NOTE ON HYPOELLIPTICITY OF A FIRST ORDER
LINEAR PARTIAL DIFFERENTIAL OPERATOR

YOSHIO KATO

§1. Introduction. Let £ be a domain in the (% + 1)-dimensional
euclidian space R"**. A linear partial differential operator P with coefficients
in C(Q)» (resp. in C°(2)V) will be termed hypoelliptic (resp. analytic-
hypoelliptic) in £ if a distribution # on 2 (i.e. # € 2'(Q)) is an infinitely
differentiable function (resp. an analytic function) in every open set of 2
where Pu is an infinitely differentiable function (resp. an analytic function).

In the present paper, we consider a linear partial differential operator
) L="% d) -,

=1 0y

where the coeflicients are complex-valued infinitely differentiable functions

+ a(y),

(or complex-valued analytic functions) in a domain 2 of R"*',
Now the main result is :

THEOREM. Suppose that n > 2. A linear partial differential operator of the
Sorm (1) with coefficients in C=(2) (resp. in C“(R)) 1is hypoelliptic (resp. analytic-
hypoelliptic) in 2 if and only if all the functions a'(y) (G=1,+++,n+1)
tdentically vanish in Q and the function a(y) vanishes at no poini of £.

For »n =1, the hypoellipticity and the analytic-hypoellipticity of the
operator of the form (1) with coefficients in C” are characterized by
H. Suzuki [4] under the condition |a'(y)|+|a*(y)|# 0 for every y € 2 and
aly) =0 1in 2.

In the next section, we shall first show that if L(z >1) has coefficients
in C“(2) and satisfies the condition (3) (see §2), the hypoellipticity of L as
well as the analytic-hypoellipticity of L has no respect to the factor a(y)
and we shall study relations between the solvability # and the hypoellipticity
of L. In the last section, we shall prove the theorem.

Received June 7, 1967.

1) We denote by C=(2) the totality of complex-valued infinitely differentiable functions
in 2 and by C“(2) the totality of complex-valued analytic functions in 2.

2) A linear partial differential operator defined on £ is called solvable in a subdomain
2, of 2 if the equation Pu = f has a solution # € &’ (2,) for every f € C3(2,).
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§ 2. Preliminaries. We denote by L, the principal part of L:

n+41 a
— j
@) L= 3 )55

In this section, we always assume that
n+1

(3) 21 ld(y)l+=0, for all ye Q.
]=

We first state the following :

Lemma 1. Suppose that n>1. An operator L of the form (1) with
coefficients in C°(Q) and satisfying the condition (3) is hypoelliptic (resp. analytic-
hypoelliptic) in 2, if and only if the operator L, 1is hypoelliptic (resp. analytic-
hypoelliptic) in 2.

Proof. Let y, be an arbitrary point of 2. By the Cauchy-Kovalevsky
theorem, we can find a solution #(y), analytic in some neighbourhood N
of y, of the equation

Lok = a.
From this, we can deduce

Lye"u) = e"Lu,

L(e"u) = e "Lyu

(4)

for all # € 2'(N). We can immediately conclude Lemma 1 from (4), since
the notion of hypoellipticity as well as that of analytic-hypoellipticity has a
local property.
Q.E.D.
We set

9
0y

n+l 3
Ly= 3 a(v)
J=1

7

and denote by C the commutator
C=I[Ly l:o] = Loio - I:oLo .

We say L satisfy the condition H at a point y, of 2, if C may be
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represented as a linear combination of L, and L, at ¥ = y,. The Hérman-
der’s necessary condition for L to be solvable in a subdomain 2, of 2 is
that L- satisfies the condition H at every point of 2, (see Chap.VI of
Hoérmander [1)).

Lemma 2. Suppose that n>2. If L with coefficients in C=(Q) (resp. in
C’(2)) and satisfying the condition (3) fulfils the condition H at every point of 2,
it then follows that L, ts not hypoelliptic (resp. mot analytic-hypoelliptic) in 2 and
there exists a subdomain of Q where L is solvable.

Proof. The proof was suggested by Nirenberg-Tréves [3]. Let y, be
a point fixed arbitrarily in 2. By a suitable coordinate transformation in
some neighbourhood of the point y,, L, may be expressed in the form

a . Z a
Lo = oo (G5 +i 3 V@ 0507 ) ow ) #0,

(i=y=1, = (2'---,2") in a neighbourhood N of the origin: z =0,

t =0, so that L is written by the new coordinate as follows :

) L= 05 +i 5 ¥,

d
axl ) + C(x, t)y

where b#(x,t) (j=1,-+-,n) are real-valued, and the transformation of
coordinates and the coefficients of L of the form (5) are both infinitely
differentiable (resp. analytic) in N, if the coefficients of L of the form (1)
is infinitely differentiable (resp. analytic) in 2 (see [3]).

If L satisfies the condition H in N, it follows that

(6) D bi(x, t)g; =0  if b/(x,1)6;=0, (x,t)e N, &€ R",

1
where bi(x,t) = %—bt (x, 1),

Let &(z,t) be the real vector (b%(z,t), .- +,b0"(%,t)) and |[b(x,?)| be the
length of the vector & :

[6(z, £)] = (6(2, £)2 + - - - + bz, 1))},

If |&(x,t)| identically vanishes in N, any function depending only on the
variables « is always a solution of the equation L,z =0. Otherwise, we
can find a subdomain N, of N in which &(x,?) never vanishes. Thus it
follows from (6) that there exists a real-valued function f(x,?) in C=(N,) such
that
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(7) bt(x9 t) =ﬁ(x, t)b(xy t)’
where we have put &, = (b}, - - -,57), and from (7) we obtain
d .
4 0@, t)/[b(x,t)[) =0, in N,

Hence the real vector b&(x,t)/|b(z,t)| is independent of the variable ¢. If
we put v(x) = b(x,t)/|b(x,¢)|, L, is rewritten in the form

0 i 0
Ly = gla, (55 160, O] 3 v'@) 557),

where v(x) = (v!(x), + - +,v"(x)). Any solution of the equation

i ou
J —
J§1 v (x) 3xj =0

depending only on the variables « is a solution of the equation Ly =0.
From these fact, we can assert the first half of the lemma and at the same
time we can easily see that L has the property (P) (introduced in [3]) in
some subdomain N’ of N, that is, there is a unit vector v = v(x) depending
on the z-variable only such that & is given by &(z,?) =|b(x,?)|v(z) in N.
Thus using Theorem 2. 1 of [3], we obtain the later half of the lemma.
Q.E.D.

Lemma 3. Suppose that n >1. If an operator L of the form (1) with
coefficients in  C°(R) and satisfying the condition (3) does not fulfil the condition H
at some point in 2, it then follows that L, is not analytic-hypoelliptic in Q.

Proof. This lemma is easily deduced from Theorem 4.1 of Mizohata
[2l. But in our case the proof is simpler. We shall give an outline of the
proof.

Suppose that L does not fulfil the condition H at a point y, e 2.
Then we can construct a solution w of the equation L, =0 in a neigh-
bourhood N of y, such that w(y,) =0 and the imaginary part of w is
positive in N, the point y, excepted (see Chap. VI of [1]). If we take a
suitable branch, /u(y)® is continuously differentiable in N and satisfies the
equation L,z =0. But it is not twice-continuously differentiable -at y,.
This gives the proof.

Q.ED.
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Finally, we state the lemma given by Mr. A. Yoshikawa (see [5]).

LeEMMA 4. Let 2 be a domain of R"'(n >0) and P be a general linear
partial differential operator with coefficients in C*(). If P s hypoelliptic in R,
then the formal adjoint ‘P of P is solvable in a neighbourhood of each point of K.
Here the differential operator °P is defined by the identity

SPu ~vdy =Su - 'Pydy, u,v € C3(2).

Proof. Suppose that P is hypoelliptic in 2.  Let S be the totality of
locally square-integrable functions # in £ such that Px is in C°(Q2). We
note S = C(2) and denote by G, the graph of P on S into C=(2) in the
product space Lf,(2) x C°(2), that is, G, = {[u,Pul ;u € S}. Then, by the
open mapping theorem of Banach, the projection on Gp onto C=(2)([u,Pu]
—->%) 1s continuous . Thus let y, be an arbitrary point of 2, N, be a
neighbourhood of y, whose closure N, is contained in £, and k be an
arbitrary integer >0. There then exists a constant C, an integer s, >0
and compact sets K;, K, of 2 depending on k£ and N, such that

.%
®) lulew, < Co{ ([ 1uldy) +1Puli}, e Co(@.
If we choose a neighbourhood N of y, such that Nc N, and
1
C/Volume of N< 5
we obtain from (8) that

Il << P9y, ¢ e C3(N),

where we have put

lole=( 3, SID“solzdy)%

3) By a we denote multi-indices a = (a;, **+, @n+1) of non-negative integers. Their sum
is denoted by |a|. With D; = — i3/dy’/, we set

D* = D' ... Dntt
The topology of C*(2) is then defined by the semi-norms | +|m,x :
[flmrx= 31 sup|D*f(y)l,

laj<m ye K

where m is any non-negative integer and K is any compact set of 2. Hence C(2) is a
Fréchet space by this topology.
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From this we may deduce the inequality

(9 lel,<CllPell: , ¢e& C3N),

since we have

lel,=Cllells , ¢& C3N)

with some integer s>0 and a constant C>0.

From (9) we can immediately see that ‘P is solvable in a neighbour-
hood of each point of 2.

Q.E.D.

§3. Proof of Theorem. Finally we prove the theorem stated in
the introduction. We have only to prove the following :

ProrosiTiON.  If n=2, no operator of the form (1) with coefficients in
C~(R2) (resp. in C°(R)) and satisfying the condition (3) is hypoelliptic (resp. analytic-
hypoelliptic) in Q.

Before proving the proposition, we must state a lemma which is needed
in proving the proposition above.

Lemma 5.  Let M be a linear mapping on C=(2) onto itself which satisfies
the following conditions :

(1) The mapping M is bijective and bicontinuous »,
(ii) A4 function wu belonging to C=(R) identically vanishes in a subdomain of
2 if and only if Mu identically vanishes there.

Then M is an operator of multiplication by a nonm-vanishing function in C=(R2).

Proof of Lemma 5. It is clear that M and its inverse mapping M™
are both linear partial differential operators with coefficients in C=(%):

M = P(y, D) = 2] a,(y) D%,

la|<m,

M7 =Q(y,D)= 3 b.(y)D"%

[al<n,

where m, and n, are exact orders of P(y,D) and Q(y,D) at a point y
respectively, and they are bounded when y goes over a compact set of Q.
First of all, we shall show that m, and #, both identically vanish in

4) The topology of C*(2) is the same one as the topology stated in footnote 3).
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2. Assume that n,#20 in 2. There then exists a subdomain 2, of

9, 2,c 9, where n, is a positive constant, say n. Put m = maxm,. By
ye o

P.(y,8) and @Q.(y,£), we denote the principal parts of the characteristic

polynomials P(y,&) and Q(y,¢) (y € 2, &€ R™*) respectively. Clearly we

have

(10) Pm(yy E)Qn(yy £ =0

for all y € 2, and all ¢ R**'. It follows from (10) that P,(y,& =0 for
all y€ 2, and all ¢ R**', Hence we have m =0, This is a contradic-
tion, since Py(y,&) = (MQ))(y) in 2,. Therefore n, as well as m, identically
vanishes in 2.  Thus we can assert that M is equal to an operator of
multiplication by a nonvanishing factor. This completes the proof of
Lemma 5.

Proof of Proposition. Let L be an operator of the form (1) with coeffi-
cients in C®(2). Assume that the condition (3) is fulfiled. The lemmas
1,2 and 3 show us that L is not analytic-hypoelliptic in 2. In the same
way, we can deduce from the lemmas 2 and 4 that the principal part L,
of an operator L of the form (1) with coefficients in C=(2) is not hypoelliptic
in any subdomain £’ of £ under the condition (3), since if L, is hypoelliptic
in £, L, is solvable in a neighbourhood of each point of 2 and L,
satisfies the condition H at every point of £’.

Next, we are going to show that L with coefficients in C(2) is not
hypoelliptic in £ under the condition (3). Assume that L 1is hypoelliptic
in 2 and the condition (3) holds. If there exists a solution v of the equa-
tion Ly =0 in a subdomain 2, of 2 such that » does not vanish in 2,, we
can construct a function & € C*(2,) satistying

Lk = a.

In fact we have only to take %# = —logwv. (Here note that v is in C=(2,)
by the assumption on L and that we may, without loss of generality, assume
that the range of » is in the upper half-complex plane). By the same
method as in the proof of Lemma 1, it follows that L, is hypoelliptic in
©2,. This is a contradiction. Therefore v vanishes in every open set where
Lv vanishes. On the other hand, by Lemma 4 and the assumption on
L, L satisfies the condition H at each point of 2. From this and Lemma
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2, we can conclude that L is solvable in some subdomain 2, of 2. Hence
the equation

(11) Lu=7f

has a solution # € C*(2,) for every fe C3(2,). Thus we can more generally
assert that the equation (11) has a unique solution # e C=(2,) for every
f e (). Hence L is bijective and continuous mapping on C*(2,)
onto itself. By the open mapping theorem of Banach, the inverse mapping
of L is also continuous. Therefore we can apply Lemma 5 to M= L.
That is, L is equal, in £, to an operator of multiplication by a function
in C°(2,). Since this contradicts the condition (3), the proof is complete.

Remark. The author was informed that Mr. A. Yoshikawa had proved
the following as an application of Lemma 4: If L, of the form (2) with
coefficients in C“(2) satisfying the condition (3) is hypoelliptic in £, then
n=1 (see [5]).
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