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1. Introduction
For positive integral n and positive real x, ..., x, let

Sa(X15 ooes X,) = Z PN ¢y
=1 xr+1+xr+2
where
Xpar=X, @7, cooiiii 3]
and let
A= A0 S, (e e X oo, 3)
N xy,. Xn

In a recent paper (3) Rankin has proved that A(n) =0-3307..., thus improving
the inequality A(n)=3(,/2—%) = 0-3047..., which he had obtained in 1957
(see (3)).

It is also known (1), (2) that

W(m=13 (n=6),
>3 (21
n

In this paper we shall prove in Theorem 1 that A(n)g%(\/ 2—1) = 0-4571....

We shall give two proofs of this result. The first is based on more elementary
ideas than the second and is also simpler and shorter. The second, which was
obtained before the first, will only be given in outline. It is based essentially
on Rankin’s method of proof in which properties of convex functions were
used. Our first proof also uses certain ideas introduced by Rankin.

We shall prove also Theorem 2, which is a slight improvement of Theorem 1
for odd n, and Theorem 3, which is an extension of Theorems 1 and 2.

2. First Proof of Theorems 1 and 2

Following Rankin, we write
L-1
xr
¢L(x0’ ey xL+ 1) = Z T tietcssceceretrcrreansee (4)
r=0Xpp1 X2
for positive integral L and positive real xg, ..., X7 4+¢.

1 See note at the end of this paper.
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Lemma 1. If x;Sx,S..Sx; and x;2x;,,, then ¢ (xg, ..., Xp4,)
'>—-‘I/L(x09 LX) xL)’ where

‘//L(xo’ rers xL)

= _Fo  EFX X ¥Xe | Tea¥ees | BeoatMor (g oqg),
Xy Xy X3+Xs Xs+Xg Xp—a+Xr-y 2x;
X, | X3+Xx X - -
= Fo ¥y | X¥Xe y  M-atNion Hoat¥ (L even).
X1+X, X3+xs Xs+Xg Xp-1+XL 2x;

Lemma 2. The functions )lc (2**—1) increase steadily for x>0.

Lemma 3. The function 2*— x decreases steadily for 0 x<1.
These three lemmas have obvious proofs.
To prove the theorem itself, let ay, ..., a,,,; be a set of integers for which

1fa,<...<a,Sn<ag y=a;+n, ccooeiiviinannnan.. &)
XooZXg 41 80d Xp 4 1 X0 425...2%,,,, (k=1,..,59).
Then, from (1), (2) and (4),
Sp(X1s -ees Xp) = i Oars1~a(Xas o> Xagarh1) covvvneernneennnns (6)

k=1
s

; k Zl .ﬁﬂk+ 1 “ak(xak’ vy xak+ 1)’
by Lemma 1. Using the expressions given in Lemma 1 for the terms in the
last sum we see that (this sum)+4c¢ = a sum of 4(n+s+¢) terms whose product
is 27°, where

¢ = the number of even a;,,—q, for 1<k<s. ...l @)
Thus

—2s
Sn(xls sees xn)z-‘}(n+s+0)2"+’+c—%c

—2s
= S e s+ P = F(s, e ®)
2s 2
by the inequality between arithmetic and geometric means.

We shall prove later

Lemma 4. F(s, )23n(J2-1) (neven),..c.coovviineniinnnnn, )
-1 b S |
=in|22n — — (nodd). .cocovnniniininiin, (10)
2n
From (3) and (8) and Lemmas 3 and 4 we then obtain the following results.
Theorem 1. An)=3({/2—3) =0-4571....
Theorem 2.

Am)=4 (2"—2_71 - "2;1> >1(/2=3) = 04571... (n odd).
n
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Theorems 1 and 2 respectively contain the best known lower bounds for
A(n) for even and odd n=7. (See note at the end of this paper.)

To prove Lemma 4 we consider separately two main cases, (i) s<[4(n+1)}]
and (ii) s=[3(n+1)]. It is convenient to make (i) and (ii), which together
exhaust all possibilities, overlap.

Case (i): 1=s=[3(n+1)]. Using (5) and (7), we find that 0<c<s (n
even) and 0L e<s—1 (n odd).

Subcase 1: n even. Clearly 0=c=<s=<4n. Thus, from (8) and Lemma 2,
F(s, 2 Fs, 5) = P52 (v 3s — 1)% + Z. = G(s).
Also, by Lemma 2, G(s)=G(3n) = %n(\/2—%), and (9) is proved.
Subcase 2: n odd. Clearly 0=c<s—1<3(n—1). Thus, from (8) and
Lemma 2,

F(s, )= F(s, s—1) =

Also, by Lemma 2,
n—1 _
H(s)ZH(n+1) ~1n (2? _nzly
2 2n

”_._1""_2““(2.. T+2s 1) 22 1. ’E‘:'_l = H(s).

and (10) follows.

Case, (ii): [3(n+1)]<s<n. Using (5) and (7), we have that 0<c<n—s,
and so from (8) and Lemma 2,

F(s, )= F(s, n—s) = 4n (ZT - n—s).
n

Hence, by Lemma 3, (9) and (10) follow, since s=4n (n even) and s24(n+1)
(n odd).

This concludes the proof of Lemma 4, and hence of Theorems 1 and 2.

3. Second Proof of Theorems 1 and 2

For positive real ¢t and non-negative real x we define functions f,(x), g(x),
F(x) and G (x) as follows:

£ = hoxe (0sxs27¥),
=5(t+2)e5c)_+:3 -3 (x227¥);
640 = e Dy |
R0 =2 j=x 0sxs4),
- ”Tzzrnxm - % x24);
6ix) = 2 04 = ‘“2'+1x+*
E.M.S.—F
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It is seen that f,(x) = F,(x) = f(x) is the function f(x) used by Rankin. The
functions defined above are all convex functions of log x for x>0, but the

only convexity property we shall use is that of f(x). This and some other
properties of f(x) are given in Lemma 1 of (3), from which we have
Lemma 5. f(x) is a convex function of log x for x>0. Further,

Sz~

Jor x=0.

Lemma 6. For t=t' >0 and x=0, G (x)= F{(x)= F,(x).
For x£%, Lemma 6 follows if we use the fact that, for 1>0,

1 1 1 t+1
—log|1— — ) > — so that <1+—) >e.
t+1 t+1 t

For x=1, Lemma 6 follows since G,(x)—F/(x) and F/(x)—F,(x) have
zero minima at x = 2%’* and x = 4 respectively.
From Lemma 1 we obtain
Lemma 7. If x, <x,=...Zx; and x =Xy ., then
$r(Xos s XL 41) 29 (x0/xL) (L 0dd),
2 fi(xo/x.) (L even).
The particular cases L<2 are included in Lemmas 2 and 3 of (3). The

proof of Lemma 7 is straightforward except when L is even and 0= xo/x; <275,
in which case we use the facts that

’ X Xy +Xx Xp—3t+Xxp_ Xr-
Yr(Xgs ooy X)) = ——%— + L2 4 4 Em3 k=2 4 TEoL
X1+Xs  X3+Xxy Xp_1+Xg 2x;,

2 n
L Xo Lo X1 _ p¥o XL-1
2\xp _+x, 2x; x; x. )

aih(x, w)z20 (u=0,05x<27),
u

%

and

From Lemmas 5 to 7 we easily obtain

2

Lemma 8. IfL22 and x = xo[x 5 then ¢ (xo, ..., Xp+1) Z3LAXL).

We now use the equality (6). Suppose that, in the sum on the right-hand
side of (6), the number of terms for which a,,,—a; is unity is n—p and
that the product of the corresponding x, /x, ,, is x. Then, since p<n, using
(8) and Lemmas 3, 5 and 8, we have

28 (x5 - x,,)gpf(x_%)+(n—p)xn_—1;
gp(Z*x_Ilj—-})+(n—p)xn%i:

=n (2‘ - ﬂ) 2n(j2-3).
2n .

Theorem 1 then follows from (3).
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This method can also be modified to give Theorem 2. If at least one of the
(a;+1—ay) is unity, then p<n—1 and the modification is straightforward. If
not, since n is odd, there is a k for which a,,, —a, is odd and has the value

n—p (say) =3. Let x,/x,,, = x. Then, since p<n—1, we have by (8)
and Lemmas 2, 5 and §, that

28,(x1> -0 X)ZBf(x" P)+2g.. p(X)

n+p+1 2,.+,,+1_1 n—1+n+1
n—1 2 2

2"2_711 — r_l__l_
2n

Using (3), we thus complete the proof of Theorem 2.

IIV

4. Extensions of Theorems 1 and 2

Both methods of proof enable us to extend Theorems 1 and 2. Their
extensions are given in

Theorem 3. Let n be a positive integer, let x,,, = x,>0 for all r, and let
H/(u, v) (for each positive r<n) be a homogeneous function in u, v of degree d
satisfying the inequalities
0<H,/(u, )<%H,(1 D@ +0vY  (w=u>0),
O<H,(u, )< H(, Du* (u=v>0).
Then

1 max H(1, 1) i >./2-1 (n even),
n r =

1 Hr(xr+ls r+2) -

The most general linear and quadratic forms H,(u, v) satisfying the con-
ditions of the theorem are of the types
4 H(u,v) = au+bv (a=2b=0, a+5b>0)
o H(u, v) = au’ +buv+cv* (a=zc20,a+b2c=—b, a+b+c>0).
Note that the sum appearing in the conclusion of the theorem is cyclic if
the H,(u, v) are independent of r.
From Theorem 3 we deduce (for example) the

Corollary If n is a positive integer and x, ., = x,>0 for all r, then
n 2

(1) - X 3 J2-1 (n even),
nr=1 2xr+1 Xet1Xps+2F X042 P R
2 28—
4 = 2n
n x,.
and (i) = Y >/2—% (n odd).

nr=13%,41+X 42+ r+1_'xr+2l
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Remark. (ii) of the corollary implies Theorems 1 and 2, and (i) of the corollary.

This follows from the facts that, for positive © and v,
S3utv+|u—v |22u+v), ie |u—v|=v—u, and
34+ 024 1 —v? | 22Qu —uv+1?), ie. u+v=|u—v|.

Note (added in proof). I am grateful to Professor Rankin for informing me
that Djokovi¢ has proved that 1(8) = 4. From this result I was able to deduce
that A(7) = 4. Proofs of these results will appear shortly in Proc. Glasgow Math.
Assoc.

I have proved that A(n) >0-4612... in a sequel to the present paper, to appear
soon in these Proceedings.
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