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ABSTRACT

The choice of a copula model from limited data is a hard but important
task. Motivated by the visual patterns that different copula models produce in
smoothed density heatmaps, we consider copula model selection as an image
recognition problem. We extract image features from heatmaps using the
pre-trained AlexNet and present workflows for model selection that combine
image features with statistical information. We employ dimension reduction
via Principal Component and Linear Discriminant Analyses and use a Support
Vector Machine classifier. Simulation studies show that the use of image data
improves the accuracy of the copula model selection task, particularly in sce-
narios where sample sizes and correlations are low. This finding indicates that
transfer learning can support statistical procedures of model selection. We
demonstrate application of the proposed approach to the joint modelling of
weekly returns of the MSCI and RISX indices.
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1 INTRODUCTION

Copulas are dependence modelling tools of fundamental importance in
actuarial and financial risk management (Frees and Valdez 1998; Denuit ez al.
2006; McNeil et al. 2015) and fields beyond (e.g. Genest and Favre 2007). An
extensive literature has emerged on specifically actuarial applications of copula
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FIGURE 1. Examples of heatmap images of smoothed bivariate densities for different copula models
(n=2000, 7 =0.3).

modelling, in credibility (Frees and Wang 2005), stochastic reserving (Shi and
Frees 2011; Shi 2014; Abdallah et al. 2015), and claims modelling (Czado et al.
2012; Shi and Valdez 2014; Hu ez al. 2021; Tzougas and Pignatelli di Cerchiara
2021). At the same time, the problem of choosing a copula model based on
datasets that are of limited size is a non-trivial task, as evidenced in various
strands of the literature, indicatively including: seminal work on copula
goodness-of-fit (Genest et al. 2009); the study of practical problems arising in
insurance risk management (Shaw et a/. 2010); the impact of copula choice
on portfolio risk (McNeil et al. 2015, Section 11.1.5); and the consideration
of dependence uncertainty in a regulatory framework (Embrechts et al. 2014).
For a historical perspective on the application of copulas to insurance risk
modelling, see the interview of Edward (Jed) Frees, by Genest and Scherer
(2020).

The different properties of alternative copula models are often visualised by
joint density contour plots or heatmaps. For example, in Figure 1, we show
heatmap images of smoothed bivariate densities for six well-known copula
models, with standard Normal margins. It is obvious that different copula
models have heatmaps with different patterns, reflecting for example differ-
ent degrees of skewness. This observation motivates our research question: Do
images of smoothed joint densities convey useful information that can improve
the accuracy of copula model selection procedures?
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Our paper seeks to address this question, in the context of small data sizes
and bivariate copula models. Small data sizes, for example less than 250, make
the copula model selection problem hard, hence an improvement offered by
image data would be welcome. (Conversely, given the asymptotic consistency
of statistical procedures, there is less scope for improvement when data sizes
are large.) Furthermore, for small data sizes, it is natural to focus on the sim-
plest models, given the likely lack of statistical power to detect more complex
model features. In the case where datasets are richer, the problem the modeller
faces is not so much one of selecting between different models, but more one
of designing a model that is flexible enough to reflect idiosyncratic features of
the data, see for example Hofert et al. (2021).

Here, we treat bivariate copula density heatmaps as RGB images and exploit
the spatial patterns present in the images to aid bivariate copula selection. The
copula selection task is treated as an image recognition or classification task:
we classify a given copula sample to an element of a model set, based on its
density heatmap image.

One vital challenge in image recognition is to obtain good representations
of the images that can summarize well their distinct spatial patterns and thus
make the recognition task easier; this is known as representation learning.
Deep neural models have been demonstrated to be effective for representa-
tion learning, especially in the machine vision community (Bengio ez al. 2013).
We utilize a deep convolutional neural network, the AlexNet pre-trained by
the ImageNet dataset (Krizhevsky et al. 2012), to extract image features with
strong representation abilities. This is an example of transfer learning, that is,
the use of knowledge from addressing a particular problem, to a new task (Pan
and Yang 2009; Zhuang et al. 2020).

Instead of using the extracted image features to train a classifier directly,
we propose three additional amendments on them. First, the AlexNet image
features are high dimensional. To avoid potential problems induced by high
dimensionality, principal component analysis (PCA) (Wold et al. 1987) is
applied to reduce the dimensions of the extracted image features. Second, to
further enhance the representation ability of the features, summary statistics
are concatenated with image features to provide a more complete description
of copula samples. Lastly, we aim to make these features more discrimina-
tive via linear discriminant analysis (LDA), which projects the concatenated
features to a low-dimensional subspace where the observations from the same
classes are grouped close together, while those from different classes are pushed
apart (Yang and Jin 2006). Hence, the recognition task becomes easier on
this discriminative subspace. The features extracted by LDA are used as the
final representations of the copula samples to train the classifier. Support vec-
tor machine (SVM) is chosen as the classifier for the image recognition task,
because it is proven to be effective on various real-world applications (Tzotsos
and Argialas 2008; Islam et al. 2017; Sheykhmousa et al. 2020).

We test the performance of the proposed image recognition approach to
copula selection via simulation studies. We consider the six copula models of
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Figure 1 and evaluate the classification accuracy of our approach in different
scenarios, comparing to the statistical benchmark given by AIC. First, we con-
sider model selection when all training and testing instances arise for copula
samples with the same sample size and underlying rank correlation. While this
is not a realistic setting, it allows us to explore the performance of image recog-
nition for different problem parameters. We observe that image recognition
consistently outperforms AIC, except when the underlying rank correlation is
very high. The biggest improvement occurs in those scenarios of low sample
size and correlation, where the copula selection problem is the hardest.

Subsequently, we consider a more realistic scenario, where a copula model
needs to be selected for data with differing sample sizes and correlations, gen-
erated under any rotation of the six bivariate baseline copula models. In this
scenario, the heatmap images from the same copula model can present very dif-
ferent patterns, leading to substantial within-class variations. For that reason,
we propose to add a first data rotation step, based on sample statistics, with
the aim of converting the data to be positively correlated and skewed. Then, in
a second step, we apply the image recognition approach to images generated
from the rotated data.

We find that this two-step image recognition approach dominates AIC for
the copula model selection task, again except in the situation of high cor-
relations. This motivates our final proposal to combine the two-step image
recognition approach with AIC. In this combined approach, AIC values (cal-
culated on the rotated data) are concatenated with the image features and
statistical features before applying LDA. Experiments show that the combined
approach improves on both AIC and image recognition-based model selection.

Finally, we apply the copula selection framework developed in the paper
to modelling joint weekly losses of the MSCI World Index and the ICMR
(Re)Insurance Specialty Index. The dependence between those two indices is
important as it reflects inter-industry diversification and thus (re)insurers’ cap-
ital availability. We find that both the strength of correlation and the copula
family selected vary over time, with the t copula being the most frequent choice.

The paper is organised as follows. In Section 2, we give preliminaries on cop-
ula modelling. Section 3 introduces the image recognition approach, with fixed
correlation and sample sizes. In Section 4, we discuss the two-step approach
to copula model selection for more general datasets. Experimental results
are summarised within each section. The real-data application is presented in
Section 5. Section 6 presents our concluding remarks.

2 COPULAS

2.1 Copula models and their properties

Consider continuous random variables X, Y with marginal distributions F, G
and joint distribution H, on a probability space (2, F, P). The copula of (X,Y)
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is a distribution on [0, 1]* with uniform marginals, such that
H(x, y) = C(F(x), G()). 2.1

Denote U =F(X), V=G(Y)andalso U=1— U, V=1 — V. Then it follows
from (2.1) that C is the joint distribution of (U, V), that is,

Clu,v)=P(U <u, V<v), (uv)el0, 1. (2.2)

Analogously, the joint distribution of (U, V) is called the survival copula of
(X,Y) and denoted by C.

Definition (2.1) implies a separation of a random vector’s marginal
behaviour from its dependence structure, which has enabled copulas to be
widely employed as multivariate modelling tools. For detailed treatments of
copulas, including applications in insurance and financial risk management,
see Nelsen (2007), Denuit et al. (2006), McNeil et al. (2015). We note that the
copulas of discontinuous random vectors are not uniquely defined — in such
a case the variables U, V' as constructed above are not uniform. However,
we can always uniquely determine a copula for X,Y via (2.2), with uni-
form variables U,V constructed via the generalised distributional transform
of Riischendorf and de Valk (1993).!

In risk management, the specific properties of different copula families are
important. Assume that X and Y represent losses, such that high (joint) out-
comes are associated with adverse events. Then, beyond considering (rank)
correlation measures, it is important to model the extent to which X and Y
will jointly achieve high values. A typical way in which the literature considers
the propensity of joint extremes is via the coefficients of upper and lower tail
dependence (e.g. McNeil et al. 2015, Section 7.2.4):

Cl—-p,1-—
deJm:nmP(Y>G4@nX>F4@»=um—L_&__@,
p—1 p—1 1— )/
C
xduymznmP(Y<G4@HX<F4@»:hm_Q£Z
p—0 p—0 p
Models for which Ay or Az are non-zero are, respectively, called upper or lower

tail dependent.

While tail dependence is an asymptotic property, a distinct issue is the
skewness or asymmetry of a copula. A copula is radially symmetric if
C(1 —u,1 —v)=C(u,v). Various measures of bivariate skewness have been
proposed by Rosco and Joe (2013). Here we focus on the moment-based
measure ¢, defined for k € (1, o0) as:

;aamm:mpy+v—u%gmU+V—D]

Implications of the choice of the parameter k are briefly explored in Rosco
and Joe (2013).

A further property of bivariate copulas relates to the extent that obser-
vations are concentrated in the four corners of the unit box, even when

https://doi.org/10.1017/asb.2022.12 Published online by Cambridge University Press


https://doi.org/10.1017/asb.2022.12

712 A. TSANAKAS AND R. ZHU

correlation is low, leading to spider-like pattern. This property, which distin-
guishes, for example, a ¢ from a Gaussian copula model, is termed arachnitude
in Shaw et al. (2010), see also Androschuck et al. (2017), Genest et al. (2019).
We measure arachnitude in the way proposed by Shaw et al. (2010), that is, as

U, V)= p ((U —0.52,(V — 0.5)2) ,

where p is the Pearson (product-moment) correlation.
In this paper, we consider six bivariate copula models:

1. The Gaussian copula is probably the most widely used copula model. It
is radially symmetric and tail independent.

2. The t copula is radially symmetric but both upper- and lower-tail depen-
dent. It admits a degree of freedom parameter v; Ay, Ay decrease in v,
while for v — oo, the # copula reduces to a Gaussian.

3. The Frank copula is radially symmetric and tail independent.

4. The Gumbel copula, commonly used in risk management, is positively
skewed and upper tail dependent.

5. The Joe copula is positively skewed and upper tail dependent.

6. The Pareto copula (or Clayton survival copula), is positively skewed and
upper tail dependent.

We do not provide technical detail on these models, as they are all well
known and exhaustively discussed in the literature (Denuit et al. 2006; Nelsen
2007; McNeil et al. 2015). The Gaussian and ¢ models are, respectively, the
copulas of bivariate Normal and ¢ distributions; the remaining four models
belong to the family of Archimedean copulas. All models, except the ¢ copula,
have a single parameter, which can be calibrated to (e.g. Kendall’s) rank cor-
relation or estimated by MLE. The r model has the degrees of freedom v as an
additional parameter.

The properties of different copula families are illustrated in Figure 1, which
shows heatmaps of smoothed bivariate densities, each derived from samples of
size n = 2000, with underlying Kendall rank correlation T = 0.3. While copulas
are defined as distributions with uniform marginals, here and in the sequel,
before producing such plots, we transform the marginals to standard normals,
as we find that this transformation enables a better visual inspection of the
dependence pattern. The distinct patterns of the different models are visible.
At the same time, there is substantial similarity between some of the resulting
heatmaps (e.g. Gaussian and #; Joe and Pareto), which indicates that selecting
the correct model from data is not a trivial task. This is of course even more
challenging for smaller datasets. We show heatmaps from the Gaussian and t
families in Figure 2, comparing plots generated from bivariate samples of sizes
n =100 and 2000. It is apparent that with the smaller sample size the observed
patterns become substantially noisier.
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(@) (b)

Gaussian copula (n = 2000). Gaussian copula (n = 100).
() (d)

t copula (v =4, n = 2000). t copula (v =4, n = 100).

FIGURE 2. Comparison of heatmap images of smoothed bivariate densities for sample sizes n = 100, 2000
(t=0.3).

2.2 Estimation and model selection

Consider a sample from (X,Y), (x1, y1), ..., (xu, yn). Realisations of the ran-
dom vector (U, V) are not directly observable.” As a result, it is common to
construct copula pseudo-observations (e.g. Genest et al. 2009). Let ri(z) be

the rank of observation z; in a univariate sample z=(zy, ..., z,). Then, the
pseudo-observations are given by
TC N TS)
a4l T a4 1

From the pseudo-observations (u;, v;), i=1,...,n, we can readily estimate
skewness and arachnitude, denoting the corresponding estimates by ¢, &.
Furthermore, we denote the sample version of Kendall’s rank correlation as 7.

From the observations (u;,v;), i=1,...,n, we can readily estimate
skewness and arachnitude, denoting the corresponding estimates by ¢, &.
Furthermore, we denote the sample version of Kendall’s rank correlation as 7.

For a parametric family of copulas C(’”)( -;0), 0 € ©,,, the parameters 6
can be estimated by maximum likelihood estimation, treating the pseudo-
observations as if they are a random sample from C(.;9). If we are
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considering a family of copula models {C", m € M}, likelihood methods also
offer model selection criteria. Let ¢ be the bivariate density corresponding
to copula C™ and 6 the (k,-dimensional) estimate of the corresponding
model parameter. The Akaike and Bayes Information criteria are given by

n
AICY™ =2k, — 2 Z log ¢ (u,-, vi;é(”’)> ,

i=1

n
BIC"™ = k,, logn —2 Z log ¢ (ui, vi;é(”’)) .
i=1

The selected model is then the one with the lowest AIC”™ or BIC". A cross-
validated log-likelihood criterion is formulated by (Grenneberg and Hjort
2014, Equation (42)); see Jordanger and Tjestheim (2014) for a simulation
study. Other model selection criteria can be constructed using goodness-of-
fit statistics; for example Kularatne ef al. (2021) employ the Cramer-von Mises
statistic, the use of which (including variations) in copula goodness-of-fit test-
ing has been thoroughly explored by Genest et al. (2009). Bayesian copula
selection is discussed in Huard ez al. (2006).

In this paper, we use as a statistical benchmark for model selection the AIC.?

3 AN IMAGE RECOGNITION-BASED APPROACH TO COPULA MODEL
SELECTION

In this section, we introduce a new methodology, which uses image recog-
nition to select a suitable bivariate copula from a sample, by classifying its
density heatmap image to one of the six models we consider. The recogni-
tion process is designed to incorporate rich information that can well represent
the samples and is discriminative to make the classification task easier. The
generation of the heatmap images is introduced first, and then the image recog-
nition approach is discussed in detail. Subsequently, experimental results are
shown to demonstrate the effectiveness of this approach for copula model
selection.

We note that in the present section we apply the classification/copula
model selection framework to simulated data with very benign features, with
all images in any given dataset derived from samples with the same sam-
ple size and underlying correlation. This is of course an unrealistic testing
environment, with classes that are more homogeneous than in any practi-
cal application. Nonetheless, the setting of this section allows us to evaluate
whether image recognition can be effective as a copula selection tool (and
under which conditions). The restrictive assumptions of this section are relaxed
in the two-step approach of Section 4.
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3.1 Generating heatmap images of smoothed bivariate densities

Here we outline how the image datasets are generated, on which classifiers

are trained to perform the copula selection task. Each image is a smoothed

bivariate density heatmap, generated from a simulated pseudo-sample from

(U,V), drawn from a given copula specification C?)(-;0), 6 € © me M.
For each image dataset that we generate the following hold:

(a) The dataset contains R =20, 000 images.

(b) Each image is derived from a bivariate sample of size n, drawn from
one of the 6 copula families we consider in this paper, M = MU M,,
where M ={Gaussian, ¢, Frank} and M, ={Gumbel, Joe, Pareto}
contain radially symmetric and asymmetric (positively skewed) models
respectively. Each dataset contains approximately the same number of
images from each copula family.

(c) In each dataset, all images are generated from simulated samples with
a fixed sample size n € {100, 150, 200, 250} and (population) Kendall €
{0.1,0.3,0.5,0.7,0.9}. Hence we have 4 x 5 =20 datasets, correspond-
ing to different (n, T) combinations, each containing R images.

(d) All images are generated from bivariate samples that have positive
empirical rank correlation and positive empirical skewness. This means
that samples that display negative rank correlation are rejected and not
used to produce images in the dataset. Furthermore, samples that dis-
play negative sample skewness, when the underlying copula model has
positive skewness, are also rejected.*

(e) Images are generated based on pseudo-observations from the copula
samples. Furthermore, to generate the heatmap images, we transform
pseudo-observations to have a standard normal marginal distribution.
This transformation is employed only for image generating purposes
and reflects no assumption of normality for the marginal distribution of
the underlying data.

The precise process by which images are generated is given in the
Supplementary Material (Appendix C, Algorithm 1). All calculations are car-
ried out in R. For random number generation we use package copula (Yan
2007; Hofert et al. 2020). For AIC calculations, we use the package VineCopula
(Schepsmeier et al. 2021).

Joint densities are estimated on a 100x100 grid on [—3,3]* using an
axis-aligned bivariate normal kernel, by the function kde2d of the package
MASS, with bandwidths set to 1.3 times the values given by the heuristic
in (Venables and Ripley 2002, Equation (5.5)). Specifically, for a bivariate
sample (x;,y;), j=1,...,n, the density estimate at an arbitrary point (x,y) is
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FIGURE 3. The workflow of the image recognition approach for copula model selection.

given by

n
o((x —xj)/h)p((y — yj)/ h

f(X,y)=Z ( ] x) ( J y),

: hxhy
j=1
where ¢ is the standard normal density and /i, i, are the bandwidths used.
Subsequently, the values of the bivariate density estimate / on the grid are
used to generate a heatmap, via the image function. The heatmap consists of a
100x 100 grid of coloured rectangles with colours corresponding to the values
of the density estimate. The heatmap is then saved as a png image file.

3.2 The image recognition approach

Now we present the image recognition approach with the complete workflow
shown in Figure 3. Similarly to all classification tasks, the image recognition
approach consists of a training phase to extract features and train a classifier,
and a test phase to predict a copula model for a test sample. In Figure 3, the
training phase is presented by the black flow while the test phase is presented
by the red flow.
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Input: RGB images fc1 fc2
fc3
Output: predicted

., distribution of
class labels

Max
pooling pooling pooling 4096 4096

FIGURE 4. The architecture of the AlexNet.

3.2.1 The training phase

The training phase contains two parts: (1) the representation learning part to
extract features with strong representation and discrimination abilities and (2)
the classification part to train an effective classifier.

Representation learning. In the representation learning part, two types of fea-
tures are extracted from the training copula samples: pure image features
and statistical features. The pure image features are extracted from the train-
ing heatmap images by the pretrained AlexNet that has been trained on the
ImageNet dataset with 1000 classes of high-resolution images (Deng et al.
2009). Given the complex nature of the images in the ImageNet dataset and
the competitive classification performance of AlexNet, we believe that this pre-
trained network can provide good representations of our heatmap images of
relatively simple patterns.

AlexNet is a deep convolutional neural network, consisting of layers with
three-dimensional volumes of neurons. The architecture of AlexNet is depicted
in Figure 4, with an input layer of RGB images, five convolutional layers and
three fully connected layers. The input layer is of dimension 227 x 227 x 3:
227 and 227 are the width and height of the layer, which represent the width
and height of the image, while 3 is the depth of the layer, representing the red,
green and blue channels of the RGB image. The convolutional layer contains
neurons that are only connected to a small local region in the previous layer,
each computing a dot product between the filters and the region they are con-
nected to, that is the convolution between the filters and input regions. Let us
take the first convolutional layer as an example. The filters of this layer are of
dimension 11 x 11 x 3 and each of them captures different features from the
input image, for example edge or colour. By sliding each filter across the width
and height of the input layer and applying the convolution operation, we can
obtain a two-dimensional activation map that contains the responses of the
filter at every spatial position. Specifically, we reshape the 11 x 11 x 3 volume
of the input and filter to two 11 x 11 x 3 =363 dimensional column vectors.
The dot product of the two vectors is fed to the RELU activation function,
max{0, x}, to capture the nonlinearity of features. The output from the activa-
tion function is called activation and fills one entry in the activation map. This
process leads to a volume of 55 x 55 x 96 neurons in the first convolutional
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FIGURE 5. Left: The heatmap image of a Gaussian copula sample. Right: The activations of the first
convolutional layer of AlexNet for the sample.

layer, with 96 filters. The max pooling layers between the convolutional layers
can effectively reduce the number of parameters and control overfitting.

The outputs of the convolutional layers are then fed to fully connected lay-
ers to provide the predicted distribution of the class labels, that is the predicted
probabilities for each of the 1000 classes considered. Note that we do not use
the classification output of AlexNet, as the 1000 classes used are not relevant
to our copula selection task; however, the representation ability of the network
allows us to use it for feature extraction from our heatmap images. To demon-
strate the good representation ability of the pretrained AlexNet, we show the
activation maps of a Gaussian copula sample for all 96 filters of the first con-
volutional layer in Figure 5, with each square presenting the activation map
of one filter. The bright pixels reflect high activations, which means that they
make substantial contributions to the extracted features. It is obvious that
the contour shapes of the Gaussian sample can be well captured by the first
convolutional layer.

We input the training heatmap images to the pretrained AlexNet, and
extract 4096 features from the second fully connected layer, ‘fc2’ in Figure 4,
which is the last feature extraction layer before working out predicted proba-
bilities. This layer provides high-level abstract features that can well represent
the images. To be precise, each training heatmap image is represented by a
4096-dimensional vector le € R4096x1 (i=1,2,...,N), where N is the num-
ber of training copula samples, and the image features of the whole training set
is denoted as XM =[x}, x}, ..., x}]T e RV*409_(Note that N here is differ-
ent to the size of the whole data set R, as the generated images for each dataset
will be subsequently split into training and test samples.)

The high number of image features can lead to potential problems in clas-
sification, for example the curse of dimensionality and high computational
cost. Thus, we reduce the number of image features before training a classi-
fier. This dimension reduction step is achieved by principal component analysis
(PCA), which is a widely adopted unsupervised dimension reduction method
that can provide low-dimensional yet effective representations of the original
high-dimensional data (Wold et al. 1987). PCA projects data from the original
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feature space to a low-dimensional subspace, spanned by the first few prin-
cipal components (PCs) that can explain most of the variation in data. This
can be achieved by applying the reduced singular value decomposition (SVD)
on the column-centred X Let V denote the matrix whose columns are the
PCs sorted by the singular values in a descending order. In this paper, we set
g = 150 to explain 99.9% of the variation in X . After PCA, the image features
of the training set become

XMP:(XM)CVISO ERNXISO, (31)

where (XM)¢ is derived by subtracting the column means of XM, Vs e
RA096x150 5 V with the first 150 columns. Thus, the image features now lie
in a 150-dimensional PC subspace.

Besides the pure image features extracted from AlexNet, we propose to
utilise some additional statistical features to enrich the description of the
training copula samples. Three summary statistics, Kendall’s rank correlation,
skewness and arachnitude are chosen as the statistical features. The statistical
features of each sample are denoted as x;g =, E)eR3>* i=1,2,...,N.

The low-dimensional image features and three statistical features are then
concatenated to provide a representation for the ith copula sample, x; =
[(XIMP)T, (xf)T]T e R13*1 where XIMP e R130x1 j5 the jth observation in XM”.
The feature matrix to represent all training copula samples is denoted as X =
[X1,X2, . ..,xn]T € RVX133 Before simply feeding this feature matrix to a clas-
sifier, we extract more compact and discriminative information to reflect the
differences between classes better and make the classification process easier.
For that purpose, we apply LDA on X. LDA is a well known supervised dimen-
sion reduction method that projects data to a subspace such that between-class
variation is maximised while within-class variation is minimised (Yang and Jin
2006). The classification task is easier on this subspace because the instances
from the same class are pulled close together while those from different classes
are pushed further away. By projecting X on the linear discriminant subspace,
we have

XP = XW e RV¥(K=D), (3.2)

where W e R!3*(K=1 contains the bases of the linear discriminant subspace
and K is the number of classes. LDA can provide at most a (K — 1)-
dimensional subspace. In this paper, six copula models are considered, thus the
LDA subspace is at most five-dimensional. Here, we take all five discriminative
dimensions provided by LDA.

Classification. Support vector machine (SVM) is chosen as the classifier for its
efficiency in many real-world applications (Tzotsos and Argialas 2008; Islam
et al. 2017; Sheykhmousa et al. 2020). The training set to train SVM contains
N pairs of observations {xf ,m,-}fi 1» Where xf € R>*! is the feature vector of
the ith observation obtained in the representation learning part and m; € M is
the corresponding copula model.
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SVM aims to find a separating hyperplane f(x) = qﬁ(xf.J YT'w + b for classifica-
tion by maximising the margin between two classes. The sign of the estimated
value of f(x) is used to distinguish the positive and negative classes. Thus,
the standard SVM can only be used for binary classification. To apply it in
our case with six classes, we adopt the one-versus-one strategy (Hastie et al.

2009). We apply SVM to pairs of classes, which means that (15) SVM classi-

fiers are trained. For the test observation x, we obtain (12<) classification results.

A majority vote is then applied to these classification results to determine the
class of x, that is the class with the highest vote is selected.

More detail on the calculations relating to PCA, LDA, and SVM is given in
the Supplementary Material (Appendix A).

3.2.2 The test phase

In the test phase, given one observed copula sample, we first extract its image
features xM € R4%6x! from the pretrained AlexNet and project them to the PC
subspace constructed in the training phase:

XM = Vi) e RO, (3.3)

where (xM)¢ is the centred x™ by the column means of X¥. The image fea-
tures are then concatenated with the summary statistics x2 € R3*! to form
the feature vector of the test copula sample, x; = [(xM)T, x%)T]T e R133x1,
We then project this vector to the linear discriminant subspace to obtain the
discriminative features for classification:

xP =wTx, e R¥!, (3.4)

The copula model is then selected by applying the trained SVM on x’.

3.3 Classification results on copula samples with fixed » and

3.3.1 Experimental settings

For each dataset with fixed n and 7, we randomly select 70% of the R = 20, 000
images to form the training set, with the remaining images used as a test set;
hence the training sample size is N =0.7 x R =14, 000. For SVM, the radial
basis function (RBF) kernel is chosen as the kernel function. The hyperparam-
eters associated with the SVM classifier are tuned by 10-fold cross-validation
on the training set. The classification accuracies of the image recognition
approach are recorded. Furthermore, we record the accuracy by which the
copula model is selected when using AIC as a criterion. To make the results
more reliable, the training/test random split process is repeated 20 times. Thus
for each combination of #n and 7, we record 20 classification accuracies for each
copula model selection method.
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FIGURE 6. Classification accuracies for fixed n and 7. The blue dashed curves represent the accuracies of
the image recognition approach while the red solid curves represent those of AIC.

3.3.2 Classification results

The classification results are shown in Figure 6, with each plot presenting the
accuracies of the two approaches with a given value of » and all values of 7. For
each plot, the horizontal axis represents the values of t, while the vertical axis
represents the classification accuracy. The mean classification accuracies of the
image recognition approach are shown by blue dashed curves while those of
AIC are shown by red solid curves.

It is clear that, generally, the classification accuracy increases as T increases
for each value of n, and also increases as # increases for each value of . This
pattern makes sense because the underlying model can be better described by
samples with larger n’s. The images generated with larger t’s are generally eas-
ier to classify, as the characteristics of the models are presented clearer when
t is larger. The image recognition approach can beat AIC when t is not high,
that is less than 0.7, and this is more obvious when » is small. This is encourag-
ing, as the improvement provided by the image recognition approach to select
copula models occurs for samples that are difficult to classify, that is those with
small n and . However, when 7 is large, the image recognition approach per-
forms apparently worse than AIC; moreover, beyond t = 0.7, the classification
accuracies of the image recognition approach start decreasing. A plausible rea-
son for this is that, when t is very large, the heatmap images of different copula
models exhibit very similar visual patterns and image recognition cannot easily
distinguish between them.
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To sum up, the preliminary experimental results on copula samples with
fixed n and T demonstrate the potential effectiveness of image recognition to
select copula models, especially when n and t are relatively small.

Finally, we note that the design of the copula selection process proposed in
this section entails some important decisions: the marginal distributions used
for plotting heatmaps and the dimensions of the PC and LD subspaces. In
the Supplementary Material (Appendix B.1), we provide robustness checks to
evaluate the extent to which classification performance is impacted by such
decisions.

4 SELECTING ROTATED COPULA MODELS

Encouraged by the results of Section 3, we here address the more realistic sce-
nario where n and t are not fixed. Furthermore, we allow t to be negative.
In particular, for asymmetric copula models, we consider all rotations, such
that each model in M, has now four distinct versions. We believe that this
addresses a realistic modelling scenario, as the classification approach does
not assume anything a priori about the sign of either the correlation or the
skewness of the underlying model.
In this section, we consider three distinct approaches:

1. Copula selection with AIC. This approach requires us to consider an
enlarged set of candidate models, which also includes the rotations of
the positively correlated and skewed models in M.

2. Image recognition with a two-step approach. In the first step, sample
statistics are used to assess the sign of correlation and skewness —
essentially trying to detect if elements of M have been rotated. Then,
the pseudo-samples are transformed to have positive correlation and
skewness. In the second step, heatmap images are generated from the
transformed samples and classified to models in M.

3. Combining image recognition with AIC. The same approach as in 2. is
followed, with the AIC of the models in M added as a feature in the
second step of the process. The motivation for this is to not miss out on
any information encoded in likelihood-based statistical criteria, which
is not present in image features.

The performance of the three copula model selection approaches is assessed
on a test set. In contrast to Section 3, for the two-step approaches of this sec-
tion we cannot validate the result of the classification algorithm on subsets of
the training set. In the training set, all copula samples are positively correlated
and skewed, to make the within-class variation smaller. However, this is not a
realistic testing scenario. Thus, in the test set, we consider copula samples that
may have negative or positive correlation and skewness. Before we discuss each
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of the three approaches in more depth, we describe the construction of this
test set.

4.1 Test set

We produce two test sets of S = 10, 000 bivariate copula pseudo-samples: one
with n € [25, 100] and the other with n € [100, 250], to test the classification per-
formance of the copula selection methods on different ranges of sample sizes.
These sample size ranges were chosen based on practical considerations. For
sample sizes that are large, criteria such as AIC will lead to optimal model
choices, which means that there is less scope for improvement from adding
image features, as already glanced from Figure 6. If on the other hand sam-
ple sizes are very small, the model selection errors will be inescapably high,
whichever method is used, and in such a situation a professional would typ-
ically prefer to use expert judgement. This leaves us with a ‘small-to-modest’
sample size range, for which improvements to standard model selection meth-
ods can be most meaningfully proposed. We consider that sample sizes from
25 to 250 give a suitable such range.

Each pseudo-sample is generated from a copula in M, with randomly (uni-
formly) chosen from the corresponding range of n and t €[0.1, 0.9]. Before
simulating each sample, the underlying copula model is rotated by 0, 90, 180,
or 270 degrees counter-clockwise. Hence, we deal with an enlarged model set,
denoted by M’. Let m, represent a model m in M, rotated by r degrees, such
that my=m. For radially symmetric models m € M, we also have mjgy =
myg, my70 =mog. Then, we let M’ = M U M),, where M;={m,:me My, re
{0,90}} and M, = {m,: me Mg, ref{0,90, 180, 270}}. The data and copula
model specification are saved, as well as the rank correlation of the rotated
model z,.

The process of generating the test set is given in detail in the Supplementary
Material (Appendix C, Algorithm 2).

4.2 Copula selection approaches

4.2.1 Copula selection with AIC

For each instance i in the test set, the model in M’ with the smallest AIC is
chosen. The classification is successful if the chosen model is identical to the
underlying model m, € M.

4.2.2 Image recognition with a two-step approach

When we allow for models with negative correlation and skewness, the classi-
fication task becomes harder. One can either assign a different class for each
element in the enlarged model space M’ — thus moving from 6 to 18 classes —
or within each of the 6 classes in M accommodate model rotations — result-
ing in non-homogeneous classes. We address this challenge pragmatically, by
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FIGURE 7. The workflow of the two-step approach for copula model selection.

using the sample statistics 7, ¢ to infer the rotation of the underlying model.
Thus, as a first step pseudo-observations are transformed to have positive cor-
relation and skewness. Subsequently, heatmap images are created from the
transformed samples. As a second step, these heatmaps are classified, to select
one of the 6 copula models in m € M. Thus in the image recognition stage we
avoid the need to consider too many or very heterogeneous classes.

Figure 7 depicts the workflow of the two-step image recognition approach.
The two steps are discussed in more detail below.

Step 1 In order to arrive at homogeneous image classes, corresponding to
the first step discussed above, samples are pre-processed as follows (the detailed
algorithm is given in the Supplementary Material (Appendix C, Algorithm 3)).
First we check whether the rank correlation is negative — if so the data are
rotated by 90 degrees counter-clockwise. Then skewness is checked — if nega-
tive, the data are rotated by another 180 degrees. Let the quantity s represent
the degree of data rotation to achieve a positive correlation and skewness;
hence 7 =360 — s is an estimate of the rotation r under which the pseudo-
observations (u;, v;) were simulated. Sample statistics (including AIC values
only used in the combined approach of Section 4.2.3) and images generated
from the transformed sample and subsequently exported. The process is illus-
trated on the right of Figure 7, which shows an example of the heatmap image
of a 90-degree rotated Pareto copula.

Finally, we assess whether the first step has been performed successfully, in
that the rotation applied to the data before producing the heatmap is consis-
tent with the rotation of the underlying copula model. Radially symmetric and
asymmetric models are treated differently, to reflect that for symmetric mod-
els my = mygo, mog = my79, which in practice requires us only to test whether
the sign of the rank correlation 7, of the copula model m, matches that of the
pseudo-observations, 7.
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Step 2 In the second step, images generated by Step 1 are classified to models
in M. The classification approach proceeds analogously with what was dis-
cussed in Section 3.2. The only difference is that, when generating a training
sample of R=20, 000 for each test set rather than using fixed » and t as in
Section 3.1, for each i these are now randomly chosen in the corresponding
range of n € [25, 100] or n € [100, 250] and 7 € [0.1, 0.9]. That is, predictions on
each test set are performed based on the model trained on its corresponding
training sample.

Once again we randomly split the R =20, 000 to a training set containing
with 70% of the samples and a validation set with 30% of the samples. A SVM
with RBF kernel is trained based on training sets of size 0.7R = 14, 000. The
training/validation split process is repeated 20 times.

Finally, the 2-step approach is applied to classify the samples in the test
set. For each test sample, we obtain 20 classification results based on the 20
classifiers trained in the training phase. A majority vote is applied to these
results to get the final decision. In other words, the copula model with the
highest vote by the 20 results is selected for the test copula sample.

We count a test sample as correctly classified only if both steps in the clas-
sification process are successful. In other words, for a sample to be classified
correctly we need both to be true:

1. In the first step, the data were rotated in a way consistent with the
underlying copula model.’

2. In the second step, the classifier identifies the correct copula model out
of the six models in M. In other words, if the model underlying a test
set was m, € M’ the prediction of the classifier is m € M.

Given the concurrent use of image-based and statistical features, it is of
interest to consider which of those features drive the predictions of each model.
A related sensitivity analysis, following the ideas of Pesenti et al. (2019), is
documented in the Supplementary Material (Appendix B.3).

4.2.3 Combining image recognition with AIC

The analysis of Section 3 has shown that image recognition and statistical
approaches may be complementary, each being dominant in different ranges
of n and t. For that reason we propose to combine the two approaches. We
adapt the approach of Section 4.2.2, to integrate AIC information for different
models in M in the second step of the process. Specifically:

1. We follow the Step 1 of Section 4.2.2 in exactly the same way.

2. In Step 2, we follow again the approach of 4.2.2, but now adding
the AIC values for /€ M in both the training and testing phases.
Specifically, for a training instance i denote the AIC values of
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TABLE 1.

TEST CLASSIFICATION ACCURACIES OF AIC, TWO-STEP IMAGE RECOGNITION
APPROACH, AND COMBINING IMAGE RECOGNITION WITH AIC.

AIC Image recognition Combined
ne[25,100] 0.3557 0.4007 0.4121
n €[100, 250] 0.5688 0.5822 0.6061
(a) (b)
*° @
© —— Combined approach ©  —— Combined approach
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FIGURE 8. Fitted curves of the aggregated classification accuracies of the two test sets for the three
approaches against (a) n and (b) 7.

different models by xf = {AICEI)};e M, i=1,2,...,N. The concate-
nated feature vector for each copula sample then becomes x;=
[(XZMP )T, (x;9 )7, (X;“)T]T € R'*1 The rest of the training phase follows
exactly as described in the second step of Section 4.2.2. Similarly, a test
sample is represented by x; = [(x)T, x))T, (xHT]T e R1>**!, where x/!
are the AIC values calculated for elements of M, from the (rotated) data
of the test set. X, is then projected to the linear discriminant subspace

constructed in the training phase and classified by SVM.

4.2.4 Classification results

First we compare the performance of the different copula model selection
methods presented in Section 4.2 by calculating their classification accuracies
on the two test sets. The classification accuracies of the three approaches show
similar patterns for both ranges of n. It is seen in Table 1 that the image recog-
nition approach of Section 4.2.2 outperforms AIC. Furthermore, combining
image recognition with AIC information, as in Section 4.2.3, leads to a better
accuracy than either of those two approaches.

To gain more insight into the test results, we plot smoothed curves of the
average test classification accuracies of the three approaches against n and t
in Figure 8(a) and (b), respectively. Note that here we aggregate the results
of both test sets to produce the two plots. The curves are generated by the
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TABLE 2.

CONFUSION MATRIX OF THE APPROACH COMBINING IMAGE RECOGNITION AND
AIC ON THE TWO TEST SETS.

Predictod True Gaussian ¢ Frank Gumbel Joe Pareto
Gaussian 2023 840 453 476 110 163
t 449 1604 200 464 120 96
Frank 503 322 2461 221 122 170
Gumbel 271 344 115 1250 286 314
Joe 58 96 54 276 1785 1405
Pareto 88 60 61 293 857 1059
Accuracy 0.5964 0.4911 0.7359 0.4195 0.5442 0.3302

TABLE 3.

CONFUSION MATRIX OF THE TWO-STEP IMAGE RECOGNITION APPROACH ON THE
TWO TEST SETS.

Predictod True Gaussian ¢ Frank Gumbel Joe Pareto
Gaussian 1905 928 474 513 117 185

t 517 1498 186 441 118 87
Frank 551 338 2440 230 133 161
Gumbel 273 355 121 1215 275 300
Joe 63 93 59 296 1815 1518
Pareto 83 54 64 285 822 956
Accuracy 0.5616 0.4587 0.7297 0.4077 0.5534 0.2981

function locfit of the package locfit with the smoothing parameter of 0.5.
It is clear that the image recognition approach outperforms AIC, except for
high correlations. Furthermore, the combined approach, including the infor-
mation from both images and AIC, provides better results than simply using
the image information in the two-step approach for all values of n and .
Figure 8(a) shows that the combined approach is the best over all values of
n while AIC is the worst, which is consistent with our conclusion in Table 1.
However, Figure 8(b) presents a slightly different pattern for : AIC performs
better than both the combined and two-step approaches when the value of t
is larger than 0.9. This indicates that the heatmap image information does not
help copula selection when 7 is very high.

In Tables 2 and 3, respectively, we present the confusion matrices of the
image recognition and combined approaches by aggregating the results of the
two test sets. The classification accuracies for each class are summarised in the
bottoms of each table. For simplicity of exposition, we calculate the confu-
sion matrices only for those testing instances where we had FirstStep = TRUE
(99.02% of instances). It is apparent that the Frank, Gaussian and Joe models
are best predicted. Predictions for underlying Gumbel and ¢ models are less
accurate, while for Pareto models the predictions are the worst. Pareto models
are confused with Joe by both approaches, due to the similarity between their
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‘RISXNTR’) indices (10/01/2020 — 31/12/2021); (b) smoothed bivariate density heatmap (normal marginals).

heatmap images. Comparing Tables 2 and 3, we can see that the combined
approach can provide better predictions across all models (with only a small
drop in accuracy for Joe), which demonstrates the effectiveness of involving
the information provided by AIC.

Based on this analysis, we find that image recognition offers improve-
ments in the accuracy of bivariate copula model selection, when compared to
using the AIC benchmark. Furthermore, combining those two is best and we
consider this combined approach our preferred model. Further supporting evi-
dence is given in the Supplementary Material (Appendix B.2), where the impact
of using purely statistical or image features is explored.

5 REAL DATA APPLICATION

Here, we apply the copula selection framework developed in the paper to
modelling (unconditional) joint weekly net total returns — that is, including
dividends reinvested net of withholding taxes — of the MSCI World Index
(ticker: ‘NDDUWT’) and the ICMR (Re)Insurance Specialty Index (ticker:
‘RISXNTR’) (both in USD). The MSCI World Index is a market capitalisa-
tion weighted index representing equity performance across developed markets
(MSCI 2022). RISX is an equity-based benchmark for the global specialty
(re)insurance sector, based on publicly listed companies that underwrite risks
in the Lloyd’s of London market (Insurance Capital Markets Research 2022).
Modelling the dependence between those two indices reflects diversification
considerations that are important for investment decisions and for insurance
operations. In particular, a lower level of correlation between global equity
markets and the (re)insurance industry makes the latter attractive for investors,
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which has a direct impact on insurers’ capital availability and, by implication,
competition and commercial premium rates.

We consider the dependence structure of the weekly log-losses (negative log-
returns) of the two indices. First, we select a copula model for the 104 joint
observations from 10/01/2020 — 31/12/2021, hence covering an approximate
2-year period. In Figure 9(a), we show the scatter plot of weekly log-losses
from the two indices; in Figure 9(b), as in previous sections, we represent
the dependence structure by a smoothed density heatmap, after transforming
the marginals to normal. The substantial correlation between the returns (7 =
0.5878) is apparent. Furthermore, we have sample skewness and arachnitude
of £ =0.0007 (indicating near symmetry) and & = 0.6271, respectively. Using
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FIGURE 11. Predicted probabilities for different types of copula model; darker colours indicate models with
more (right) tail risk.

those statistics and Figure 9(b), we select a copula model using the combined
approach of Section 4.2.3. A ¢ model is chosen, with fitted degree-of-freedom
parameter ¥ = 5.064.

We now examine changes in the dependence structure of weekly log-losses
over a longer time period. We use data from 16/06/2006 — 31/12/2021 (811
observations), hence reflecting the impacts of both the 2007-2008 global finan-
cial crisis and the 2020(-present) COVID-19 pandemic. First, in Figure 10(a),
we plot the development of the two indices over time, normalised to have the
same starting point — the joint drop in early 2020 and subsequent recovery are
clearly visible. In Figure 10(b), we show the path of Kendall’s 7 for the weekly
log-losses, calculated with a 104-week (2-year) rolling window. It is seen that
correlation has changed over time, with a more or less continuous drop dur-
ing 2011-2019, and a subsequent increase (one cannot attribute this increase
to COVID-19, as it had started already before 2020). On the same plot, we
also indicate the chosen copula family using the combined approach of Section
4.2.3. It is seen that there are some changes in the selected model over time. The
most frequently selected model is the 7 copula (red squares). Early in the series,
the Gumbel copula (blue triangles) is also commonly selected. Furthermore,
the Gaussian copula (green circles) seems to often be chosen during periods
when the correlation value is on a decreasing trajectory. Other models appear
less frequently; it is notable that occasionally the (180-degree-)rotated Gumbel
copula (magenta crosses) is chosen, reflecting a benign scenario where the
dependence of log-losses is negatively skewed. Overall, this analysis provides
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strong evidence for non-stationary of the dependence structure (and not just
the correlation) of the two indices.

The SVM-based classifiers allow us to state not just the chosen model,
but also predicted probabilities for each model considered. We visualise these
predicted probabilities in the stacked area plot of Figure 11. To aid inter-
pretability, we now group the selected copula models in four categories, from
the most adverse (darkest) to the least adverse (lightest): positively skewed
(Gumbel, Pareto, Joe); symmetric and tail dependent (¢); symmetric and
tail independent (Gaussian, Frank); and negatively skewed (rotated Gumbel,
Pareto, Joe). Hence, during time periods when the dark greys dominate, a more
adverse dependence structure is present. From that perspective, it appears that
we have adverse dependence regimes during 2008-2014 and from 2019 to the
present. The extent to which these trends can be associated to phenomena such
as insurance cycles remains a topic for further work.

6 CONCLUSIONS

In this paper, we proposed approaches for selecting copula models by utilis-
ing image recognition of the density heatmap images obtained from copula
samples. PCA-reduced AlexNet image features and summary statistics were
utilised to represent each copula sample and a low-dimensional discrimina-
tive projection by LDA used to train an SVM for classification. Experimental
results showed that the proposed image recognition approach can provide
improved classification performance on copula samples with relatively low
sample size and correlation, compared to AIC. When combining image
recognition with AIC, performance improves further.

Hence, we can answer our research question in the affirmative: indeed,
heatmap images do contain relevant information for copula model selection
that can help improve on standard procedures, and we propose workflows to
harness this information for model selection. Furthermore, we demonstrate the
potential value of transfer learning in statistical applications. In this paper, the
knowledge obtained from the domain of natural images is transferred to the
different domain of copula heatmap images, to assist in the new classification
task of copula selection. This shows the potential of utilising machine learn-
ing algorithms that have been trained on a large amount of high-quality data
to provide additional useful information for statistical applications, or to help
in situations where collecting enough data is not an easy task (Pan and Yang
2009).

The workflows we propose are more complex than evaluating likelihood-
based criteria, at least where efficient implementation of the latter is available.
We do not argue for replacing well-established criteria such as AIC, but pro-
vide a ‘proof of concept’ that image recognition can supplement standard
statistical approaches. With this in mind, future work can consider design-
ing an expert system with a broader scope, for example including a wider
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range of models and sample sizes, as well as handling multivariate dependence
structures. For example, one may consider (partially) representing a copula
sample with multivariate dependence structure, via two-dimensional heatmap
images generated from pairwise bivariate dependence structures. In this way,
each sample is represented by a set of images, which leads to the image set
classification task in computer vision (Fukui and Maki 2015).

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit http://doi.org/
10.1017/asb.2022.12.

NOTES

1 Note though that in applications such as personal lines insurance, where discrete variables
have many zeros or variables are categorical, such a transformation will introduce unwelcome
variability. Alternatively, one may consider the jitter approach of Denuit and Lambert (2005),
see for example Shi and Valdez (2014).

2 In fact, when (continuous) marginal distributions are estimated with reasonable confi-
dence, observations (i1, v1), . . ., (uy, v,) from (U,V') can be obtained by the probability integral
transform. In this paper, we do not make such an assumption.

3 In numerical experiments, we found that AIC consistently outperformed BIC, the Cramer-
von Mises statistic and the cross-validated log-likelihood criterion with 10-fold cross-validation.

4 This process takes away from realism, by removing some noise from the generated datasets.
Nonetheless, we pursue this strategy for image generation in order to maintain consistency with
the two-step approaches of Section 4.

5 Specifically, the variable FirstStep in Algorithm 3 (Supplementary Material, Appendix C)
has the value TRUE.
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