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1. Introduction
For positive integral n and positive real xu ..., xn let

Sn(xu ...,*„) = £ * (1)
r = 1 X r + 1 + X r + 2

where
xn+r = xr (allr) (2)

and let

A(«) = - inf Sn(xu ...,*„) (3)
«x, xn

In a recent paper (3) Rankin has proved that A(«)^0-3307..., thus improving
the inequality X{n)^{j2-\) = 0-3047..., which he had obtained in 1957
(see (3)).

It is also known (1), (2) that

n

In this paper we shall prove in Theorem 1 that A ( n ) ^ | ( \ / 2 ~ i ) = 0-4571....
We shall give two proofs of this result. The first is based on more elementary

ideas than the second and is also simpler and shorter. The second, which was
obtained before the first, will only be given in outline. It is based essentially
on Rankin's method of proof in which properties of convex functions were
used. Our first proof also uses certain ideas introduced by Rankin.

We shall prove also Theorem 2, which is a slight improvement of Theorem 1
for odd n, and Theorem 3, which is an extension of Theorems 1 and 2.

2. First Proof of Theorems 1 and 2
Following Rankin, we write

Ux0, ..., xL+l) = Lf X~ (4)
r = O Xr+l+Xr + 2

for positive integral L and positive real x0, ..., x t + 1 .

t See note at the end of this paper.
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Lemma 1. If x1-^x2-^...^xL and xL^xL+u then <j>L(x0, ..., x t + 1 )
^L(XO> •••> xL), where

il/L(x0, ...,xL)

_ XO , xl + X2 _^ X3+X4. xL-4 + xL-3 , xL-2+XL-l n QAA\

X3 + X4 X5+X6 XL~ 2^ 2

*L-3+
XL-2

XL-1+XL

(2±xLemma 2. The functions - (2±x — 1) increase steadily for x>0.

Lemma 3. The function 2x — x decreases steadily for 0 ^ x ̂  $.
These three lemmas have obvious proofs.
To prove the theorem itself, let alt ..., as+1 be a set of integers for which

(5)

= l, ..., s).

Then, from (1), (2) and (4),
S

S n ( x u ..., X n ) = X 0afc+,-<,„(*<.„> •••' *<.„+.+ l ) ( 6 )
* = 1

s

= 2-i r a k + i - o k C - ^ a k ' • • • > xak + i)>
k = 1

by Lemma 1. Using the expressions given in Lemma 1 for the terms in the
last sum we see that (this sum) + ic = a sum of ^(n+s+c) terms whose product
is 2~s, where

c = the number of even ak+1 — ak for l^k^s (7)
Thus

- 2 s

Sn(x1 ; . . . , x B ) ^

= (2n+s+c~l)s-\ s F(s, c), (8)
2s 2

by the inequality between arithmetic and geometric means.
We shall prove later

Lemma 4. F(s, c)^n(J2-±) (n even), (9)

2~2lT- — ) (nodd) (10)
In /

{
From (3) and (8) and Lemmas 3 and 4 we then obtain the following results.

Theorem 1. A ( n ) ^ K V 2 " i ) = 0-4571....

Theorem 2.

^ ^ ^ l A > ̂ (^2 - i ) = 0-4571... (n odd).
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Theorems 1 and 2 respectively contain the best known lower bounds for
A(ri) for even and odd «^7. (See note at the end of this paper.)

To prove Lemma 4 we consider separately two main cases, (i) s^[i(n+1)]
and (ii) J ^ [ | ( ? H - 1 ) ] . It is convenient to make (i) and (ii), which together
exhaust all possibilities, overlap.

Case (i): l ^ sg[K« + l)]. Using (5) and (7), we find that O^c^s («
even) and 0^-c^s— 1 (n odd).

Subcase 1: n even. Clearly O^cgs^in . Thus, from (8) and Lemma 2,

F(s, c)^F(s, s) = £ ± ^ (2"~^ -1) ^ + ^ = G(s).
n 4 4

Also, by Lemma 2, G(s)^G(in) = \nQl-\), and (9) is proved.

Subcase 2: n odd. Clearly 0^c^s-l^i(n-l). Thus, from (8) and
Lemma 2,

F(s, c)^F(s, s-l)= n~l + 2s
 (2^rbi _i) «zl + ^±i = H(s).

n— 1 4 4
Also, by Lemma 2,

and (10) follows.
Case,(ii): [ i (n+l)]g5^n. Using (5) and (7), we have that 0^c^n—s,

and so from (8) and Lemma 2,

F(s, c)^F(s, n—s) = \n I 2 n

Hence, by Lemma 3, (9) and (10) follow, since s^in (n even) and s^
(n odd).

This concludes the proof of Lemma 4, and hence of Theorems 1 and 2.

3. Second Proof of Theorems 1 and 2
For positive real t and non-negative real x we define functions f,(x), g,(x),

F,(x) and G,(x) as follows:

F,(x)=2-f,(x*t) = x

- 2 t

G.W = -3,(xi f) = ^

E.M.S.—F
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It is seen that /2(x) - F2(x) = /(x) is the function fix) used by Rankin. The
functions denned above are all convex functions of logx for x>0, but the
only convexity property we shall use is that of f(x). This and some other
properties of /(x) are given in Lemma 1 of (3), from which we have

Lemma 5. /(x) is a convex function of'log x for x>0. Further,

forx^O.
Lemma 6. For t^t'>0 and x^0, G,(x)^Ft(x)^iv(x).
For JC^-J, Lemma 6 follows if we use the fact that, for t>0,

- l o g l l — I > — so that ( l + - >e.
*\ t+lj t + l \ t)

For x ^ i , Lemma 6 follows since G,{x) — Ft(x) and F,(x) — F,-(x) have
zero minima at x = 22/t and x = i respectively.

From Lemma 1 we obtain
Lemma 7. 7 /"x 1 ^x 2 ^ . . .^x L andxL^xt + 1, then

cf>L(x0, ..., xL + 1)^gL(x0/xL) (L odd),

^fL(x0/xL) (L even).
The particular cases Z.^2 are included in Lemmas 2 and 3 of (3). The

proof of Lemma 7 is straightforward except when L is even and 0 ̂  xo/xL g 2 ~ *L,
in which case we use the facts that

x3+x4

\ L I J 2X

and

— h(x, u ) ^
du

From Lemmas 5 to 7 we easily obtain

Lemma 8. IfL^l and x = xo/xL,rthen <f>L(x0, ..., xL+1)^Lf(xL).
We now use the equality (6). Suppose that, in the sum on the right-hand

side of (6), the number of terms for which ak+1— ak is unity is n—p and
that the product of the corresponding xak/xOfctl is x. Then, since p^n, using
(8) and Lemmas 3, 5 and 8, we have

_ 2 1

2Sn(x1, ..., xn)^pf(x p) + {n-p)x"-p

Theorem 1 then follows from (3).
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This method can also be modified to give Theorem 2. If at least one of the
(ak + l—ak) is unity, then p^n— 1 and the modification is straightforward. If
not, since n is odd, there is a A; for which ak + 1— ak is odd and has the value
n—p (say) ^ 3 . Let xajxak+l = x. Then, since p^n—l, we have by (8)
and Lemmas 2, 5 and 8, that

2Sn(x1, ...,xn)^

= 1 , - 1 V

" V 2n
Using (3), we thus complete the proof of Theorem 2.

4. Extensions of Theorems 1 and 2
Both methods of proof enable us to extend Theorems 1 and 2. Their

extensions are given in

Theorem 3. Let n be a positive integer, let xn+r = xr>0 for all r, and let
Hr(u, v) (for each positive rrgw) be a homogeneous function in u, v of degree d
satisfying the inequalities

0<Hr(u, v)^iH£l, l)(w

0<H,(u,v)^Hr(l, l)ud

Then
1 " x^
-maxtf r ( l> 1) X — rW2-i (n even),
n r r = i Hr(xr+1, xr+2)

/2-i (nodd).
2n

The most general linear and quadratic forms Hr(u, v) satisfying the con-
ditions of the theorem are of the types

Hr(u, v) = au + bv (a^b^O, a + b>0)
and

Hr(u, v) = au2 + buv + cv2 (a^c^O, a + b^cgi— b, a+b + c>0).
Note that the sum appearing in the conclusion of the theorem is cyclic if

the Hr(u, v) are independent of r.

From Theorem 3 we deduce (for example) the

Corollary. Ifn is a positive integer and xn+r = xr>0for all r, then

2 A x2
(i) -

n r = i 2xr+1— xr <h2

and (ii) -

In
4

« r = 1 3 x r + 1 + X r + 2 + I X r + 1 -X r
+ 2

U2-\ (neven),

\>sj2-\ (n odd).
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Remark, (ii) of the corollary implies Theorems 1 and 2, and (i) of the corollary.
This follows from the facts that, for positive u and v,

3u+v+\ u—v \7>2(u+v), i.e. | u—v \^v—u, and

3u2+v2 + \ u2-v2 \^2(2u2-uv+v2), i.e. u+v^\ u-v \.

Note (added in proof). I am grateful to Professor Rankin for informing me
that Djokovic has proved that A(8) = \. From this result I was able to deduce
that A(7) = ^. Proofs of these results will appear shortly in Proc. Glasgow Math.
Assoc.

I have proved that A(n)^0-4612... in a sequel to the present paper, to appear
soon in these Proceedings.
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