Analogously, if q ≥ 1 the vector ûeld x p yq−1∂/∂x is nilpotent and (x p yq−1∂/
∂x , Γ)(0,0) = j holds, providing a contradiction. ∎

4 Analytic Classes and Their Completeness

Now we focus on whether curves in the same class of analytic conjugacy of a given
plane branch are conjugated by local biholomorphisms in a one-parameter group. Let
us give some deûnitions.

Deûnition 4.1 We say that ρ(t) (where ρ(t) belongs to the maximal ideal m1 of
C[[t]]) is a formal diòeomorphism if its linear part is non-vanishing (or in otherwords
if ρ(t) ∈ m1 ∖m2

1 ). If, in addition to the above properties, ρ(t) belongs to C{t}, then
it is a local biholomorphism deûned in the neighborhood of the origin by the inverse
function theorem.

We say that ψ(x , y) = (a(x , y), b(x , y)) ∈ m ×m is a formal diòeomorphism and
write ψ ∈ D̂iò(C2 , 0), if the linear part of ψ at the origin is a linear isomorphism.

Deûnition 4.2 he Krull topology for formal diòeomorphisms or vector ûelds is
deûned by considering them as n-tuples of formal power series and the induced prod-
uct topology in C[[x , y]]n (cf. Deûnition 2.1).

Deûnition 4.3 Let ψ be a formal diòeomorphism. We say that ψ is unipotent if its
linear part is a unipotent linear map.

Deûnition 4.4 he time 1 �ow exp(X) of a singular vector ûeld X is

exp(X)(x , y) = (
∞

∑
j=0

X j(x)

j!
,
∞

∑
j=0

X j(y)

j!
) .

Given a formal vector ûeld X, we use the above formula to deûne the formal diòeo-
morphism exp(X). he formula is well deûned; indeed, if (Xk)k≥1 is a sequence of
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vector ûelds that converges to X in the m-adic topology, then exp(Xk) converges to
exp(X) in the Krull topology when k →∞.

First let us provide an example of a complete class.

Proposition 4.5 he class of analytic conjugacy of all smooth plane branches is

complete.

Proof Consider two smooth curves Γ, Γ′. Up to a change of coordinates, we can
assume Γ ≡ (y = 0) and that Γ′ is not tangent to x = 0. hus, Γ and Γ′ admit Puiseux
parametrizations (t, 0) and (t, a(t)), respectively. As a consequence, the local biholo-
morphism ψ(x , y) = (x , y + a(x)) conjugates Γ and Γ′. Since ψ = exp(a(x)∂/∂y),
we are done. ∎

he following theorem implies heorem 1.2.

heorem 4.6 Let Γ and Γ′ be two plane branches that are conjugated by the expo-

nential exp(X̂) of a singular formal vector ûeld. hen they are conjugated by a local

biholomorphism embedded in the �ow of a singular holomorphic vector ûeld X. More-

over, if X̂ is nilpotent we can take X to be nilpotent.

Proof Assume Γ ≠ Γ′, since the result is trivial otherwise. Up to a linear change of
coordinates, we can assume that none of the tangent cones of the curves Γ and Γ′ is
the OY axis. he curves Γ and Γ′ have Puiseux parametrizations α(t) = (tn , a(t))
and β(t) = (tn , b(t)), respectively, where n is the common multiplicity at the origin.
By hypothesis, there exists ρ ∈ D̂iò(C, 0) such that (exp(X̂) ○ α)(t) ≡ (β ○ ρ)(t).

Write X̂ = Â(x , y) ∂
∂x + B̂(x , y)

∂
∂y . Consider a sequence (Xk)k≥1 of singular vec-

tor ûelds that converge to X̂ in the m-adic topology. For instance, this can be ob-
tained by deûning Xk = Ak(x , y) ∂

∂x + Bk(x , y) ∂
∂y , where Ak (resp. Bk) is the poly-

nomial of degree less or equal than k such that Â − Ak ∈ mk+1 (resp. B̂ − Bk ∈

mk+1) for k ≥ 1. Analogously, we choose a sequence (ρk)k≥1 in DiòO(C, 0) con-
verging to ρ in the Krull topology. We deûne the curve Γk as exp(Xk)(Γ) and let
(xk(t), yk(t)) = (exp(Xk) ○ α ○ ρ−1

k )(t) for k ≥ 1. he sequence (xk(t), yk(t))k≥1
converges to (tn , b(t)) in the Krull topology. Consider the holomorphic function
σk(t) such that σk(t)

n ≡ xk(t) and (σk)
′(0) = 1 for k ≫ 1. Since (σk)

′(0) ≠ 0, it is
a local biholomorphism and its inverse σ−1

k exists. he sequence (σk)k≥1 converges to
t in the Krull topology. hus, (tn , bk(t)) ∶= (xk , yk) ○ σ−1

k (t) is a parametrization of
Γk that converges to (tn , b(t)) in the Krull topology when k →∞.

Since Γ and Γk are conjugated by a local biholomorphism contained in a one-
parameter �ow, it suõces to show that for ûxed k ≫ 1, there exists a local biholo-
morphism θ ∈ DiòO(C2 , 0) such that θ(Γ) = Γ and θ(Γ′) = Γk . Indeed, then
exp(θ∗Xk)(Γ) = Γ′. Moreover, if X̂ is nilpotent, then Xk is nilpotent for any k ≥ 1,
since X̂ and Xk have the same linear part at (0, 0), and θ∗Xk is nilpotent as a conjugate
of Xk .

hus, we need to prove that there exists θ with
(θ ○ α)(t) ≡ α(t),

θ(tn , b(t)) ≡ (tn , bk(t)).
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Let h(x , y) = 0 be a local (irreducible) equation of Γ and deûne

θ(x , y) = (x , y + h(x , y)γ(x , y)) .

If we prove that there exists a holomorphic function γ(x , y) for which the conditions
on θ are satisûed, we are done. he fact that θ(α(t)) ≡ α(t) is obvious by construc-
tion. he other condition, θ(tn , b(t)) ≡ (tn , bk(t)), is equivalent to

(4.1) γ(tn , b(t)) ≡
bk(t) − b(t)

h(tn , b(t))
.

he denominator h(tn , b(t)) is not identically 0 since Γ ≠ Γ′. he right-hand side of
equation (4.1) converges to 0 in the Krull topology when k → ∞. hus there exists a
solution of equation (4.1) for some k > 1, which completes the proof. ∎

Corollary 4.7 Let Γ, Γ′ be two plane branches conjugated by a unipotent formal dif-

feomorphism ψ ∈ D̂iò(C2 , 0). hen Γ and Γ′ are conjugated by a local biholomorphism

embedded in a one-parameter group generated by a nilpotent vector ûeld.

We will use the following well-known result.

Remark 4.8 (cf. [9,13]) he exponential provides a bijection between the set of for-
mal nilpotent singular vector ûelds and the set of unipotent formal diòeomorphisms.
Moreover, it specializes to a bijection between the Lie algebra of formal vector ûelds
with vanishing linear part at the origin and the group of formal diòeomorphisms with
identity linear part.

Corollary 4.7 is an immediate consequence of heorem 4.6 and Remark 4.8.

Corollary 4.9 Let Γ and Γ′ be two plane branches in the same class of analytic con-

jugacy. here exists a nilpotent vector ûeld X and a linear vector ûeld Y such that

(exp(Y) ○ exp(X))(Γ) = Γ′.

Proof Let ψ ∈ DiòO(C2 , 0) such that ψ(Γ) = Γ′. hen we have ψ = L ○ σ , where L is
the linear part of ψ at the origin, and the linear part of σ at the origin is the identity.
Let Γ = σ(Γ). We have L(Γ) = Γ′. here exists a nilpotent vector ûeld X such that
exp(X)(Γ) = Γ by Corollary 4.7. Moreover, L is of the form exp(Y) for some linear
vector ûeld. herefore, we obtain (exp(Y) ○ exp(X))(Γ) = Γ′. ∎

We have obtained the analytic reduction of holomorphic branches [11] to what
Zariski calls “short parametrizations” [19, p. 19] (seeCorollary 4.11, and the subsequent
line).

Deûnition 4.10 Let Γ be a germ of plane branch. We denote by Λ the set of contact
exponents between Γ and singular vector ûelds. Notice that Λ + n is the set of orders
of contact of Kähler diòerentials with Γ by heorem 3.21.
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Corollary 4.11 Let Γ be a branch at (C2 , 0) with prepared irreducible Puiseux para-

metrization

Γ ≡ φ(t) = (tn ,
∞

∑
i≥m

a i t
i) .

Let λ be its Zariski invariant (or λ = ∞) and let c > λ be the conductor of the semigroup

associated with Γ. here is a nilpotent singular vector ûeld X such that

exp(X)(Γ) ≡ φ(t) = (tn , am t
m + aλ t

λ +
c−1

∑
i>λ
a i t

i)

with a i = 0 for i ∈ Λ.

A parametrization as in Corollary 4.11 is called a short parametrization.

Proof In order to simplify Γ we remove step by step the coeõcients of t j in the
second component of the Puiseux parametrization of Γ for m < j < λ and c ≤ j. he
normalizing map is of the form exp(X j), where (X j , Γ)(0,0) = j and X j is a nilpotent
singular vector ûeld by Corollary 3.33 andheorem 3.36. Indeed, it is easy to see that
we can assume that X j → 0when j →∞ in them-adic topology. Moreover the tangent
cone of Γ deûnes a singular point P of (X j)1 in the divisor E1 of the blow-up of the
origin for j > n, since otherwise n < j = (X j , Γ)(0,0) = n. We deduce that exp(X j)

is a unipotent biholomorphism whose linear part has matrix ( 1 c j
0 1 ), where c j = 0 if

j ≫ 1. he limit of the composition of these exponentials, in the appropriate order, is
a well-deûned formal unipotent diòeomorphism ψ ∈ D̂iò(C2 , 0) conjugating Γ with
a curve with Puiseux parametrization of the form φ(t). he result is a consequence
of Corollary 4.7. ∎

Remark 4.12 he reduction to normal form in [11] is obtained via the action of
unipotent biholomorphisms. We have just restated this fact in the context of holo-
morphic �ows.

he expression of Corollary 4.11 can be simpliûed further bymeans of another �ow
(corresponding to a linear change of coordinates and a change of parameter).

Lemma 4.13 ([19]) A branch Γ whose short parametrization is

Γ ≡ φ(t) = (tn , am t
m + aλ t

λ +
c−1

∑
i>λ
a i t

i)

is analytically equivalent to

Γ′ ≡ (tn , tm + t
λ +

c−1

∑
i>λ
a i t

i) ,

where there exist u, v ∈ C⋆ such that a i = vmu−ia i .
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Proof We deûne ψ(x , y) = (unx , vm y) for some u, v ∈ C⋆ to be speciûed later on.
We have

(ψ ○ φ)(t) = (un
t
n , vm

am t
m + v

m
aλ t

λ +
c−1

∑
i>λ

v
m
a i t

i) .

Deûne the parameter s = ut. he curve ψ(Γ) has parametrization

(sn , vm
u
−m
ams

m + v
m
u
−λ
aλs

λ +
c−1

∑
i>λ

v
m
u
−i
a i s

i) .

It suõces to consider u, v ∈ C⋆ such that vmu−m = a−1
m and vmu−λ = a−1

λ . ∎

Combining Corollary 4.11 and Lemma 4.13 we obtain the following result.

Corollary 4.14 Let Γ be a singular branch in (C2 , 0) having conductor c. Let (x , y)
be a local system of coordinates. here exist a local biholomorphism ψ embedded in the

�ow of a nilpotent vector ûeld, a linear map G and a reparametrization τ ∈ DiòO(C, 0)
such that

(G ○ ψ(Γ) ≡ G ○ ψ ○ φ ○ τ)(t) = (tn , tm + t
λ + ∑

λ<i<c
a i t

i) ,

where φ(t) is the parametrization of Γ with a i = 0 if i < c and i ∈ Λ ∖ {λ}.

Proof here exists a linear automorphism H(x , y) such that the tangent cone to
Γ′ ∶= H(Γ) at the origin is the axis y = 0. here exists a local biholomorphism
J(x , y) = (x , y + c(x)) for some c(x) ∈ C{x} of vanishing order at least 2 such that
J(Γ′) has a prepared irreducible Puiseux parametrization. We apply Corollary 4.11 to
J(Γ′) to obtain a unipotent biholomorphism ϕ ∈ DiòO(C2 , 0) such that ϕ(J(Γ′)) has
a short parametrization. Finally, we apply Lemma 4.13 to ϕ(J(Γ′)) to obtain a linear
isomorphism K such that Γ′′ ∶= K(ϕ(J(Γ′))) has the desired parametrization. he
biholomorphism ϕ ○ J is unipotent, since the linear part D0 J of J at the origin is the
identity map. he conjugate H−1 ○ (ϕ ○ J) ○H of ϕ ○ J is a unipotent biholomorphism
ρ ∈ DiòO(C2 , 0) and then we obtain Γ′′ = (G ○ ρ)(Γ), where G = K ○ H is a linear
map. Since Γ and ρ(Γ) are conjugated by a unipotent local biholomorphism, it fol-
lows that they are conjugated by a local biholomorphism ψ embedded in the �ow of
a nilpotent vector ûeld. We obtain Γ′′ = (G ○ ψ)(Γ). ∎

he parametrization provided by Corollary 4.14 is called a canonical parametriza-
tion by Zariski [19] and the normal form of Γ by Hefez-Hernandes [11]. We shall use
the latter terminology. Moreover, if Γ is another branch whose normal form has coef-
ûcients a i , one can prove (see [11, 19]) that they are analytically equivalent if and only
if there exists u such that uλ−m = 1 and a i = u i−ma i , which describes the complete
moduli of Γ.

5 Non-complete Analytic Classes

Weprovide examples of non-complete analytic classes. Whether or not a single formal
diòeomorphism is embedded in the �ow of a formal singular vector ûeld is deeply
related to the spectrum of its linear part and more precisely to the resonances among
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its eigenvalues. For the sake of completenes, we recall these concepts along with some
results. We work in dimension 2, because that is the case we are interested in, but the
results concerning resonances are valid for any dimension (cf. [12]).

Deûnition 5.1 Consider a formal singular vector ûeld X whose linear part is in
Jordan normal form; in particular, X is of the form

X = (λ1x + δy + ∑
i+ j≥2

a i jx
i
y

j)
∂

∂x
+ ( λ2 y + ∑

i+ j≥2
b i jx

i
y

j)
∂

∂y
.

We say that the monomial x i y j∂/∂x with i ≥ 0, j ≥ 0, i + j ≥ 1 and (i , j) ≠ (1, 0)
is resonant if iλ1 + jλ2 = λ1. Analogously, we say that the monomial x i y j∂/∂y with
i ≥ 0, j ≥ 0, i + j ≥ 1 and (i , j) ≠ (0, 1) is resonant if iλ1 + jλ2 = λ2.

Deûnition 5.2 Consider a formal diòeomorphism ψ whose linear part is in Jordan
normal form; in particular, ψ is of the form

ψ(x , y) = (λ1x + δy + ∑
i+ j≥2

a i jx
i
y

j , λ2 y + ∑
i+ j≥2

b i jx
i
y

j) .

We say that the monomial x i y je1 ∶= (x i y j , 0) with i ≥ 0, j ≥ 0, i + j ≥ 1 and (i , j) ≠
(1, 0) is resonant if λ i

1λ
j
2 = λ1. Analogously, we say that the monomial x i y je2 ∶=

(0, x i y j) with i ≥ 0, j ≥ 0, i + j ≥ 1 and (i , j) ≠ (0, 1) is resonant if λ i
1λ

j
2 = λ2. A

formal diòeomorphism is non-resonant if there are no resonant monomials.

Remark 5.3 he property of being non-resonant depends only on the eigenvalues
of the linear part.

he next result is Poincaré’s linearisation map for formal diòeomorphisms. As is
customary, we denote by D0ψ the linear part of a formal diòeomorphism ψ.

Proposition 5.4 (cf. [12, heorem 4.21]) Let ψ ∈ D̂iò(C2 , 0) be a non-resonant for-

mal diòeomorphism. hen ψ is conjugated by a formal diòeomorphism to (x , y) ↦
(λ1x , λ2 y), where λ1 and λ2 are the eigenvalues of the linear part D0ψ of ψ at (0, 0).

Corollary 5.5 Let ψ ∈ D̂iò(C2 , 0) be a non-resonant formal diòeomorphism. hen

there exists a formal singular vector ûeld X such that ψ = exp(X̂).

Proof he formal diòeomorphismψ is formally conjugated to a linear diagonalmap
by Proposition 5.4. Since the latter map is embedded in the �ow of a singular vector
ûeld, it follows that ψ is embedded in the �ow of a formal vector ûeld. ∎

Let us consider the problem of embedding formal resonant diòeomorphisms in
formal �ows. Let ψ ∈ D̂iò(C2 , 0) and assume for simplicity that (D0ψ)(x , y) =
(λ1x , λ2 y). he equation ψ = exp(X) implies D0ψ = exp(D0X). Notice that if
λ1 ≠ λ2, then the choice of the eigenvalues log λ1, log λ2 completely determines D0X.
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Deûnition 5.6 Consider the above setting. We say that a resonance x i y je1 (resp.
x i y je2) of ψ is strong if the monomial x i y j∂/∂x (resp. x i y j∂/∂y) is a resonant mono-
mial of the vector ûeld log λ1x∂/∂x + log λ2 y∂/∂y, i.e., if λ i

1λ
j
2 = λ1 and i log λ1 +

j log λ2 = log λ1 (resp. λ i
1λ

j
2 = λ2 and i log λ1 + j log λ2 = log λ2).

A resonance of ψ that is not strong will be called weak.

We will use the following special case of [16, Proposition 1.5].

Proposition 5.7 Let ψ ∈ D̂iò(C2 , 0) be such that (D0ψ)(x , y) = (λ1x , λ2 y). Let

B ∶ C2 → C2 be a linear map such that exp(B) = D0ψ. Assume that jkψ = D0ψ + fk ,
where both components of fk are homogeneous polynomials of degree k. Furthermore,

assume that fk contains non-vanishing weakly resonant monomials. hen ψ is not em-

bedded in the �ow of any formal vector ûeld X such that D0X = B.

We can return to the problem of determining non-complete classes. he results
regarding completeness of analytic classes C depend on the topology that we consider
for the inûnite-dimensional spaceC. First, we see that in some sense, being connected
by a geodesic is a dense property.

Proof of Proposition 1.5 Letψ be a local biholomorphism conjugating Γ and Γ′. Up
to a linear change of coordinates, we can assume that the linear part D0ψ of ψ at the
origin is in Jordan normal form; in particular, its matrix is of the form ( u w

0 v ), where
u, v ∈ C⋆. Consider the family σє(x , y) = (eєax , eєb y) for some a, b ∈ C that are
linearly independent over Q. he map σє converges to Id when є → 0. Let us deûne
the family (Γ′є) by Γ′є = (σє ○ ψ)(Γ). he map D0(σє ○ ψ) has eigenvalues ueєa and
veєb .

Let Fp ,q(є) = upvqe(ap+bq)є − 1 and Tp ,q = F
−1
p ,q(0) for (p, q) ∈ Z ×Z. Resonances

between the eigenvalues of D0(σє ○ψ) are obtained when there exists (p, q) ∈ Z×Z∖
{(0, 0)} such that (ueєa)p(veєb)q = 1. his equation is equivalent to є ∈ Tp ,q . Since
ap + bq ≠ 0, the function Fp ,q is not constant and Tp ,q is a countable closed set for
any (p, q) ∈ Z×Z∖{(0, 0)}. We deduce that T ∶= ∪(p ,q)∈Z×Z∖{(0,0)}Tp ,q is countable
and hence there exists є0 ∈ C∗ such that {tє0 ∶ t ∈ R∗} ∩ T = ∅. We deûne the path
γ ∶ [0,∞) → C by γ(t) = tє0. he map σє ○ ψ is embedded in the �ow of a formal
vector ûeld for any є /∈ T by Corollary 5.5. herefore, Γ and Γ′є are connected by a
geodesic for any є ∈ γ(0,∞) by heorem 4.6. ∎

Let us show that the analytic class C0 of the plane branch Γ0 with Puiseux parame-
trization (t6 , t7 + t10 + t11) is non-complete. First, we study the stabilizer group
Stab(Γ0) = {ψ ∈ D̂iò(C2 , 0) ∶ ψ(Γ0) = Γ0} of Γ0.

Lemma 5.8 he linear part at the origin of any element ψ of Stab(Γ0) is the identity

map.

Proof he linear part D0ψ is a map of the form (x , y) ↦ (ax + by, cx + dy). Since
D0ψ preserves the tangent cone of Γ0, we deduce that c = 0. In particular ad ≠ 0
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because ψ is a formal diòeomorphism. We have

ψ(t6 , t7 + t
10 + t

11) ≡ (at6 + bt7 + bt10 + bt11 + O(t12), dt7 + dt10 + dt11 + O(t12)) .

Consider a formal power series σ(t) such that σ(t)6 ≡ (x ○ ψ)(t6 , t7 + t10 + t11). It
must admit the expression σ(t) ≡ a1/6 t + (b/6)a−5/6 t2 + O(t3). Moreover, it is a
formal diòeomorphism in one variable and its inverse σ−1 satisûes σ−1(t) ≡ a−1/6 t −

(b/6)a−4/3 t2 + O(t3). A simple calculation leads us to

ψ(t6 , t7 + t
10 + t

11) ○ σ
−1(t) ≡ (t6 , da−7/6

t
7 −

7
6
bda

−7/3
t
8 + O(t9)) .

Since ψ belongs to Stab(Γ0), bda−7/3 vanishes. We deduce b = 0 as a consequence of
ad ≠ 0. hus, the formal diòeomorphisms σ and σ−1 are of the form t ↦ a1/6 t+O(t7)

and t ↦ a−1/6 t + O(t7), respectively. We obtain

ψ(t6 , t7 + t
10 + t

11) ○ σ
−1(t) ≡ (t6 , a−7/6

dt
7 + a−10/6

dt
10 + a−11/6

dt
11 + O(t12)) .

Since ψ(Γ0) = Γ0 there exists ξ ∈ C such that ξ6 = 1 and a−7/6d = ξ7, a−10/6d = ξ10,
and a−11/6d = ξ11. We get a1/6 = ξ−1 by dividing the last two equations and then
a = (a1/6)6 = ξ−6 = 1. By plugging a−1/6 = ξ into a−7/6d = ξ7, we get d = 1. Hence,
D0ψ is the identity map. ∎

Proposition 5.9 Let X be a formal vector ûeld that preserves Γ0. hen X has vanishing

second jet.

Proof Since X preserves Γ0, it follows that the time s �ow exp(sX) of X preserves Γ0
for any s ∈ C. All the formal diòeomorphisms exp(sX) in the one-parameter group of
X have identity linear part at the origin by Lemma 5.8. In particular, X has vanishing
linear part. We write

X = ( ∑
i+ j≥2

a i jx
i
y

j)
∂

∂x
+ ( ∑

i+ j≥2
b i jx

i
y

j)
∂

∂y
.

Consider the dual form

ω = −( ∑
i+ j≥2

b i jx
i
y

j)dx + ( ∑
i+ j≥2

a i jx
i
y

j)dy.

Since X preserves Γ0, it follows that (t6 , t7 + t10 + t11)∗ω ≡ 0. We have

νΓ0(x
2
dx) = 18, νΓ0(xydx) = 19, νΓ0(y

2
dx) = 20,

νΓ0(x
2
dy) = 19, νΓ(xydy) = 20, νΓ(y

2
dy) = 21,

and νΓ(x
i y jdx) ≥ 24 ≤ νΓ(x

i y jdy) for i + j ≥ 3. Since (t6 , t7 + t10 + t11)∗ω ≡ 0, we
deduce b20 = 0. We get

− 6b11 t11(t7 + t
10 + t

11) − 6b02 t5(t7 + t
10 + t

11)2

+ a20 t
12(7t6 + 10t9 + 11t10) + a11 t6(t7 + t

10 + t
11)(7t6 + 10t9 + 11t10)

+ a02(t
7 + t

10 + t
11)2(7t6 + 10t9 + 11t10) + O(t23) = 0.
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We write the linear system of equations satisûed by the coeõcients of t18, t19, t20, t21,
and t22:

−6b11 + 7a20 = 0
−6b02 + 7a11 = 0

+ 7a02 = 0
−6b11 + 10a20 = 0
−6b11 − 12b02 + 11a20 + 17a11 = 0.

he matrix of the system is regular, hence b11 = b02 = a20 = a11 = a02 = 0. In
particular, X has a vanishing second jet. ∎

Proposition 5.10 Let ψ ∈ Stab(Γ0). hen ψ and the identity map have the same

second jet.

Proof he linear part of ψ is the identity map by Lemma 5.8. hus, ψ is of the form
exp(X) for some unique formal nilpotent vector ûeld X (in fact X has vanishing linear
part) by Remark 4.8. Let f = 0 be an irreducible equation of Γ0. Notice that f ○
exp(sX) = ∑

∞

j=0
s j

j! X
j( f ) by Taylor’s formula and that X j( f ) ∈ m j+1 for any j ≥ 1.

herefore, f ○ exp(sX) belongs to C[s][[x , y]], and then

G(s, t) ∶= f ○ exp(sX) ○ (t6 , t7 + t
10 + t

11)

belongs to C[s][[t]]. Moreover, G(s, t) vanishes for s ∈ Z since {exp(sX) ∶ s ∈ Z}
is the cyclic group ⟨ψ⟩ and ⟨ψ⟩ is contained in Stab(Γ0). Since the coeõcients of
t j of G(s, t) are polynomials that vanish at Z, we deduce that G ≡ 0. In particular
the elements of the one-parameter group generated by X preserve Γ0 and hence X
preserves Γ0. By Proposition 5.9, the vector ûeld X has vanishing second jet and hence
j2ψ ≡ Id. ∎

We just completed the ûrst step of the proof of Proposition 1.3. Now we want to
construct 2-jets of biholomorphisms such that any formal diòeomorphism with such
a 2-jet is not embedded in the �ow of a formal vector ûeld.

Lemma 5.11 Let ψ ∈ D̂iò(C2 , 0) such that its second jet is equal to (x , y) ↦
(x + x2 + y2 ,−y). hen ψ is not embedded in the �ow of a formal vector ûeld.

Proof Assume, aiming for contradiction, that ψ is of the form exp(X) for some for-
mal vector ûeld. he eigenvalues of the linear part of X at the origin are α and β
with eα = 1 and eβ = −1. We claim that for any choice of α and β, at least one of the
resonances x2e1 or y2e1 is weak. Otherwise, we obtain

2α − α = 0 and 2β − α = 0 Ô⇒ α = β = 0 Ô⇒ e
β = 1

and since eβ = −1 this is a contradiction. Hence, the formal diòeomorphism ψ is not
embedded in a formal �ow by Proposition 5.7. ∎

Lemma 5.12 Let ψ ∈ D̂iò(C2 , 0) be such that its second jet is equal to (x , y) ↦
(e2πi/3x+ y2 , e4πi/3 y+x2). hen ψ is not embedded in the �ow of a formal vector ûeld.
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Proof Assume, aiming for contradiction, that ψ is of the form exp(X) for some for-
mal vector ûeld. he eigenvalues of the linear part of X at the origin are α and β with
eα = e2πi/3 and eβ = e4πi/3. We claim that for any choice of α and β, at least one of the
resonances x2e2 or y2e1 is weak. Otherwise, we have 2α = β and 2β = α. his implies
α = β = 0, contradicting eα = e2πi/3. herefore, the formal diòeomorphism ψ is not
embedded in a formal �ow by Proposition 5.7. ∎

Proof of Proposition 1.3 Consider the biholomorphism

ψ(x , y) = (x + x
2 + y

2 ,−y) or ψ(x , y) = (e2πi/3
x + y

2 , e4πi/3
y + x

2)

and the curve Γ = ψ(Γ0). Any formal diòeomorphism σ conjugating Γ0 and Γ is of
the form ψ ○ ρ, where ρ ∈ Stab(Γ0). Since j2ρ ≡ Id by Proposition 5.10, we deduce
j2(σ ○ ρ) ≡ j2ψ, and hence σ ○ ρ is not embedded in the �ow of a formal vector
ûeld for any ρ ∈ Stab(Γ0) by Lemmas 5.11 and 5.12. herefore, the analytic class C0 is
non-complete. ∎

Proof of Proposition 1.4 Consider the subsetT ofDiòO(C2 , 0)of diòeomorphisms
whose second jet is equal to (x + x2 + y2 ,−y) (instead we could choose (e2πi/3x + y2 ,
e4πi/3 y + x2) too). he set T is open in the Krull topology. Moreover, since Stab(Γ0)
consists of formal diòeomorphisms with trivial second jet, it follows that T is a union
of le� cosets of DiòO(C2 , 0)/ Stab(Γ0). As a consequence, its projection T̃ in DiòO

(C2 , 0)/ Stab(Γ0) ∼ C0 is an open set in the induced quotient topology. Every plane
branch Γ in T̃ is of the form σ(Γ0), where σ ∈ DiòO(C2 , 0) satisûes j2σ ≡ j2(x + x2 +
y2 ,−y). herefore, Γ0 is not connected to Γ by a geodesic by the proof of Proposition
1.3. We just obtained an open subset T̃ of C0 whose elements are not connected to Γ0
by a geodesic. ∎

Remark 5.13 Notice that in the examples in the proof of Proposition 1.3, the curves
Γ0 and Γ have the same tangent cone.

Remark 5.14 Let us focus in the case where ψ(x , y) = (x + x2 + y2 ,−y). Zariski’s
λ invariant of Γ0 is λ = 10. Let Γ be the curve of parametrization

ψ(t6 , t7 + t
10 + t

11) = (t6 + O(t12),−t7 − t
10 − t

11).

Up to a change of parameter t ↦ ut with u6 = 1, the curve Γ is of the form

(t6 + O(t12),−
t7

u7 −
t10

u10 −
t11

u11 ) ,

and the coeõcient of t7 is equal to 1 if and only if u = −1. hen

(t6 + O(t12), t7 − t
10 + t

11)

parametrises Γ. Every parametrization of Γ of the form (t6 , t7+ct10+O(t11)) satisûes
c = −1. hus, the curves Γ0 and Γ are not connected by a geodesic but have the same
tangent cone and their parametrizations coincide up to (but not including) the term
corresponding to Zariski’s λ invariant.
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