
Multivariate analysis using graphical models is rapidly gaining ground in
psychology. In particular, Markov Random Field (MRF) graphical models
have become popular because their graph structure reflects the conditional
associations between psychological variables. Despite the fact that most psy-
chological variables are assessed on an ordinal scale, the analysis of MRFs for
ordinal variables has received little attention in the psychometric literature.
To fill this gap, we present an MRF for ordinal data that so far has not been
considered in network psychometrics. We present statistical methodology to
test the structure of the proposed MRF, which requires us to determine the
plausibility of the opposing hypotheses of conditional dependence and inde-
pendence. To this end, we develop a Bayesian approach using the inclusion
Bayes factor to quantify the (lack of) evidence for a given edge. We use a
Bayesian variable selection approach to model the inclusion and exclusion
of edges in the network, and Bayesian model averaging to compare network
structures with and without the given edge. We provide an implementation
in the new R package bgms, evaluate its performance in simulations, and
illustrate it with empirical data.
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1 Introduction

Multivariate analysis using graphical models has received much attention in the recent
psychological and psychometric literature (e.g., Contreras, Nieto, Valiente, Espinosa, &
Vazquez, 2019; Marsman & Rhemtulla, 2022; Robinaugh, Hoekstra, Toner, & Borsboom,
2020). Most of these graphical models are Markov Random Field (MRF) models, whose
graph structure reflects the conditional associations between variables (Kindermann & Snell,
1980). In these models, a missing edge between two variables in the network implies that
these variables are independent, given the remaining variables (Lauritzen, 2004). In other
words, the remaining variables of the network fully account for the potential association
between the unconnected variables. The methodology for analyzing MRFs for binary, un-
ordered categorical, and continuous variables and their combinations has been well devel-
oped (e.g., Epskamp, Waldorp, Mõttus, & Borsboom, 2018; Haslbeck & Waldorp, 2020;
Marsman, Huth, Waldorp, & Ntzoufras, 2022; A. Mohammadi & Wit, 2015; van Borkulo et
al., 2014; Williams, 2021). The analysis of MRFs for ordinal variables, on the other hand,
has received little attention in the psychometric literature, despite the abundance of ordinal
variables in psychological data (e.g., Isvoranu & Epskamp, 2023; Johal & Rhemtulla, 2023).
Since there is no MRF for ordinal variables, researchers must use misspecified models to
analyze their data. Gaussian graphical models (GGMs), which assume continuous data, are
a popular solution, although many have cautioned about the problems of using models such
as the GGM to analyze ordinal data (e.g., Johal & Rhemtulla, 2023; Liddell & Kruschke,
2018) and that results between GGMs and discrete graphical models may be misaligned
(Loh & Wainwright, 2013). Another common solution is to dichotomize ordinal data and
analyze them with a network model for binary variables. However, dichotomization thresh-
olds are often chosen ad hoc, and this choice can have a significant impact on the resulting
network estimates (e.g., Hoffman, Steinley, Trull, & Sher, 2018). Here, we address this
problem by presenting an MRF for ordinal variables and providing a Bayesian procedure
to assess its Markov structure.

We present an MRF for ordinal data that has been proposed in both the psycho-
metric and machine learning literature, but has so far not been considered in network
psychometrics. In psychometrics, Anderson and Vermunt (2000) derived a joint graphical
model for manifest ordinal and unobserved continuous variables. By imposing a condi-
tional Gaussian distribution (Lauritzen & Wermuth, 1989) on the latent variables, given
the ordinal variables, they were able to derive a log-multiplicative association model for
the distribution of the ordinal variables. We will show below that this log-multiplicative
association model is an MRF for ordinal variables. Independently of the work of Anderson
and Vermunt, in the machine learning literature, Suggala, Yang, and Ravikumar (2017) de-
rived an MRF for ordinal variables via a Hammersley-Clifford style analysis (Besag, 1974);
introducing a model for the full conditional distribution for each variable in the network,
given the remaining variables, and showing that this leads to a unique joint distribution.
We will introduce this ordinal MRF and connect the work of Anderson and Vermunt (2000)
and Suggala et al. (2017).

Testing the structure of the MRF requires us to determine the plausibility of the
opposing hypotheses of conditional dependence and conditional independence. For exam-
ple, how plausible are network structures that include the edge between variables 3 and 9
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compared to network structures that exclude this edge? Frequentist approaches are limited
in this respect, because they can only reject the conditional independence hypothesis, but
not support it (e.g., Wagenmakers, 2007; Wagenmakers, Marsman, et al., 2018). This cre-
ates the problem that, if an edge is excluded, we do not know whether this is because the
edge is absent in the population, or because we lack the power to reject the null hypothe-
sis of independence. To avoid this problem, we will use a Bayesian approach using Bayes
factors (e.g., Kass & Raftery, 1995). Specifically, we use the inclusion Bayes factor (e.g.,
Huth et al., 2023; Huth, Luigjes, Marsman, Goudriaan, & van Holst, 2021), which allows
us to quantify how much the data support both conditional dependence —evidence of edge
presence— or conditional independence —evidence of edge absence. It also allows us to
conclude that there is limited support for either hypothesis (e.g., Dienes, 2014) —absence
of evidence.

The inclusion Bayes factor uses Bayesian model averaging (Hinne, Gronau, van den
Bergh, & Wagenmakers, 2020; Hoeting, Madigan, Raftery, & Volinsky, 1999; Kaplan, 2021)
to evaluate how well network structures with or without a given edge predict the data at
hand. However, the large number of possible structures to evaluate for these predictions
poses a serious challenge to Bayesian model averaging. To address this challenge, we use
Bayesian variable selection (Tadesse & Vanucci, 2022) to model the inclusion and exclusion
of edges in the network and set up a Markov chain with the posterior distribution of the
network structures for the MRF as an invariant distribution (e.g., George & McCulloch,
1993). Our variable selection approach specifies a two-component mixture as the prior for
the edge weights of the MRF — a discrete spike and a slab prior (Mitchell & Beauchamp,
1988; Vanucci, 2022) — where one component is a relatively diffuse prior (i.e., the slab),
while the other component is a prior that assigns its entire probability mass to zero (i.e.,
the spike). We use a latent indicator variable, γ, to assign the edge weight to one of
these two components: γ = 1 implies that the edge is in the network and assigns a diffuse
prior to its corresponding weight. On the other hand, γ = 0 implies that the edge is
not in the network and sets the corresponding edge weight to zero. While this approach
allows us to explore the large space of possible network structures —configurations of edge
indicators— it also introduces two computational challenges. The first challenge is the
computational intractability of the MRF due to its complex normalization constant. We
adopt a pseudolikelihood approach (Besag, 1975) to address this challenge, but also explore
the double Metropolis-Hastings (DMH) algorithm (Liang, 2010) as an alternative. The
second challenge is that setting edge weights to zero when the edge is absent leads to different
parameter dimensions for different network structures, and it is difficult to formulate a
proper Markov chain over this probability space. To address this challenge, we use the
transdimensional Markov chain method of Gottardo and Raftery (2008). We incorporate
these solutions into a Gibbs sampling approach (Geman & Geman, 1984) to sample from
the multivariate posterior distribution of the model parameters and edge indicators. The
proposed methods are implemented in the software bgms (Marsman, Sekulovski, & van den
Bergh, 2023), an open-source R package (R Core Team, 2019) that is freely available on
CRAN.

This article is organized as follows. In the next section, we will introduce the MRF
for ordinal variables and connect the work of Anderson and Vermunt (2000) and Suggala
et al. (2017). We will also establish some basic properties of the proposed model. Next,
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we specify and discuss the components of our Bayesian model, i.e., the prior distributions,
in Section 3. We then introduce our Markov chain Monte Carlo edge selection approach
in Section 4, where we discuss our pseudolikelihood solution to the intractability of the
likelihood, the transdimensional method of Gottardo and Raftery (2008), and the combined
Gibbs sampler. In Section 5, we use simulations to demonstrate the consistency of our
Bayesian edge selection approach when analyzing binary or ordinal variables, and compare
it to two existing approaches when analyzing binary variables. In Section 6, we illustrate
the added value of the proposed method for applied researchers by reanalyzing a dataset
on post-traumatic stress disorder (PTSD). We conclude with relating our model to other
multivariate ordinal models and discussing the performance and possible improvements of
the proposed Bayesian methodology.

2 The Markov Random Field for Ordinal Variables

This section introduces and examines the proposed MRF for ordinal variables. We
consider two different approaches to establishing the MRF that have not been previously
linked. The approach presented by Anderson and Vermunt (2000) shows us that the MRF
is related to a classical psychometric model for ordinal variables and how their parameters
are related. The approach presented by Suggala et al. (2017) shows us that the MRF is a
unique multivariate extension of a particular logit model for ordinal variables. Their work
also shows us that we are not aware of other logit models for ordinal variables that have
a multivariate extension. Therefore, we will refer to the MRF as the ordinal MRF and
accept the risk of finding a new type of ordinal logit that has a multivariate extension.1 We
will first discuss the two approaches to building the MRF, and then examine its Markov
properties and parameter identification.

2.1 A Psychometric Approach to the Ordinal Markov Random Field

Anderson and Vermunt (2000) established the MRF in the psychometric literature
as the distribution of manifest ordinal variables in contexts containing continuous latent
variables. Such relationships between manifest and latent variables are central to psycho-
metrics (e.g., Holland & Rosenbaum, 1986), and the psychometric literature reports various
approaches to establishing these relationships. One well-known method is the Dutch Iden-
tity of Holland (1990), which uses the same underlying assumptions as the approach of
Anderson and Vermunt (2000; see Anderson & Yu, 2007, for a discussion). More re-
cently, Marsman, Sigurdardóttir, Bolsinova, and Maris (2019) proposed a related method
that emerged from the connection between a binary variable MRF and item response the-
ory (IRT) models in network psychometrics (e.g., Epskamp, Maris, Waldorp, & Borsboom,
2018; Marsman et al., 2018; Marsman, Maris, Bechger, & Glas, 2015). See Hessen (2020) for
yet another method. These approaches make the same assumptions about the distribution
of unobserved latent variables, and thus can all be used to obtain the results of Anderson
and Vermunt (2000). Here, we use the general setup of Marsman et al. (2019) because it
provides a straightforward strategy for deriving the MRF from an existing IRT model.

1Here, we also interpret extensions of the ordinal MRF that include higher order interactions as belonging
to the same modeling family.
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Let Xi denote an ordinal variable with m + 1 response categories and realizations
xi = 0, 1, . . . , m, for i = 1, 2, . . . , p variables.2 We assume that the joint distribution
for the full vector of p response variables X can be modeled using an item response theory
(IRT) model, P (X | θ), in which a vector of continuous latent variables θ of at most
dimension p − 1 fully accounts for the dependencies between the p response variables. In
this context, Muraki (1990) proposed the Generalized Partial Credit Model (GPCM) for
ordinal responses. The multidimensional version of this GPCM is characterized by the
following probability of observing category h of the ordinal response variable

P (Xi = h | θ) =
exp

(
h αT

i θ + βih

)
1 +

∑m
u=1 exp

(
u αT

i θ + βiu
) ,

where βih denotes a threshold parameter for category h of variable or item i, with βi0 set
to zero for identification, and αi denotes a vector of factor-loadings that relate the latent
variables to the response probabilities for item i. If we let f(θ) denote the distribution for
the latent variables, the full statistical model has the form

P (X) = P (X1, . . . , Xp) =
∫
Rp−1

p∏
i=1

P (Xi | θ) f(θ) dθ.

We aim to find an expression for P (X), the marginal distribution of the response variables.
Marsman et al. (2019) showed that if an IRT model is in an exponential family

form, we can define a latent variable distribution that allows us to analytically express the
marginal distribution P (X). We define the exponential family form of the IRT model as
follows

p∏
i=1

P (Xi | θ) =
p∏

i=1

1
zi(θ) bi(Xi) exp

(
Si(Xi)Tθ

)
,

where Si(Xi) is a (possibly vector-valued) statistic that is sufficient for the (possibly vector-
valued) latent variable θ, bi(Xi) is a base measure that does not depend on the latent
variable, and zi(θ) is a normalizing constant that does not depend on the observed response
variable and ensures that the probabilities add up to one. The normalizing constant is equal
to

zi(θ) =
m∑

Xi=0
bi(Xi) exp

(
si(Xi)Tθ

)
.

We can express the multidimensional GPCM in this form. That is, we define the sufficient
statistic as Si(Xi) = Xi αi, the logarithm of the base measure as ln(bi(Xi)) = βi Xi , and
the normalizing constant as

zi(θ) = 1 +
m∑

u=1
exp

(
u αT

i θ + βiu

)
.

We can now define a latent variable distribution as follows,
2To simplify the notation, we assume a fixed number of response categories for the binary and ordinal

variables. However, the model and accompanying software allow for a varying number of categories for the
different variables in the network.
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f(θ) = 1
Z

p∏
i=1

zi(θ) k(θ),

where k(θ) is a density function and Z is a normalizing constant. The normalizing constant
is equal to

Z =
∫
Rp−1

p∏
i=1

zi(θ) k(θ) dθ (1)

The proposed distribution f(θ) is valid for any density function k(θ) for which 0 < Z < ∞.
Corollary 1 in Marsman et al. (2019) shows that if we assume that the density k(θ) is a
multivariate normal distribution with a mean vector m = 0 and covariance matrix V = I,
the identity matrix, we find the following expression for the marginal distribution

P (X | α, β) = 1
Z exp

 p∑
i=1

βi Xi +
p∑

i=1
X2

i αT
i αi + 2

p−1∑
i=1

p∑
j=i+1

XiXjαT
i αj

 .

From here, we recognize the quadratic form

P (X | µ, Σ) = 1
Z exp

 p∑
i=1

m∑
h=1

I(Xi = h) µih + 2
p−1∑
i=1

p∑
j=i+1

XiXjσij

 , (2)

where µih = βih + h2αT
i αi and Σ = [σij ] = αT

i αj , and σii = 0, for i = 1, . . . , p. The
marginal distribution P (X | µ, Σ) is the desired MRF and equal to Eq. (20) in Anderson
and Vermunt (2000; see also Theorem 2 in Hessen, 2020). The normalizing constant that
we defined in Eq. (1) can now be restated as

Z =
∑

X∈X
exp

 p∑
i=1

m∑
h=1

I(Xi = h) µih + 2
p−1∑
i=1

p∑
j=i+1

XiXjσij

 , (3)

where X =
∏p

i=1{0, . . . , m} denotes the space of possible response patterns. Observe that
when m = 1, the MRF in Eq. (2) simplifies to the Ising model (Cox, 1972; Ising, 1925).

2.2 A Hammersley-Clifford Approach to the Ordinal Markov Random Field

Suggala et al. (2017) established the MRF in the statistical learning literature as
a unique multivariate distribution, consistent with a specific full conditional distribution
for ordinal variables. They extended the work of Yang, Allen, Liu, and Ravikumar (2012),
who provided a method for constructing a multivariate graphical model from univariate
full conditional distributions. These approaches follow the Hammersley-Clifford approach
advocated by Besag (1974). Suggala et al. (2017) set out to use the method proposed by
Yang et al. (2012) to establish the multivariate distribution consistent with standard uni-
variate models for ordinal variables based on cumulative, continuous, and consecutive ratio
logits (Agresti, 2010, 2018). However, the method of Yang et al. (2012) assumes that the
conditional distributions are in the exponential family. Suggala et al. (2017) show that the
cumulative and continuation-based logits do not belong to this class of models and conse-
quently do not yield a multivariate distribution. On the other hand, the consecutive-based
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logit models belong to the exponential family and are also consistent with a multivariate
distribution. These results are discussed next.

The Hammersley-Clifford theorem states that if a multivariate distribution
P (X1, . . . , Xp) is consistent with certain full conditional distributions P (Xi |
X1, . . . , Xi−1, Xi+1, . . . , Xp) = P (Xi | X(i)), then it is the only multivariate distribu-
tion consistent with these conditional distributions. Besag (1974) suggested using this idea
to determine whether there is a multivariate distribution that is consistent with certain
univariate full conditional distributions. Suggala et al. (2017) use this idea to analyze three
popular models for ordinal variables: the cumulative ratio, the continuation ratio, and the
consecutive ratio (or adjacent category) logits (Agresti, 2010, 2018). Theorem 3 in Suggala
et al. (2017) shows that there is a multivariate distribution consistent with the consecutive
ratio or adjacent categories logit,

log
(

P (X = h)
P (X = h + 1)

)
= ηh − β, for h = 0, . . . , m − 1.

We use this logit to define the full-conditional of a node i given the remaining variables
X(i), by setting ηh = ηih and β = βi(X(i)), such that the full-conditional is of the form

P (Xi = h | X(i)) =
exp

(∑m−1
q=0 (ηiq − βi(X(i))) I(xi ≤ q)

)
1 +

∑m−1
u=0 exp

(∑m−1
q=0 (ηiq − βi(X(i))) I(u ≤ q)

) , for h = 0, . . . , m − 1.

Theorem 3 in Suggala et al. (2017) shows that the multivariate distribution that is consistent
with this full-conditional is equal to

P (X | η, Σ) = 1
Z exp

 p∑
i=1

m−1∑
q=0

ηiqI(Xi ≤ q) +
p−1∑
i=1

p∑
j=i+1

m−1∑
q=0

m−1∑
u=0

σijI(Xi ≤ q)I(Xj ≤ u)


= 1

Z exp

 p∑
i=1

m−1∑
q=0

ηiqI(Xi ≤ q) +
p−1∑
i=1

p∑
j=i+1

σij(m − Xi)(m − Xj).


When we redefine µih as

∑m−1
q=h ηiq and X∗

i as m − Xi, then this multivariate distribution
is equal to the MRF in Eq. (2). Thus, the proposed MRF in Eq. (2) is a multivariate
extension of the adjacent category model.

Suggala et al. (2017) showed that no multivariate distribution is consistent with
either of the other two models for ordinal variables. The cumulative ratio or proportional
odds is defined as

log
(

p(X ≤ h)
p(X > h)

)
= ηh − β, for h = 0, . . . , m − 1.

This logit model is similar in nature to the probit model (Guo, Levina, Michailidis, & Zhu,
2015), in which the realizations of the ordinal variable correspond to adjacent intervals of
an underlying latent variable. Theorem 1 in Suggala et al. (2017) shows that no multivari-
ate distribution is consistent with having this logit model as full-conditional distribution.
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Furthermore, their Theorem 2 shows that there is also no multivariate distribution with full
conditionals based on the continuation ratio:

log
(

p(X = h)
p(X > h)

)
= ηh − β, for h = 0, . . . , m − 1.

This implies that the proposed MRF is a rather unique multivariate model for ordinal
variables.

2.3 Markov Properties

The model in Eq. (2) is a Markov random field model in which the manifest variables
are viewed as nodes of a graph or network whose structure is described by the matrix of
pairwise interaction effects or edge weights Σ. If σij = 0, then the variables i and j do not
directly interact in the network. In Appendix A we show that the model satisfies a global
Markov property. A convenient feature of this Markov property is that the structure of
the graph — characterized by the parameters Σ — represents the conditional dependence
relations between variables in the network. This means that if σij = 0, variables i and j are
conditionally independent given the rest of the variables in the network. In other words,
the remaining variables X(i, j) fully account for a possible association between Xi and Xj .

One way to examine the properties of the model is to focus on its local properties,
such as those implied by its full conditional distribution, the distribution of one or more
variables given all other variables in the network. Appendix A shows the general form of
conditional distributions for the ordinal MRF. Here we focus on the conditional distribution
of one of the variables in the network:

p(Xi = xi | x(i)) =
exp

(∑m
h=1 I(xi = h) µih + xi

∑
j ̸=i σij xj

)
1 +

∑m
u=1 exp

(
µiu + u

∑
j ̸=i σij xj

) , (4)

which is similar to a logistic regression for ordinal outcomes using the remaining variables
as predictors. Here we see that when the interaction between variables i and j is positive,
responding in a higher category for variable i also tends to lead to responding in a higher
category for variable j. And if there is no direct relationship between variables i and j
(i.e., σij = 0), we see that variable j drops from the conditional distribution of variable i,
a consequence of the Markov property of the model. In the absence of interactions, i.e.,
σij = 0 for all j ̸= i, the full conditional distribution simplifies to a categorical distribution
(Agresti, 2018) with parameters

p(Xi = h | x(i)) = θh = exp (µih)
1 +

∑m
u=1 exp (µiu) .

The category threshold parameters for the ordinal MRF thus express the tendency of ordinal
response variables that cannot be explained by the remaining variables in the graph or
network.

2.4 Parameter Identification and Interpretation

The model is in the exponential family and has sufficient statistics for each pa-
rameter. Here we use this to establish the identification of the model parameters. Let
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Pij(h, q) = P (Xi = h, Xj = q, X(i, j)) denote the probability that variables i and j in the
network take values h and q, respectively. Then we can see that the interaction parameter
σij is related to the ratio of the adjacent category odds of the two ordinates:

Pij(h, q)
Pij(h + 1, q)

/
Pij(h, q + 1)

Pij(h + 1, q + 1) = Pij(h, q)
Pij(h, q + 1)

/
Pij(h + 1, q)

Pij(h + 1, q + 1)
= exp (2σij) .

Thus, there is a direct mapping between the manifest variable — the ratio of observed cate-
gory odds — and the interaction parameter of the ordinal MRF. The interaction parameter
thus indicates the change in the logarithm of the adjacent category odds ratio. If σij > 0,
the odds of observing one response in a higher adjacent category are greater than observing
the other response in a higher adjacent category. If σij < 0, the odds of observing one
response in a higher neighboring category are smaller than observing the other response in
a higher neighboring category.

In the derivations above, we already assumed that one of the category threshold pa-
rameters for each variable is zero. We inherited the identifying restriction that the threshold
for the lowest category is zero, i.e., µi0 = 0, from the GPCM. Let Pi(h) = P (Xi = h, X(i))
denote the probability that the variable i takes the value h. Then we can establish a
relationship between the difference in category thresholds and the adjacent category odds:

Pi(h + 1)
Pi(h) = exp

µi(h+1) − µih + 2
∑
j ̸=i

σijXj

 .

Note that this relation’s dependence on the interaction parameters is fine since we estab-
lished their identification without using the category thresholds. We could fill in their
log-odds expressions here.3 Observe that we can only identify the difference in adjacent
category threshold parameters. However, equipped with the restriction that the threshold
for the lowest category is zero, i.e., µi0 = 0, we identify µi1 from

Pi(1)
Pi(0) = exp

µi1 + 2
∑
j ̸=i

σijXj

 ,

which we can then use to identify the other category thresholds. If there are no interactions
between variables in the network (i.e., Σ = 0), µi(h+1) − µih > 0 implies that there is a
higher probability of observing responses in category h + 1 than in category h. Conversely,
if µi(h+1) − µih < 0, there is a higher probability of observing responses in category h than
in category h + 1. In the face of network interactions, the term 2

∑
j ̸=i σijXj modifies these

response tendencies. Note that this term is constant across neighboring categories. In this
case, µi(h+1) − µih > 2

∑
j ̸=i σijXj means that there is a higher probability of observing

responses in category h + 1 than in category h, and µi(h+1) − µih < 2
∑

j ̸=i σijXj implies
the opposite.

3We can also immediately identify the difference in category thresholds from

P (Xi = h + 1, X(i) = 0)
P (Xi = h, X(i) = 0)

= exp
(
µi(h+1) − µih

)
.
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3 Bayesian Edge Selection

We now turn to the specification of the Bayesian model that will allow us to infer the
structure of the MRF from empirical data. Bayesian variable or edge selection introduces
binary indicator variables to model the inclusion of edges in the network:

γij =
{

1 if edge i–j is included in the network,
0 otherwise.

There are several ways to incorporate these indicator variables into the Bayesian model
(Dellaportas, Forster, & Ntzoufras, 2002; George & McCulloch, 1993; Kuo & Mallick, 1998;
Tadesse & Vanucci, 2022). Marsman, Huth, et al. (2022) used a continuous spike and slab
approach, imposing the following two-component mixture distribution as a prior on the
interaction parameters of the Ising model

f(σij | γij) = (1 − γij) fspike(σij) + γij fslab(σij),

for i = 1, . . . , p − 1, j = i + 1, . . . , p, where the spike distribution fspike is concentrated
around σij = 0 and the slab distribution fslab is a diffuse, continuous distribution also
centered around zero. Here, γij = 0 suggests removing the edge i–j from the network, since
the prior on σij shrinks it to a negligible value close to zero. In contrast, γij = 1 includes
the edge and leads to a diffuse prior on σij .

This paper adopts a discrete spike and slab approach instead, using the following
two-component mixture distribution as a prior on the interaction parameters (Gottardo &
Raftery, 2008)

f(σij | γij) = (1 − γij) 1{0}(σij) + γij 1R\{0}(σij) fslab(σij),

where 1{0}(σij) is an indicator function (i.e., a Dirac measure) that is equal to one when
σij = 0, and zero otherwise, and 1R\{0}(σij) is an indicator function for the complementary
event σij ̸= 0. Here, γij = 0 excludes edge i–j from the network since the prior on σij is a
point mass at zero.

Specifying the spike distribution for the continuous spike and slab prior is nontrivial.
For example, Marsman, Huth, et al. (2022) showed that arbitrarily setting the variance of
the spike component can lead to an inconsistent structure selection routine (see also, Ly &
Wagenmakers, 2022; Narisetty, 2022; Narisetty & He, 2014). The advantage of the discrete
spike and slab prior over the continuous prior is that it is easier to formulate, since we do not
need to specify the spike distribution. However, the disadvantage of the discrete spike and
slab prior is that posterior inference using the Gibbs sampler becomes more complicated
than for the continuous spike and slab prior. We address this issue in the next section.

In our implementation in bgms, we consider two choices for the slab component.
The first is a Cauchy distribution, a common choice in Bayesian variable selection because
it is diffuse and has heavy tails. We consider two scale values for the Cauchy; a scale
of 1, which results in a t−distribution with one degree of freedom, and a scale of 2.5,
which Gelman, Jakulin, Pittau, and Su (2008) suggested for logistic regression (albeit for
centered predictors). The second choice for the slab component is a normal distribution
with precision equal to the Fisher information matrix IΣ(µ̂, Σ̂), which roughly gives the
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information about the σij in a single observation (Kass & Wasserman, 1995; Raftery, 1999;
Wagenmakers, 2007). We follow the approach of Ntzoufras (2009), who obtained good
results by setting the off-diagonal elements of the covariance matrix to zero to make the
spike and slab prior densities independent.4 Marsman, Huth, et al. (2022) also used this
setup for the slab distribution in their continuous spike and slab approach to learning the
structure of Ising models. Sekulovski, Keetelaar, Haslbeck, and Marsman (2024) study the
influence of different slab distributions on edge selection. We use the Cauchy distribution
in our numerical illustrations, and consider both unit information and Cauchy priors in the
empirical example.

Specifying a prior distribution for the edge indicator variables completes the spike
and slab prior setup. Throughout, we assume a priori that all MRF structures are equally
likely, which implies that the edge indicators are independent, with prior inclusion prob-
abilities equal to 1/2. This is a common choice for the prior inclusion probabilities in
Bayesian graphical modeling (e.g., Marsman, Huth, et al., 2022; R. Mohammadi & Wit,
2019; Williams & Mulder, 2020). However, other choices are available (for an overview, see
Section 3.6 in Consonni, Fouskakis, Liseo, & Ntzoufras, 2018). Scott and Berger (2010)
reported a hierarchical generalization of the standard Bernoulli setup that imposes a uni-
form prior density on the inclusion probability to account for model complexity. Marsman,
Huth, et al. (2022) adopted this hierarchical specification. Both prior specifications are
implemented in bgms, and Sekulovski et al. (2024) study their influence on edge selection.

To complete our Bayesian model, we specify independent beta-prime(0.5, 0.5) distri-
butions on the threshold parameters ηic = exp (µic), for h = 1, 2, . . . , m, i = 1, 2, . . . , p.

4 Markov Chain Monte Carlo Edge Selection

We are primarily interested in the posterior distribution of the vector of binary
indicator variables γ, i.e., the network structures. Ideally, we would have a conjugate prior
for the threshold and interaction parameters, so that we could integrate them out and focus
our attention on (e.g., Madigan & York, 1995)

p(γ | X) ∝ p(X | γ) p(γ).

Unfortunately, such a conjugate prior does not exist, and we have to work with the joint
posterior.

f(γ, Σ, µ | X) ∝ p(X | Σ, µ) f(µ) f(Σ | γ) p(γ).

This joint posterior is intractable. Because of the discontinuity in the prior distribution of
the interaction effects, we cannot use the expectation-maximization algorithm (Dempster,
Laird, & Rubin, 1977) approach to variable or edge selection proposed by Ročková and
George (2014). Therefore, we need to use a Markov chain Monte Carlo (MCMC) approach
(e.g., a Gibbs sampler) to explore the joint posterior distribution by simulation (George &
McCulloch, 1993).

The Gibbs sampler is the standard solution for sampling values from an intractable
posterior distribution, but its application here faces two serious complications. The first

4We take the variance of the normal distribution to be n times the diagonals of −HΣ(µ̂, Σ̂)−1, minus
the inverse of the Hessian matrix for the edge weights of the pseudolikelihood.
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challenge is that the target posterior distribution is doubly intractable (Murray, Gharamani,
& MacKay, 2012) because, as will be explained below, the likelihood of the ordinal MRF
is itself computationally intractable. The second challenge is that the discontinuity in the
prior distribution for the interactions leads to a serious complication for the Gibbs sampler.
We first address the challenge of the computational intractability of the likelihood of the
ordinal MRF, and then propose a straightforward transdimensional MCMC method that
works for Bayesian models with the discrete spike and slab priors we use.

4.1 The Computationally Intractable Likelihood

A key problem in the analysis of multivariate categorical models is that their normal-
izing constant tends to be computationally intractable. For example, for p = 10 variables
and m = 5 ordinal categories, the normalizing constant Z in Eq. (3) would consist of
mp = 510 = 9, 765, 625 terms, which we would have to evaluate repeatedly in each iteration
of the proposed Gibbs sampler. This is clearly computationally infeasible.

In network psychometrics, the problem of an intractable likelihood is usually solved
by adopting the pseudolikelihood approximation proposed by Besag (1975), which replaces
the intractable likelihood with a tractable one. This approximation underlies most existing
frequentist methods for regularized parameter estimation of networks of discrete variables
(e.g., Haslbeck & Waldorp, 2020; van Borkulo et al., 2014), but more recently pseudolike-
lihoods have also been incorporated into Bayesian methods (Marsman, Huth, et al., 2022;
R. Mohammadi, Schoonhoven, Vogels, & Birbil, 2023; Pensar, Nyman, Niiranen, & Coran-
der, 2017). However, in other fields, especially in the area of social network analysis, several
MCMC methods have been proposed that avoid the need to evaluate the full likelihood and
its normalizing constant. Park and Haran (2018) provide a recent review of available ap-
proaches and show that the Double Metropolis Hastings (DMH) algorithm of Liang (2010)
performs best overall in terms of effective number of samples from the posterior per second.
In this paper, we consider the pseudolikelihood approach, but discuss the DMH algorithm
and its implementation for Bayesian edge selection in Appendix C.

4.1.1 The Pseudolikelihood Approach

The pseudolikelihood approach approximates the joint distribution of the vector
variable x —i.e., the full MRF in Eq. (2)— with its respective full-conditional distributions
(see Eq. (4)):

P (X | µ, Σ) ∝ P ∗(X | µ, Σ) =
p∏

i=1

exp
(∑m

h=1 I(Xi = h) µih + Xi
∑

j ̸=i σij Xj

)
1 +

∑m
u=1 exp

(
µiu + u

∑
j ̸=i σij Xj

)
=

exp
(∑p

i=1
∑m

h=1 I(Xi = h) µih + 2
∑p−1

i=1
∑p

j=i+1 XiXjσij

)
∏p

i=1

(
1 +

∑m
u=1 exp

(
µiu + u

∑
j ̸=i σij Xj

)) .

Note that the pseudolikelihood is equivalent to the full likelihood in Eq. (2), except that it
replaces the intractable normalization constant with a tractable one. For the ten-variable
network we considered earlier, the pseudolikelihood normalization constant has only m×p =
5 × 10 = 50 terms instead of the 9, 765, 625 terms in case of the full likelihood.
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Although the pseudolikelihood is a crude approximation to the full likelihood, the
maximum pseudolikelihood estimates are consistent (Arnold & Strauss, 1991; Geys, Molen-
berghs, & Ryan, 2007), and this is also the case for the pseudoposterior distribution (Miller,
2021). For exponential random graph models, a random graph model used in social network
analysis, van Duijn, Gile, and Handcock (2009) showed that pseudolikelihood estimates are
generally biased in scenarios where there is only one observation of the network. For the
Ising model, a graphical model used in network psychometrics, Keetelaar, Sekulovski, Bors-
boom, and Marsman (2024) showed that the bias in the pseudolikelihood estimates for the
Ising model is comparable to that of the MLE in several scenarios typical of psychological
applications. In these applications we typically have many observations of the network. The
overall good performance of the pseudolikelihood established by Keetelaar et al. (2024) ap-
plies especially to the joint pseudolikelihood approximation, the approximation we consider
here, and less so to the disjoint pseudolikelihood approximation, also known as nodewise
regression. Estimates based on the disjoint pseudolikelihood approximation can be severely
biased, especially when the sample size is small. To verify that Keetelaar et al.’s results for
the Ising model extend to our ordinal MRF, we examine the bias of the pseudolikelihood
estimates of the parameters of the ordinal MRF relative to their maximum likelihood esti-
mates in Appendix B and confirm that the bias of the two estimators is indeed comparable.

But there is no free lunch for the pseudolikelihood approach. Although it is fast,
consistent, and also accurate in settings encountered in psychological applications, its stan-
dard errors can be underestimated. This was demonstrated by Keetelaar et al. (2024) for
the Ising model. Despite this limitation, the pseudolikelihood approach can consistently
estimate the unknown graph structure. Several studies on graph recovery using pseudolike-
lihood have established its consistency in high-dimensional settings where both n and p are
allowed to grow (e.g., Barber & Drton, 2015; Meinshausen & Bühlmann, 2006; Ravikumar,
Wainwright, & Lafferty, 2010). Csiszár and Talata (2006) proposed an extension of BIC for
pseudolikelihoods and showed that it can consistently reveal the Markov structure of the
generating MRF in cases where the graphs grow in size but nodes have a finite number of
neighbors. Pensar et al. (2017) used PIC to show that, under very general conditions, the
marginal pseudolikelihood can consistently reveal the Markov cover of each node (the set of
all neighbors of the node) and the global graph structure as the sample size increases (see
also Vogels, Mohammadi, Schoonhoven, & Birbil, in press, for a practical illustration).

4.2 A Metropolis Within Gibbs Approach to Bayesian Edge Selection

The Gibbs sampler is the standard solution for sampling values from an intractable
posterior distribution. As indicated above, the discontinuity in the prior distribution for
the interactions creates a serious complication for the Gibbs sampler. To explain why this
is the case, suppose we use the following block updating scheme,

µ ∼ f(µ | X, Σ),
Σ ∼ f(Σ | X, µ, γ),
γ ∼ f(γ | Σ).

If we use this scheme and simulate the value γij = 0, we have to set σij = 0. But then we
cannot move to other states, since P (γij = 1 | σij = 0) = 0, and so γij and σij would have
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to remain at zero. The Markov chain is then said to be reducible (e.g., Norris, 1998).
As the Markov chain moves between two structures, we either exclude edges from

the network and set their non-zero weights to zero, or include edges in the network and set
the corresponding zero-value weights to non-zero values. As a result of these moves between
models, the parameter dimensions change, and the MCMC method must account for these
changes in order to generate a proper, irreducible Markov chain. Transdimensional MCMC
methods have been proposed in the literature to account for these changes (e.g., Carlin &
Chib, 1995; Green, 1995; Sisson, 2005). The most popular transdimensional MCMC method
is the reversible jump algorithm (Fan & Sisson, 2011; Green, 1995), a Metropolis algorithm
that uses auxiliary variables to adjust parameter dimensions as it moves between models.
However, the reversible jump algorithm is difficult to tune and sensitive to how we adjust
the parameter dimensions. Gottardo and Raftery (2008) viewed the discrete spike and slab
as a mixture of mutually singular (MoMS) distributions — probability distributions that
have disjoint support (see also Petris & Tardella, 2003, for earlier ideas) — and showed
that reversible jump is similar to a Metropolis algorithm that jointly updates the indicator
variable and the focal parameter (here σij). The advantage of this approach is that there
is no need to specify a method for dimension matching as in reversible jump, and we can
update the pairs (γij , σij) using the Metropolis algorithm. We embed the Metropolis pair
update approach into the Gibbs sampler.

The proposed Gibbs sampler comprises two blocks of parameters to update

µ ∼ f(µ | X, Σ),
γ, Σ ∼ f(γ, Σ | X, µ).

Although updating all parameters in a block at once is preferable because it minimizes
autocorrelation, we choose to update the category thresholds one at a time and investigate
two different strategies for updating the (γij , σij) pairs, also one pair at a time. For the
category thresholds, we do this because we can formulate an efficient sampler for the in-
dividual parameters. For the (γij , σij) pairs, we do this because the transition kernels for
multi-pair updates are difficult to design and implement.

Next, we discuss the proposed MoMS Gibbs sampler based on the pseudolikelihood
approximation, called PL-MoMS, which is included in the R package bgms (Marsman et
al., 2023) available from CRAN: https://CRAN.R-project.org/package=bgms. Appendix
D discusses the proposed MoMS Gibbs sampler based on the DMH algorithm of Liang
(2010), called DMH-MoMS, which is implemented in the R package dmhBGM (Marsman,
Sekulovski, & van den Bergh, 2024), which is available on Github: https://github.com/
MaartenMarsman/dmhBGM.

4.2.1 The PL-MoMS Gibbs Sampler

Block I: Updating the category thresholds. To update the category thresholds,
we need to sample from conditional distributions of the form

f
(
µik | X, Σ, µ

(k)
i

)
∝ exp (µik)nik∏n

v=1 (gv + qv exp (µik))
exp (µik)α

(1 + exp (µik))α+β
,

for k = 1, . . . , m, and i = 1, . . . , p. Here, we have used nik =
∑n

v=1 I(xvi = k), gv = 1 +∑
u̸=k exp

(
µiu + u

∑
j ̸=i σij xvj

)
, and qv = exp

(
k
∑

j ̸=i σij xvj

)
. These full conditionals are
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intractable, but note that their form resembles that of a generalized beta-prime distribution

f(µik) ∝ (c exp (µik))a

(1 + c exp (µik))a+b .

We will use the generalized beta-prime as a proposal in an independence chain Metropolis
algorithm (Tierney, 1994). Maris, Bechger, and San Martin (2015) suggested using the
properties of the target distribution to set the parameters of this proposal. This idea has
also been successfully used by Marsman, Huth, et al. (2022) and Marsman and Huth (2023)
to estimate the threshold parameters of the Ising and Divide and Color model (Häggström,
2001), respectively.

The log of the target distribution is concave and has linear tails:

d
dµik

ln {f (µik | X, Σ)} −→
{

nik − n − β as µik → ∞,

nik + α as µik → −∞,

and the same holds for the proposal distribution:

d
dµik

ln {f (µik)} −→
{

−b as µik → ∞,

a as µik → −∞.

We match the tails of the proposal distribution to that of the target distribution by setting
a = nik + α and b = β + n − nik. The last free parameter, c, is used to ensure that the
proposal closely matches the target distribution at the current state of the Markov chain.
Specifically, c is used to make the derivatives of the logarithms of the proposal and target
distributions equal. If µ̂ is the current state of µik in the Markov chain, then we equate the
two derivatives and solve for c, which yields

c =
∑n

v=1
qv

gv+qv exp(µ̂) + (α + β) 1
1+ exp(µ̂)

α + β + n −
∑n

v=1
qv exp(µ̂)

gv+qv exp(µ̂) − (α + β) exp(µ̂)
1+ exp(µ̂)

.

Now that we have the value for c, we can sample a proposal from the generalized beta-prime
distribution in the following way: we sample Y from a Beta(a, b) distribution, and set the
proposed value µ′ equal to log

(
c−1 Y

1−Y

)
/2. Here, µ′ is a sample from the generalized

beta-prime distribution. We accept the proposed value with probability

θ = min
{

1,
∏n

v=1 (gv + qv exp (µ̂))∏n
v=1 (gv + qv exp (µ′))

(1 + exp (µ̂))α+β

(1 + exp (µ′))α+β

(1 + c exp (µ′))α+β+n

(1 + c exp (µ̂))α+β+n

}
,

and retain the current value µ̂ otherwise.

Block II: Updating the edge indicators and interactions. We base the pro-
posal for Metropolis on the current state of the edge and interaction (i.e., γ∗ and σ∗), and
we factor our proposal as

f(σ′, γ′ | σ∗, γ∗) = f(σ′ | σ∗, γ′) p(γ′ | γ∗).
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We will also use the MoMS formulation for the two proposal distributions. First, we consider
the proposal distribution for the edge indicator,

p(γ′ | γ∗) = (1 − γ∗) 1{1}(γ′) + γ∗ 1{0}(γ′),

which proposes to change the edge, i.e., it sets γ′ = 1 − γ∗ to make the between model
move. Next, we define the conditional proposal distribution for the interaction effect,

f(σ′ | σ∗, γ′) = (1 − γ′) 1{0} (σ′) + γ′ 1R\{0} (σ′) fproposal(σ′ | σ∗).

Here, the proposed value σ′ is equal to 0 if γ′ = 0, and otherwise it is drawn from a proposal
density fproposal(σ | σ∗) otherwise. We use a normal proposal distribution centered on the
current state (i.e., a random walk) with variance ν. We need to specify this variance
parameter. We follow Kolovsky and Vanucci (2020) and Wadsworth et al. (2017), and use
adaptive Metropolis to learn the variance ν from the past performance of the Markov chain.5
We are now ready to formulate our Metropolis-Hastings approach.

Let γ∗ and σ∗ denote the current state of the edge indicator and the interaction
between a variable i and j, and let γ′ and σ′ denote its proposed state. We accept the
proposed states with probability

π = min


1,

Pseudolikelihood
ratio︷ ︸︸ ︷

p∗(X | Σ′, µ)
p∗(X | Σ∗, µ) ×

Prior ratio︷ ︸︸ ︷
f(σ′ | γ′) p(γ′)
f(σ∗ | γ∗) p(γ∗) ×

Proposal ratio︷ ︸︸ ︷
f(σ∗ | σ′, γ∗) p(γ∗ | γ′)
f(σ′ | σ∗, γ′) p(γ′ | γ∗)


,

where Σ∗ is the current state of the pairwise interaction matrix, and Σ′ is the proposed
state, with elements in row i, column j, and row j, column i, set equal to the proposed
value σ′. If γ∗ = 0, we propose γ′ = 1 and σ′ ∼ N (0, νij), and accept the proposed values
with probability

π = min
{

1, p∗(X | Σ′, µ)
p∗(X | Σ∗, µ) × fslab(σ′)

fproposal(σ′ | σ∗)

}
.

Conversely, if γ∗ = 1, we propose γ′ = 0 and σ′ = 0. We accept γ′ and σ′ with probability

π = min
{

1, p∗(X | Σ′, µ)
p∗(X | Σ∗, µ) × fproposal(σ∗ | σ′)

fslab(σ∗)

}
.

5In an earlier version of our manuscript, we set the variance ν equal to the asymptotic variance (i.e., the
curvature at the posterior mode). This is currently the default in the bgms software, but this option cannot
be used for and compared with DMH. However, starting with version 0.1.1 of the bgms software, there is
an option to use an adaptive Metropolis-Hastings approach (Atchadé & Rosenthal, 2005; Griffin & Steel,
2022) and to tune the variance with a Robbins-Monro algorithm (Robbins & Monro, 1951). Specifically, in
iteration t of the Gibbs sampler, we set the logarithm of the proposal variance νij equal to

ln(ν(t)) = ln(ν(t−1)) + t−ϕ (π(t−1) − .234),

where π(t−1) was the acceptance probability in the previous iteration and the target acceptance probability
is .234, which is optimal for a Metropolis-Hastings random walk in several scenarios. The parameter ϕ, with
1
2 < ϕ ≤ 1, scales the rate of adaptation. We set ϕ to 0.75.

https://doi.org/10.1017/psy.2024.4 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.4


BAYESIAN ANALYSIS OF THE ORDINAL MRF 17

The pseudolikelihood ratios in the expressions above boil down to

p∗(X | Σ′, µ)
p∗(X | Σ∗, µ) = exp

(
2(σ′ − σ∗)

n∑
v=1

xvixvj

)

×
∏n

v=1 (1 +
∑m

u=1 exp (µiu + u {xvjσ∗ + rvi}))∏n
v=1 (1 +

∑m
u=1 exp (µiu + u {xvjσ′ + rvi}))

×
∏n

v=1

(
1 +

∑mj

u=1 exp (µju + u {xviσ
∗ + rvj})

)
∏n

v=1

(
1 +

∑mj

u=1 exp (µju + u {xviσ′ + rvj})
) ,

where rvi =
∑

h̸=j ̸=i σih xh and rvj =
∑

h̸=j ̸=i σjh xh.
Two implementations of MoMS Metropolis have been reported in the literature.

The Gibbs scheme in Wadsworth et al. (2017) applies MoMS Metropolis to each indicator-
parameter pair in turn, and the add-delete scheme in Kolovsky and Vanucci (2020) applies it
to a randomly selected indicator-parameter pair. The add-delete scheme adds an additional
update of the “active” interactions (i.e., we update the σ∗

ij for which γ∗
ij = 1) to speed up

convergence (Gottardo & Raftery, 2008; Vanucci, 2022). Our approach is a hybrid of the two
MoMS Metropolis approaches; we first consider a Gibbs scheme in which we update each
indicator-parameter pair in turn, and then do an additional update of the active interaction
parameters. Here we use a random walk Metropolis, i.e. we propose σ′

ij ∼ N (σ∗
ij , νij).

This scheme is implemented in the bgms package and is the one used in the numerical and
empirical illustrations in the next two sections.

5 Numerical Illustrations

In this section, we analyze the edge selection performance of PL-MoMS compared
to DMH-MoMS. While the pseudolikelihood and the exact likelihood do not appear to lead
to substantially different estimates (cf. the simulations in Appendix B), i.e. are unbiased,
the pseudolikelihood may lead to smaller standard errors, or similarly, a reduced sensitivity
to prior distributions. Since edge selection is modeled by the prior distribution on the
pairwise interaction parameters, we examine how this affects the estimates of the statistical
evidence for edge inclusion or exclusion for PL-MoMS and DMH-MoMS in Section 5.1.
We then compare the performance of PL-MoMS and DMH-MoMS with two existing edge
selection approaches for the binary MRF (i.e., the Ising model) in Section 5.2. Finally, we
demonstrate the performance of our methods on ordinal data generated from the ordinal
MRF in Section 5.3.

The R scripts and output needed to reproduce the numerical experiments and results
shown in this section are available in an online repository at https://osf.io/qsj4w/. Our
simulations were performed on the Dutch national supercomputer Snellius, but we estimate
the runtimes of the proposed procedures on a MacBook Pro with an M1 Pro chip.

5.1 A Comparison of Evidence Estimates

The pseudolikelihood-based estimates in Appendix B appear to have smaller vari-
ance than the stochastic estimates based on the exact likelihood, which could make the
posterior distributions based on a pseudolikelihood less sensitive to the prior distribution
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than posterior distributions based on the exact likelihood. However, in our Bayesian edge
selection procedure, the statistical evidence for the inclusion or exclusion of individual edges
in the network is modeled by the spike and slab prior distributions on the pairwise inter-
action parameters. The reduced sensitivity to the prior distribution is likely to affect the
estimated evidence for the inclusion or exclusion of edges in the network. Before analyzing
the quality of our Bayesian edge selection procedure in the next two sections, we compare
here how PL-MoMS-PL and DMH-MoMS estimate the statistical evidence.

In Bayesian edge selection, the evidence for the inclusion or exclusion of individual
links in the network is measured by the inclusion probability. The posterior inclusion
probability is the model-averaged probability of including an edge in the network, given the
data

P (γij = 1 | X) =
∑

γ:γij=1
P (γ | X).

It indicates the probability that the edge is included in the network that generated the
observed data and is essential for Bayesian analysis of graphical models. The edge inclusion
probability is used to define the median probability structure — a single, optimal structure
for predicting new observations (Barbieri & Berger, 2004) — and the inclusion Bayes factor.
The inclusion Bayes factor is the change from the prior inclusion odds to the posterior
inclusion odds,

BF(ij)
10 = P (γij = 1 | X)

P (γij = 0 | X)

/
P (γij = 1)
P (γij = 0) .

It indicates how much more likely it is that the observed data came from a network that
included the edge i–j than from one that did not. The exclusion Bayes factor BF(ij)

01 =
1/BF(ij)

10 gives the evidence for the conditional independence between nodes i and j in the data.
Sekulovski et al. (in press) show that the inclusion Bayes factor, as a test for conditional
dependence or independence of pairs of variables in the network, is robust to assumptions
about the structure of the rest of the network. It also appears to be optimal for detecting
evidence of conditional independence compared to Bayes factors that compare the same
network structure with and without the link, or to credible interval-based tests.

We investigate how PL-MoMS and DMH-MoMS estimate the inclusion Bayes factors
using simulated data, following the setup for the bias analysis in Appendix B, where we
generated 500 datasets, each with 300 observations (n = 300) on 24 ordinal variables (p =
24) with five response categories (m = 4). The datasets were generated from the ordinal
MRF in Eq. (2). For each variable, four threshold parameters were sampled from a uniform
distribution ranging from −2.0 to −0.5, sorted in decreasing order. The pairwise interaction
parameters were sampled from a normal distribution with a mean of zero and a standard
deviation of 1/25. For each of these 500 datasets, we estimate the joint posterior distribution
of the model parameters and the edge inclusion indicators with PL-MoMS and DMH-MoMS,
as described in Appendix D. It is generally recommended to run the inner Gibbs sampler
of the DMH algorithm for n × p = 7, 200 iterations, for each model parameter and edge
indicator and pairwise interaction pair (i.e., m × p +

(p
2
)

= 372 times) in each iteration of
the Gibbs sampler. Clearly, this would make its application intractable, as confirmed by
the runtime analysis in Appendix E. For this analysis, we therefore use a fixed number of
10 iterations for the inner Gibbs sampler. We ran PL-MoMS and DMH-MoMS for 20, 000
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iterations for each of the 500 datasets. Analysis of a single dataset using PL-MoMS took
about 5 minutes, and using DMH-MoMS with ten iterations of the inner Gibbs sampler
took about 11 hours on a single core of a MacBook Pro with an M1 chip. We used the
Snellius supercomputer to distribute the analysis of the 500 datasets in batches across 124
cores. On average, it took about 16 minutes to analyze a single dataset on a single core on
Snellius with PL-MoMS and about 19 hours with DMH-MoMS.

We computed the expected a posteriori (EAP) estimates or posterior means of the
edge indicator variables (i.e., the inclusion probability) and the pairwise interaction pa-
rameters, and averaged these estimates across the datasets. Figure 1 shows scatterplots
of the averaged EAP estimates of the interaction parameters against the estimated inclu-
sion probabilities, with estimates based on PL-MoMS in the left panel and those based on
DMH-MoMS in the right panel. The gray dashed lines indicate the evidence thresholds cor-
responding to BF10 = 10 at the top, BF10 = 1 in the middle, and BF10 = 1/10 at the bottom.
Note that the two scatterplots show a similar relationship between the interaction effects
and the inclusion probabilities, but that PL-MoMS tends to show more evidence for edge
inclusion and less evidence for edge exclusion than DMH-MoMS, and we therefore expect
PL-MoMS to show higher sensitivity and lower specificity than DMH-MoMS. Note that the
estimates for the pairwise interactions shrink to zero more for DMH-MoMS than for PL-
MoMS, which is a consequence of the posterior distribution based on the pseudolikelihood
being less influenced by the prior distribution. Because the EAP estimates based on the
pseudolikelihood are further from zero, the pseudolikelihood approach results in increased
sensitivity or decreased specificity.

5.2 Bayesian Edge Selection with Binary Data

Now that we have a better understanding of how PL-MoMS and DMH-MoMS ac-
cumulate evidence, we want to evaluate their impact on Bayesian edge selection. We also
want to compare our proposed PL-MoMS and DMH-MoMS procedures with two alternative
approaches for the Ising model, the EBIC-Lasso approach of van Borkulo et al. (2014) and
the Bayesian edge selection method of Park, Jin, and Schweinberger (2022), which uses a
continuous spike and slab prior and the DMH algorithm to sample from the posterior distri-
bution. We refer to the latter as DMH-CSaS (i.e., DMH combined with a Continuous Spike
and Slab). Based on the results of Sekulovski et al. (in press) that we discussed earlier, we
expect that our discrete spike and slab prior approach will be similar to EBIC-Lasso in that
the method will have a high specificity or true negative rate and a low sensitivity or true
positive rate. However, given what we learned about PL-MoMS and DMH-MoMS in the
previous section, we expect this effect to be partially mitigated by the pseudolikelihood ap-
proach, and thus expect PL-MoMS to result in lower specificity and higher sensitivity than
DMH-MoMS. Finally, given the above expectations and the results in Park et al. (2022), we
expect PL-MoMS and DMH-MoMS to have higher specificity but possibly lower sensitivity
than DMH-CSaS.

We wanted to compare our methods with the DMH-CSaS method proposed by
Park et al. (2022), but because we were unable to use their software implementation, we
replicated their simulation setup for a direct comparison. This involved generating 500
datasets from the Ising model (i.e., the ordinal MRF with m = 1), each with 24 variables
and 300 observations. Each dataset was simulated with distinct parameter values: category
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Figure 1

Scatterplots comparing EAP (Expected A Posteriori) estimates for the pairwise interaction
parameter with the estimated inclusion probabilities, each averaged over 500 data sets. The
left panel shows estimates based on the pseudolikelihood approach, while the right panel
focuses on estimates based on the DMH algorithm. Each scatterplot includes dashed lines
representing specific evidence thresholds under a uniform prior; the top line indicates an
inclusion Bayes factor value of 10 (i.e., evidence for inclusion), the middle line indicates
an inclusion Bayes factor value of 1 (i.e., absence of evidence), and the bottom line indicates
an inclusion Bayes factor value of 0.1 (i.e., evidence for exclusion).

threshold parameters were uniformly sampled between −2 and −0.5, and for the 276 edges,
69 were assumed present. The interaction parameters for these edges were sampled from
a uniform distribution, with 41 of them sampled uniformly between .5 and 2, and the
remainder between −1 and −0.5. Datasets containing variables with zero variance (67/500)
were excluded from our analyses.

We estimated the joint posterior distribution of the model parameters and the edge
inclusion indicators with PL-MoMS and DMH-MoMS. As in the previous simulations, the
inner Gibbs sampler for DMH was run for ten iterations, and we ran our Gibbs samplers for
20, 000 iterations on each of the 500 data sets. As before, the slab distribution is a Cauchy
distribution with a scale of 2.5. We used the IsingFit R package (van Borkulo, Epskamp,
& Robitzsch, 2016) with package defaults and the AND rule to estimate the parameters of
the Ising model using EBIC-Lasso. Our results with IsingFit are almost identical to those
reported by Park et al. (2022), confirming that our results should be comparable.

We estimated the median probability model using the two MoMS Gibbs samplers,
which includes an edge in the network if its corresponding inclusion probability exceeds .5,
and excludes it from the network otherwise. For EBIC-Lasso, we selected the edges that
had a non-zero estimate and excluded the others. For each method, we compare how well
they were able to recover the generating network structure by computing its specificity or
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true negative rate —TN / (TN + FP)—, sensitivity or true positive rate —TP / (TP +
FN)—, and the Rand index (Rand, 1971) —(TN + TP) / (TN + FP + TP + FN). The
results are in table 1, we also copied the original results from Park et al. (2022).

Measure PL-MoMS DMH10-MoMS DMH10 n-CSaS∗∗ EBIC-Lasso
Specificity .849 .949 .786 .997
Sensitivity .664 .541 .738 .218
Rand index .802 .847 .774 .803

Table 1

Performance metrics –specificity, sensitivity, and Rand index– of different edge selection
methods applied to 500 simulated Ising model data sets, following the setup of Park et al.
(2022). It includes the proposed PL-MoMS and DMH-MoMS approaches, the
DMH10,n-CSaS approach of Park et al. (2022) (∗∗ results copied from their Table 1), and
the EBIC-Lasso method of van Borkulo et al. (2014).

Table 1 shows important differences in performance between the Bayesian edge se-
lection methods and EBIC-Lasso. EBIC-Lasso performed best at identifying which edges
were missing from the generating structures, i.e., has a high specificity, while DMH-CSaS
performed worst at this task. DMH-MoMS was close to EBIC-Lasso on this metric, while
PL-MoMS performed significantly worse. Conversely, DMH-CSaS performed best at identi-
fying which edges were present in the generating structures, i.e., has a high sensitivity,while
EBIC-Lasso performed worst on this metric. Interestingly, the DMH-MoMS method was
not close to EBIC-Lasso on this metric, as it did much better, but it did not perform as
well as PL-MoMS on this metric. These effects were as expected.

The methods thus trade off their specificity and sensitivity differently. Methods that
perform well in terms of specificity tend to perform poorly in terms of sensitivity, and vice
versa. We used the Rand index to measure how these trade-offs occur and to characterize
the overall performance of the methods in recovering the generating network structure. The
DMH-MoMS Gibbs sampler performed best on this overall metric with 85% correct identi-
fications, while DMH-CSaS performed worse with 77% correct identifications. Interestingly,
although EBIC-Lasso and PL-MoMS trade off specificity and sensitivity differently, they
perform quite similarly on this metric with 80% correct identifications.

5.3 Bayesian Edge Selection with Ordinal Data

We have seen that PL-MoMS and DMH-MoMS are very capable of recovering the
underlying network structure when applied to binary data. In the next analysis, we will see
if this good performance generalizes to the analysis of ordinal data with m > 1. Ideally, we
would like to keep the simulation setup for m = 1 and m > 1 as similar as possible to render
results comparable. However, there are two complications with this. First, the parameters
of the Ising model and the ordinal MRF are not standardized, and the generating parameter
values we used for the Ising model lead to degenerate versions of the ordinal MRF. Like the
Ising model, when the parameters of the ordinal MRF exceed certain critical thresholds,
the model exhibits a phase transition and from that point on produces data with zero
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variance. Unfortunately, it is generally unknown what these critical thresholds are. We
address this by rescaling the parameter values. This brings us to the second complication.
Our Bayesian edge selection procedure imposes a fixed spike and slab prior distribution
on the pairwise interaction parameters; in our previous analysis, we used a Cauchy with
a scale of 2.5 as the slab distribution, but this prior does not account for this rescaling
of the interaction parameters. Because of this, and because we expect smaller interaction
effects as the number of categories increases, we expect the two MoMS procedures to show
increased specificity and decreased sensitivity, all else being equal.

We investigate the Bayesian edge selection performance of PL-MoMS and DMH-
MoMS on 500 datasets, each with 300 observations (n = 300) on 24 ordinal variables
(p = 24) with five response categories (m = 4) simulated from the ordinal MRF in Eq.
(2) as follows. For each variable, four threshold parameters were sampled from a uniform
distribution ranging from −2.0 to −0.5, sorted in decreasing order. As in the binary case,
we assume that 69 out of 276 edges were present and the rest were absent. However, where
the products xi × xj were zero or one in the binary case, they now range from zero to
m2 = 16. To account for this change in value, we sampled the interaction parameters in the
same way as before, but multiplied them by a factor of m−2 = 1/16. Thus, the interaction
parameters for the current edges were sampled from a uniform distribution, with 41 of them
uniformly sampled between 1/32 and 1/8, and the rest between −1/16 and −1/32. There were
no data sets containing variables with zero variance.

Similar to the analysis in the previous section, we estimated the joint posterior
distribution of the model parameters and the edge inclusion indicators with PL-MoMS
and DMH-MoMS. As before, the inner Gibbs sampler for DMH was run for ten iterations,
and we ran our Gibbs samplers for 20, 000 iterations on each of the 500 data sets. The
slab distribution is again a Cauchy distribution with a scale of 2.5. We expect that using
the same scale for the Cauchy slab distribution while shrinking the generating interaction
parameters would lead to increased specificity and decreased sensitivity, a scaling effect that
is essentially a form of the Jeffreys-Lindley paradox in Bayesian hypothesis testing (Jeffreys,
1961; Lindley, 1957). To investigate this, we estimate the joint posterior distribution using
PL-MoMS with a rescaled Cauchy(0, 5/32) slab distribution. We did not do this for the
DMH-MoMS approach because i) we think we can judge the effect of rescaling on this
procedure from the effect of rescaling on the PL-MoMS approach, and ii) running the
DMH-MoMS approach twice is quite time consuming even on a supercomputer (it took us
about 2.5 days to analyze the 500 datasets on Snellius) and expensive.

Measure PL-MoMS DMH10-MoMS PL-MoMS w. scale 5/32

Specificity .969 .996 .849
Sensitivity .418 .204 .644
Rand index .832 .798 .797

Table 2

Performance metrics –specificity, sensitivity, and Rand index– of the PL-MoMS and the
DMH-MoMS methods applied to 500 simulated ordinal MRF data sets.
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Table 2 shows that, as expected, when we do not correct the scale of the slab
distribution for the increased pairwise interaction effects, or for the fact that the parameters
must now shrink in size, the specificity of the variable selection methods increases while their
sensitivity decreases compared to the results in the binary case shown in Table 1. It becomes
more difficult to detect the smaller effects because the prior is much more diffuse compared
to the size of the effect in the binary case. Of the absent edges, PL-MoMS correctly identified
about 85% in the previous analysis and now 97%. Similarly, the DMH-MoMS approach,
which had 95% correct before, now has a near perfect score on this metric. However, as
mentioned above, they performed less well in detecting the edges that now have very small
edge weights. Where PL-MoMs correctly identified 66% of the present edges, this has now
shrunk to 42%, and for DMH-MoMs it has shrunk from 54% to 20%. While the relative
performance of PL-MoMs compared to DMH-MoMs is the same as before, in that DMH-
MoMs has higher specificity and lower sensitivity, the fact that DMH-MoMs has such low
sensitivity now makes its overall performance of 80% less than PL-MoMs’ 83%.

We also performed an analysis with PL-MoMS correcting for the rescaling of the size
of the pairwise interactions. This correction worked perfectly in that, despite the additional
parameters that need to be estimated for the ordinal model, it shows almost identical
performance on all three metrics as before. The specificity was 85% in both scenarios, the
sensitivity decreased slightly from 66% to 64%, and the overall performance of 80% was
also the same in both scenarios. This result suggests that correcting for the number of
categories in the scale of the slab distribution can effectively mitigate differences in the size
of the interaction effects.

6 A Bayesian Reanalysis of McNally et al. (2015): A Network Approach to
Posttraumatic Stress Disorder

To illustrate the value of the proposed Bayesian methodology in applied research,
we reanalyze data on posttraumatic stress disorder (PTSD) symptoms from McNally et
al. (2015). Specifically, we compare the Bayesian estimate of the network using PL-MoMS
with those obtained in the original study using an unregularized frequentist GGM and
the now popular regularized variant. In addition, we use the new Bayesian approach to
analyze the available evidence for conditional independence and conditional dependence,
which is not possible with the Frequentist approach. We also use the reanalysis to discuss
practical issues such as prior robustness, and compare the inclusion Bayes factors under
different prior specifications. Our online repository at https://osf.io/qsj4w/ includes a
fully reproducible R tutorial on using bgms that reproduces the analysis below.

McNally et al. (2015) reported a network analysis of PTSD symptoms of 362 Chinese
adults who survived the Wenchuan earthquake and lost a child in the disaster. McNally et
al. (2015) used the 17 items from the Mandarin Chinese version of the Posttraumatic Check-
list (civilian version), each of which assesses a symptom of PTSD according to the DSM-IV
(American Psychiatric Association, 2000). Participants rated how much the symptom both-
ered them in the past month on a 5-point scale from 0 (not at all) to 4 (extremely). We
excluded 18 participants from the analysis because they had one or more missing responses.

The original analyses treated the observed ordinal responses as continuous variables
and analyzed the network using partial correlations. No regularization or model selection
procedures were available when the original paper was published, so a cutoff simply sup-
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pressed partial correlations below .1. Figure 2(a) shows this network. Recent guidelines
(Isvoranu & Epskamp, 2023) suggest using graphical lasso regularization (glasso; Friedman,
Hastie, & Tibshirani, 2008) in combination with EBIC model selection (Chen & Chen,
2008). This network is shown in Figure 2(b). We can see that the two networks are very
different. For example, the partial correlation network which uses a cutoff for the partial
correlations is much sparser than the EBICglasso network. The sparsity of the partial corre-
lation network is not only due to the use of a cutoff on the partial correlations, since some of
the relations in the partial correlation network are missing in the EBICglasso network. This
brings us to a second difference between the two networks. While several negative interac-
tions were found in the thresholded partial correlation network (e.g., “intrusion”–“hyper”),
some were removed (e.g., “dreams”–“startle”) or differently weighted in the EBICglasso
network (e.g., “dreams”–“future”).
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(a) Thresholded Partial Correlations (b) Graphical Lasso + EBIC

(c) Ordinal MRF
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Figure 2

Markov Random fields estimated with different approaches. Panel (a) displays the network
structure as reported in McNally et al. (2015) which thresholded observed partial correlations
at 0.10; panel (b) shows the GGM estimated with the popular graphical Lasso + EBIC
approach; and panel (c) displays the ordinal MRF estimated with the Bayesian approach
presented in this paper.

6.1 Structure Estimation in the Presence of Uncertainty

The two classical methods each provide a single network estimate but do not quan-
tify how certain we are about this structure. In contrast, our Bayesian variable selection
approach in principle provides the uncertainty (i.e., posterior probability) associated with
each possible structure. In this setting, the model or structure with the highest posterior
probability is then often selected. Under certain prior specifications, choosing the model
with the highest posterior probability is, in principle, the estimate provided by classical
methods (see Marsman, Huth, et al., 2022, for a brief discussion). However, selecting the

https://doi.org/10.1017/psy.2024.4 Published online by Cambridge University Press

https://doi.org/10.1017/psy.2024.4


BAYESIAN ANALYSIS OF THE ORDINAL MRF 26

model with the highest posterior probability can be problematic for several reasons. First,
we must estimate the posterior structure probabilities, and since we have no analytic ex-
pression for their values and there are too many possible structures to enumerate, we are
often uncertain about which structure has the highest posterior probability, especially if
we are uncertain about the underlying structure. Second, even if we were certain about
their exact values, it is often the case that the most likely structure is not that much more
plausible than the second most likely structure. To address this latter issue, Barbieri and
Berger (2004) suggest using the median probability model, as it has an optimal predictive
value even in the face of model uncertainty. The median probability model selects only
those variables (edges) with a posterior inclusion probability greater than .5.

To measure our uncertainty about the underlying structure for the problem at hand,
we tracked how many different structures the MCMC procedure visited. Assuming the unit
information prior for the interaction effects, we ran the MCMC procedure for one million
iterations, which visited 994, 700 different structures. The most likely structure accounted
for less than 0.01 percent (one hundredth of one percent) of the posterior probability. These
results show that we are very uncertain about the structure of the network; many structures
seem plausible for the data at hand, and no structure stands out. We therefore consider the
median probability model shown in Figure 2(c). Note that the median probability model
is more densely connected than the thresholded partial correlation network, but unlike the
EBICglasso network, it retains the negative associations.

6.2 Edge and Structural Evidence

Importantly, the fact that we are massively uncertain about which overall network
structure is correct does not mean that we cannot be highly certain about specific edges.
For example, while a number of edges may be present in some structures and not in others,
leading to high uncertainty about the overall structure, other edges may be present (or
absent) in almost all structures, and we can therefore be highly certain about their presence
(or absence). A major advantage of Bayesian model averaging is that it allows us to express
this uncertainty locally in terms of the Bayes factors for edge inclusion. Can we interpret
the missing edge as evidence of conditional independence, or should we be more cautious
with this interpretation?

The Bayesian methodology allows us to answer this question in a straightforward
way. Figure 3 shows a scatterplot of the model-averaged posterior means of the interaction
parameters (x-axis) against the logarithm of the corresponding inclusion Bayes factor (y-
axis). This illustrates how the value of the Bayes factor increases as the corresponding
posterior distribution moves away from zero. In the figure, we interpret an inclusion Bayes
factor less than 1/10 as evidence of edge exclusion, i.e., conditional independence. These
inclusion Bayes factors are colored red. Similarly, we interpret inclusion Bayes factors
greater than 10 as evidence of edge inclusion, i.e., conditional dependence. These inclusion
Bayes factors are colored in blue. The blue triangles or arrows at the top indicate the
inclusion Bayes factors that we estimate to be greater than 148. This means that we can
be confident that these edges are present in the data generating model. On the other hand,
for the many grey edges indicating absence of evidence, we likely would not want to draw
strong conclusions about their presence or absence in the data generating model. Another
way to present these results is with the three network plots in Figure 4, which show for
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Figure 3

The mean of the model-averaged posterior distribution of the interaction parameters (x-
axis) plotted against the log of the corresponding inclusion Bayes factor (y-axis). Positive
values of the log Bayes factors indicate evidence for inclusion, and negative values indicate
evidence for exclusion. We use Bayes factor values between 1/10 and 10 to indicate weak
(or no) evidence. For this analysis, we assumed a unit information prior on the interaction
parameters. Triangles indicate log Bayes factors greater than five.

which relations there is evidence of absence (left panel), absence of evidence (middle panel),
and evidence of presence (right panel).

The inclusion Bayes factors convey the evidence for individual edges. But they can
also help us identify parts of the network about which we are confident and parts about
which we are uncertain. For example, the right panel of Figure 4 shows that we have
conclusive evidence for each of the edges between the symptoms “flashbacks”, “dreams”,
and “intrusions”. Let H1 denote the hypothesis that the three variables form a clique (i.e.,
there is an edge between each variable), and let H0 denote its complement (i.e., at least one
of the edges is missing). The Bayes factor in which we pit the two hypotheses against each
other is equal to

BF10 = P (H1 | data)
P (H0 | data)︸ ︷︷ ︸
Posterior Odds

/ P (H1
P (H0)︸ ︷︷ ︸

Prior Odds

.

There are eight different configurations of edges between the three variables, one correspond-
ing to H1 and seven corresponding to H0. Since all structures are equally likely a priori,
the prior probability is 1/7 in favor of H1. Our estimate for the posterior probability that
the data come from a network in which the three variables form a clique is close to one, i.e.,
P (H1 | data) = .999987, and the estimated posterior odds in favor of H1 are 76, 922.08. The
Bayes factor is thus estimated to be BF10 = 76, 922.08 × 7 = 538, 454.6, indicating massive
evidence in favor of H1. In contrast, we have inconclusive evidence between the symptoms
“avoidth” (avoidance of thinking about a stressful experience), “amnesia”, and “flashbacks”.
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Figure 4

Three networks showing the level of evidence for each edge. In the network on the left, the
edges reflect inclusion Bayes factors less than 1/10; in the middle network, the edges reflect
Bayes factors between 1/10 and 10; the edges in the network on the right reflect Bayes factors
greater than 10. For this analysis, we specified a unit information prior on the interaction
parameters.

We saw all 23 = 8 possible configurations of edges between these three variables, and no
structure stood out.

6.3 Prior Robustness

The qualitative conclusions drawn from the Bayesian analysis of the ordinal MRF
may be sensitive to the choice of the prior distribution. To assess the robustness of the
results, we perform a robustness analysis comparing the results of the unit information
prior to the Cauchy prior with different scale values. We report the details of this analysis
in the Appendix F. Some of the conclusions of our analysis would change depending on the
choice of a more or less diffuse prior, especially the BFs that are close to our cutoffs of 10
or 1/10. At the same time, however, we found that many results were robust to changes
in our prior specifications, especially the BFs that are far from our chosen cutoffs. Of the
52 BFs that showed compelling evidence for conditional independence, i.e. edge exclusion,
using the unit information prior, 74 showed compelling evidence after adopting the more
diffuse Cauchy(0, 2.5) prior density. Thus, while for 22 edges we now conclude that we have
evidence of absence rather than absence of evidence, for 52 edges we did not change our
conclusions for either prior specification. Conversely, of the 35 BFs that showed compelling
evidence for conditional dependence, i.e., edge inclusion, using the unit information prior, 32
showed compelling evidence after adopting the more diffuse Cauchy(0, 2.5) prior density.
Thus, while we now conclude that we have absence of evidence rather than evidence of
presence for three edges, we have not changed our conclusions for 32 edges under either
prior specification. In sum, the unit information prior appears to be the more conservative
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choice in this analysis.

7 Discussion

We introduced a Markov Random Field (MRF) for ordinal variables based on exist-
ing work in the psychometric Anderson and Vermunt (2000) and machine learning literature
Suggala et al. (2017). In addition, we propose a Bayesian variable selection method that
allows one to model the inclusion and exclusion of individual edges in the network and,
consequently, to test for conditional dependence and independence of network variables
using the inclusion Bayes factor. We provide an implementation in the R-package bgms,
which we have used to determine the performance of our methodology through simulation,
and to analyze empirical data to illustrate how our methodology can be used in applied
research. We conclude this paper by discussing the relations of the proposed ordinal MRF
to other multivariate models for ordinal data, commenting on how the prior distributions
in the Bayesian model affect our tests for conditional dependence and independence of the
network variables, our approach for analyzing the intractable likelihood, and suggesting
future improvements of the implementation in bgms.

7.1 The Ordinal MRF and Other Multivariate Models for Ordinal Variables

We introduced the ordinal MRF as the marginal distribution of a latent variable
model for ordinal variables — the GPCM — and linked its conditionals to the univariate
adjacent category logit (e.g., Anderson & Vermunt, 2000; Suggala et al., 2017). One alter-
native to the proposed ordinal MRF is the multivariate probit model (e.g., Guo et al., 2015),
which maps the observed categories of ordinal variables onto the adjacent intervals of Gaus-
sian variables, and models the latent Gaussian variables with a GGM. Another alternative
model that uses an underlying continuous latent variable is the Gaussian Copula Graphical
Model (GCGM; Dobra & Lenkoski, 2011), which is based on the extended rank likelihood
of Hoff (2007) and takes into account transformations of the underlying Gaussian variables.
These models are much easier to analyze than the ordinal MRF, and an excellent Bayesian
treatment of the GCGM is implemented in the R package BDgraph (R. Mohammadi & Wit,
2019). However, in contrast to the model proposed in this paper, and although the underly-
ing GGM is an MRF, the Markov properties do not hold in the marginal distribution of the
ordinal variables for the multivariate probit or the GCGM (e.g., Dobra & Lenkoski, 2011;
Liu, Lafferty, & Wasserman, 2009).

The multivariate probit model and the GCGM have not been popular options for
analyzing ordinal data in psychological research. In psychology, researchers often choose to
use misspecified models, either by dichotomizing their ordinal data and analyzing the bina-
rized data with an Ising model, or by treating the ordinal data as continuous and analyzing
it with a GGM. The use of misspecified models raises practical and theoretical concerns
(e.g., Johal & Rhemtulla, 2023; Liddell & Kruschke, 2018). For example, the recovery of
network structure using dichotomized data depends critically on the specific threshold for
dichotomization (e.g., Hoffman et al., 2018), and the recovery of network structure by as-
suming continuity cannot be guaranteed (e.g., Loh & Wainwright, 2013). With the proposed
ordinal MRF, researchers can consistently recover the underlying network structure of their
ordinal data.
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7.2 Prior Specification for Bayesian Edge Selection

We used Bayesian variable selection to model the selection of edges in the network
structure, and the discrete spike and slab prior on edge weights is central to this approach.
The discrete spike and slab prior uses a latent binary edge indicator to assign edge weights
to a diffuse slab distribution to indicate edge presence, or it is set to zero to indicate edge
absence. This setup requires us to choose a distribution for the diffuse slab component
and for the latent edge indicator. We have chosen to focus here on the slab specification
and have considered two types of distributions, the unit information prior and the Cauchy
distribution. In our empirical example (e.g., Figure F1), we found that more diffuse prior
distributions tend to lead to more evidence for the null hypothesis (i.e., edge exclusion).
Here, the Cauchy distribution with a unit or larger scale was more diffuse than the unit in-
formation prior. This particular form of sensitivity to the prior distribution is well known in
Bayesian hypothesis testing (Jeffreys, 1961; Lindley, 1957). More diffuse prior distributions
tend to give increasing support to extreme parameter values that make predictions that the
observed data cannot support. In contrast, the null hypothesis makes an exact, and thus
risky, prediction that the observed data can partially support, even in the non-null scenario.
The relative evidence for the null hypothesis then increases as the support for the alterna-
tive hypothesis diminishes. While the prior specification clearly affects tests of the network
structure, we paid relatively little attention to this aspect of the Bayesian model. Although
we devoted little effort to its analysis, this aspect of our model is obviously important. See,
for example, the expression for the inclusion Bayes factor. More work is needed to formulate
good default specifications for the prior on the structure of psychological networks.

The partial association parameters of discrete variable MRFs are unstandardized
effects, meaning that what constitutes a plausible range for their values depends very much
on the size of the network and the number of response categories. The latter effect is
of course new, as the ordinal MRF is new, and has been demonstrated in our numerical
illustrations; increasing the number of response categories while fixing the scale of the prior
on the pairwise interactions increases the evidence for the null effect hypothesis. This
is essentially a form of the Jeffreys-Lindley paradox (Jeffreys, 1961; Lindley, 1957). These
scaling effects pose a new and unresolved challenge for Bayesian analysis of MRFs for discrete
variables, and in particular for setting a good standard for priors on partial associations.
We have shown that reducing the scale of the prior in proportion to the increase in the
range of the product in the pairwise interactions can effectively mitigate the effects of an
increased number of response categories in our simulations. However, further research is
needed to determine whether this strategy can effectively help to standardize the pairwise
interaction effects across models for variables with different ranges of categories, and whether
a similar strategy can be applied to standardize them across models with different numbers
of variables. We leave this for future research.

7.3 Dealing with the Intractable Normalizing Constant of the Ordinal MRF

The normalization constant of the ordinal MRF poses a serious computational chal-
lenge to its analysis. We proposed and analyzed two statistical approaches that bypass its
direct computation, the Double Metropolis-Hastings (DMH) algorithm and the pseudolike-
lihood approach. Both approaches introduce an approximation to bypass the computation
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of the normalization constant of the ordinal MRF. The DMH algorithm applies an approx-
imation to the transition kernel of the underlying Metropolis-Hastings algorithm, while the
pseudolikelihood provides a coarser approximation that replaces the intractable likelihood
with a tractable one. When properly implemented, the approximation used by the DMH
algorithm allows us to closely approximate the full posterior distribution of the ordinal
MRF, while inference based on the pseudolikelihood remains a cruder approximation (i.e.,
is known to underestimate the posterior variance; Miller, 2021).

The correctness of the approximation used by the DMH algorithm depends on the
ability of its inner Gibbs sampler to approximate a draw from the full likelihood. This inner
Gibbs sampler introduces a new computational challenge. While previous work suggested
running the inner Gibbs sampler for a number of iterations equal to the dimension of the
data at hand (e.g., Liang, 2010) or up to ten times the sample size (e.g., Park & Haran,
2018; Park et al., 2022), our runtime analysis showed that running the inner Gibbs sampler
for this many iterations is not feasible. To make the use of the DMH algorithm remotely
feasible in our analyses, we set the number of iterations of the inner Gibbs sampler to
ten. Although feasible, the ten iterations for the inner Gibbs sampler were far fewer than
the heuristic choices of n × p = 300 × 24 = 7,200 iterations based on data size or the
10 × n = 3,000 iterations based on sample size for our analyses. As a result, it is unclear
how close the DMH approximation was to the full posterior distribution.

Computational cost aside, we expect that both our implementation of the DMH
algorithm and the pseudolikelihood approach provide a somewhat crude approximation to
the full posterior distribution. Nevertheless, we have shown that both approaches are able
to recover the underlying graph structure, although they accumulate evidence differently
and trade off specificity and sensitivity in different ways. Sensitivity was higher for the
pseudolikelihood approach, which we attribute to the underestimation of the posterior vari-
ance by the pseudoposterior, while specificity was higher for the DMH approach. Overall,
the DMH algorithm performed best in recovering the underlying graph structure in terms
of the Rand index, although the performance of the pseudolikelihood approach was similar.

The pseudolikelihood approach was particularly effective in overcoming the compu-
tational challenge, while our implementation of the DMH algorithm with ten iterations of
the inner Gibbs sampler exhibited significantly longer run times compared to the pseudo-
likelihood approach. This discrepancy raises practical considerations for method selection.
Parallelization was shown to reduce the runtime of the DMH algorithm. However, this
reduction was rather limited, and the practicality of this solution is also limited for applied
researchers without access to advanced computing resources. Therefore, the feasibility of
parallelization in increasing the computational speed of DMH needs further consideration.

Given the massive computational overhead of the DMH algorithm over the pseu-
dolikelihood approach, and the relatively good graph recovery performance of the latter
compared to the former, we recommend that researchers use the pseudolikelihood method.
However, we believe that progress can be made to mitigate the problems introduced by
approximating the likelihood with the pseudolikelihood approach. In the context of social
network analysis, Bouranis, Friel, and Maire (2017, 2018) proposed to correct the mode and
curvature around the mode of the pseudolikelihood using stochastic versions of maximum
likelihood estimates (MLEs) and the Hessian matrix. However, as shown in Appendix B,
which extends the results of Keetelaar et al. (2024) for the Ising model, we believe that we
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do not need to correct the mode of the pseudolikelihood using the MLEs, since their stochas-
tic versions appear to agree with the maximum pseudolikelihood estimates. Therefore, we
believe that future work should focus on correcting the curvature around the mode.

7.4 The Practical Benefits of Bayesian Analysis of MRFs

The proposed Bayesian methodology allows us to model the uncertainty associated
with the structure of the network, and to express the relative plausibility of different struc-
tures for the data at hand. Our reanalysis of the PTSD data from McNally et al. (2015)
allowed us to show that we can be very uncertain about which particular structure under-
lies our data. This is a big deal. If we see that we are uncertain about the structure of
the network, we know that we should be cautious about using it to build theories, inter-
ventions, or policies. Conversely, if we are not aware of this uncertainty, we run the risk
of being overconfident in our results (Hoeting et al., 1999). Because the methodology for
assessing the uncertainty underlying our networks is new, researchers are unaware of this
uncertainty. And since this uncertainty can be substantial in practice, as our empirical
analysis has shown, we understand why researchers are concerned about the robustness of
network results (Fried & Cramer, 2017; Jones, Williams, & McNally, 2021).

Our reanalysis of the PTSD data from McNally et al. (2015) also showed that
we can use our methods to determine that even if we are uncertain about the structure
of the network, we can be confident about some of its substructures. We used Bayesian
model averaging to aggregate what we know about individual structures to accumulate the
evidence for edge inclusion or exclusion. We believe that the inclusion Bayes factor (BF)
— which expresses the statistical evidence for edge inclusion — is a major step forward in
the statistical analysis of psychometric networks. It provides a formal test of conditional
independence that is insensitive to the specification of the rest of the network structure.
While we proposed the inclusion BF to evaluate the support for individual edges, we also
showed that we can extend it to a particular configuration of a subset of edges in the network.
For example, in our reanalysis of the PTSD symptom data, we provided strong evidence that
the data came from a network that included all edges between the “flashbacks,” “dreams,”
and “intrusions” variables.6

7.5 The bgms Software

We have implemented the proposed Bayesian methods in the R package bgms, which
can be installed from CRAN (see https://cran.r-project.org/web/packages/bgms/
index.html). The Supplementary Material contains a small tutorial R script for using
the package and redoing our reanalysis of the PTSD data. The computational aspects of
the software are mostly written in C++ using the Rcpp package (Eddelbuettel, 2013). In
addition to updating the computational algorithms described above and streamlining the
analysis, we will investigate automated checks for convergence of the Markov chain. Ulti-
mately, we plan to integrate the package into the JASP software (Love et al., 2019; Marsman
& Wagenmakers, 2017; Wagenmakers, Love, et al., 2018) so that applied researchers without
R experience can also use the methodology.

6The output of our Gibbs sampler lends itself naturally to the construction of such tests. In bgms, use
save = TRUE to get the raw MCMC output.
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8 Conclusion

We proposed an ordinal Markov Random Field model that takes into account the
fact that most cross-sectional psychological data are measured on ordinal scales. We also
introduced Bayesian methodology, including an implementation in the bgms package, to
analyze the ordinal MRF with empirical data. This provides researchers with a clear way
to assess the uncertainty of estimated network structures. We hope that by providing an
appropriate network model for ordinal data and a natural uncertainty quantification for its
estimates, we can help put the growing network literature on a more solid methodological
footing.
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Indian Journal of Statistics, Series B., 53 (2), 233–243.

Atchadé, Y. F., & Rosenthal, J. S. (2005). On adaptive Markov chain Monte Carlo algorithms.
Bernoulli, 11 (5), 815–828. doi: 10.3150/bj/1130077595

Barber, R. F., & Drton, M. (2015). High dimensional Ising model selection with Bayesian information
criteria. Electronic Journal of Statistics, 9 (1), 567–607. doi: 10.1214/15-EJS1012

Barbieri, M. M., & Berger, J. O. (2004). Optimal predictive model selection. Annals of Statistics,
32 (3), 870–897. doi: 10.1214/009053604000000238

Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the
Royal Statistical Society Series B (Methodological), 36 (2), 192–236.

Besag, J. (1975). Statistical analysis of non-lattice data. Journal of the Royal Statistical Society
Series D (The Statistician), 24 (3), 179–195. doi: 10.2307/2987782

Bouranis, L., Friel, N., & Maire, F. (2017). Efficient Bayesian inference for exponential random
graph models by correcting the pseudo-posterior distribution. Social Networks, 50 , 98-108.
doi: 10.1016/j.socnet.2017.03.013

Bouranis, L., Friel, N., & Maire, F. (2018). Bayesian model selection for exponential random graph
models via adjusted pseudolikelihoods. Journal of Computational and Graphical Statistics,
27 (3), 516–528. doi: 10.1080/10618600.2018.1448832

Carlin, B. P., & Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo methods.
Journal of the Royal Statistical Society Series B (Methodological), 57 (3), 473–484. doi: 10
.1111/j.2517-6161.1995.tb02042.x

Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large
model spaces. Biometrika, 95 (3), 759–771. doi: 10.1093/biomet/asn034

https://doi.org/10.1017/psy.2024.4 Published online by Cambridge University Press

https://CRAN.R-project.org/package=RcppParallel
https://doi.org/10.1017/psy.2024.4


BAYESIAN ANALYSIS OF THE ORDINAL MRF 34

Consonni, G., Fouskakis, D., Liseo, B., & Ntzoufras, I. (2018). Prior distributions for objective
Bayesian analysis. Bayesian Analysis, 13 (2), 627–679. doi: 10.1214/18-BA1103

Contreras, A., Nieto, I., Valiente, C., Espinosa, R., & Vazquez, C. (2019). The study of psy-
chopathology from the network analysis perspective: A systematic review. Psychotherapy and
Psychosomatics, 88 (2), 71–83. doi: 10.1159/000497425

Cox, D. (1972). The analysis of multivariate binary data. Journal of the Royal Statistical Society
Series B (Applied Statistics), 21 (2), 113–120. doi: 10.2307/2346482

Csiszár, I., & Talata, Z. (2006). Consistent estimation of the basic neighborhood of Markov random
fields. The Annals of Statistics, 34 (1), 123–145. doi: 10.1214/009053605000000912

Dellaportas, P., Forster, J. J., & Ntzoufras, I. (2002). On Bayesian model and variable selection
using MCMC. Statistics and Computing, 12 , 27–36. doi: 10.1023/A:1013164120801199

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society Series B (Methodological),
39 (1), 1–38. Retrieved from https://www.jstor.org/stable/2984875

Dienes, Z. (2014). Using Bayes to get the most out of non-significant results. Frontiers in Psychology,
5 (781), 1–17. doi: 10.3389/fpsyg.2014.00781

Dobra, A., & Lenkoski, A. (2011). Copula Gaussian graphical models and their application to
modeling functional disability data. The Annals of Applied Statistics, 5 (2A), 969–993. doi:
10.1214/10-AOAS397

Eddelbuettel, D. (2013). Seamless R and C++ integration with Rcpp. New York: Springer. doi:
10.1007/978-1-4614-6868-4

Epskamp, S., Maris, G., Waldorp, L., & Borsboom, D. (2018). Network psychometrics. In P. Irwing,
D. Hughes, & T. Booth (Eds.), Handbook of psychometrics (pp. 953–986). New York, NY:
Wiley-Blackwell.

Epskamp, S., Waldorp, L., Mõttus, R., & Borsboom, D. (2018). The Gaussian graphical model in
cross-sectional and time-series data. Multivariate Behavioral Research, 53 (4), 453–480. doi:
10.1080/00273171.2018.1454823

Fan, Y., & Sisson, S. A. (2011). Reversible jump MCMC. In S. Brooks, A. Gelman, G. L. Jones, &
X. Meng (Eds.), Handbook of Markov chain Monte Carlo. CRC Press.

Fried, E. I., & Cramer, A. O. J. (2017). Moving forward: Challenges and directions for psychopatho-
logical network theory and methodology. Perspectives on Psychological Science, 12 (6), 999—
1020. doi: 10.1177/1745691617705892

Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9 (3), 432–441. doi: 10.1093/biostatistics/kxm045

Gelman, A., Jakulin, A., Pittau, M. G., & Su, Y.-S. (2008). A weakly informative default prior
distribution for logistic and other regression models. The Annals of Applied Statistics, 2 (4),
1360–1383. doi: 10.1214/08-AOAS191

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
6 (6), 721–741. doi: 10.1109/TPAMI.1984.4767596

George, E. I., & McCulloch, R. E. (1993). Variable selection via Gibbs sampling. Journal of the
American Statistical Association, 88 (423), 881-889. doi: 10.1080/01621459.1993.10476353

Geys, H., Molenberghs, G., & Ryan, L. M. (2007). Pseudo-likelihood inference for clustered binary
data. Communications in Statistics - Theory and Methods, 26 (11), 2743–2767. doi: 10.1080/
03610929708832075

Gottardo, R., & Raftery, A. E. (2008). Markov chain Monte Carlo with mixtures of mutually
singular distributions. Journal of Computational and Graphical Statistics, 17 (4), 949–975.
doi: 10.1198/106186008X386102

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika, 82 (4), 711–732. doi: 10.1093/biomet/82.4.711

Griffin, J. E., & Steel, M. F. J. (2022). Adaptive computational methods for Bayesian variable

https://doi.org/10.1017/psy.2024.4 Published online by Cambridge University Press

https://www.jstor.org/stable/2984875
https://doi.org/10.1017/psy.2024.4


BAYESIAN ANALYSIS OF THE ORDINAL MRF 35

selection. In M. G. Tadesse & M. Vanucci (Eds.), Handbook of Bayesian variable selection.
Boca Raton, Florida: CRC Press.

Guo, J., Levina, E., Michailidis, G., & Zhu, J. (2015). Graphical models for ordinal data. Biometrika,
24 (1), 183–204.

Häggström, O. (2001). Coloring percolation clusters at random. Stochastic Processes and their
Applications, 96 (2), 213–242. doi: 10.1016/S0304-4149(01)00115-6

Haslbeck, J. M. B., & Waldorp, L. J. (2020). mgm: Estimating time-varying mixed graphical
models in high-dimensional data. Journal of Statistical Software, 93 (8), 1–46. doi: 10.18637/
jss.v093.i08

Hessen, D. J. (2020). Random effects and extended generalized partial credit models. British Journal
of Mathematical and Statistical Psychology, 74 (2), 232–256. doi: 10.1111/bmsp.12213

Hinne, M., Gronau, Q. F., van den Bergh, D., & Wagenmakers, E.-J. (2020). A conceptual intro-
duction to Bayesian model averaging. Advances in Methods and Practices in Psychological
Science, 3 (2), 200–215. doi: 10.1177/251524591989865

Hoeting, J., Madigan, D., Raftery, A., & Volinsky, C. (1999). Bayesian model averaging: A tutorial.
Statistical Science, 14 (4), 382–401.

Hoff, P. D. (2007). Extending the rank likelihood for semiparametric copula estimation. The Annals
of Applied Statistics, 1 (1), 265–283. doi: 10.1214/07-AOAS107

Hoffman, M., Steinley, D., Trull, T. J., & Sher, K. J. (2018). Criteria definitions and network
relations: The importance of criterion thresholds. Clinical Psychological Science, 6 (4), 506-
516. doi: 10.1177/2167702617747657

Holland, P. W. (1990). The Dutch Identity: A new tool for the study of item response models.
Psychometrika, 55 (6), 5–18. doi: 10.1007/BF02294739

Holland, P. W., & Rosenbaum, P. R. (1986). Conditional association and unidimensionality in
monotone latent variable models. The Annals of Statistics, 14 (4), 1523–1543. Retrieved from
https://www.jstor.org/stable/2241486

Huth, K., de Ron, J., Goudriaan, A. E., Luigjes, K., Mohammadi, R., van Holst, R. J., . . .
Marsman, M. (2023). Bayesian analysis of cross-sectional networks: A tutorial in R and
JASP. Advances in Methods and Practices in Psychological Science., 6 (4), 1–18. doi:
10.1177/25152459231193334

Huth, K., Luigjes, K., Marsman, M., Goudriaan, A. E., & van Holst, R. J. (2021). Modeling alcohol
use disorder as a set of interconnected symptoms –assessing differences between clinical and
population samples and across external factors. Addictive Behaviors, 125 (107128), 1–8. doi:
10.1016/j.addbeh.2021.107128

Ising, E. (1925). Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik, 31 (1), 253–258.
doi: 10.1007/BF02980577

Isvoranu, A.-M., & Epskamp, S. (2023). Which estimation method to choose in network psycho-
metrics? Deriving guidelines for applied researchers. Psychological Methods, 28 (4), 925–946.
doi: 10.1037/met0000439

Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford, UK: Oxford University Press.
Johal, S. K., & Rhemtulla, M. (2023). Comparing estimation methods for psychometric networks

with ordinal data. Psychological Methods, 28 (6), 1251-1272. doi: 10.1037/met0000449
Jones, P. J., Williams, D. R., & McNally, R. J. (2021). Sampling variability is not nonreplication:

A Bayesian reanalysis of Forbes, Wright, Markon, and Krueger. Multivariate Behavioral
Research, 56 (2), 249–255. doi: 10.1080/00273171.2020.1797460

Kaplan, D. (2021). On the quantification of model uncertainty: A Bayesian perspective. Psychome-
trika, 86 (1), 215–238. doi: 10.1007/s11336-021-09754-5

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association,
90 (430), 773–795. doi: 10.2307/2291091

Kass, R. E., & Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its
relation to the Schwarz criterion. Journal of the American Statistical Association, 90 (431),

https://doi.org/10.1017/psy.2024.4 Published online by Cambridge University Press

https://www.jstor.org/stable/2241486
https://doi.org/10.1017/psy.2024.4


BAYESIAN ANALYSIS OF THE ORDINAL MRF 36

928–934. doi: 10.1080/01621459.1995.10476592
Keetelaar, S., Sekulovski, N., Borsboom, D., & Marsman, M. (2024). Comparing maximum likeli-

hood and pseudo-maximum likelihood estimators for the Ising model. advances.in/psychology,
2 (e25745). doi: 10.56296/aip00013

Kindermann, R., & Snell, J. L. (1980). Markov random fields and their applications (Vol. 1).
Providence: American Mathematical Society.

Kolovsky, M. D., & Vanucci, M. (2020). MicroBVS: Dirichlet-tree multinomial regression models with
Bayesian variable selection. BMC Bioinformatics, 21 (301). doi: 10.1186/s12859-020-03640-0

Kuo, L., & Mallick, B. (1998). Variable selection for regression models. Sankhyā: The Indian
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Appendix A
The proposed distribution is a Markov random field

One way to show that the probability distribution in Eq. (2) is a Markov random field is
to show that it satisfies so-called Markov properties. These properties derive conditional
independence conditions from the structure of a graph (i.e., the presence or absence of an
edge between two variables in the graph), captured here by the pairwise interaction matrix
Σ. We first show that the probability distribution in Eq. (2) satisfies the global Markov
property, and then show that the local and pairwise Markov properties readily follow.

Since it is clear that the category thresholds do not affect the associations between
variables, we set their values to zero here without loss of generality. Let V = {1, . . . , p}
denote the set of response variables or vertices of the graph. We divide this set into three
non-overlapping sets: V = Va ∪ Vb ∪ Vc. The matrix of pairwise associations is then
characterized as

Σ =

Σaa Σab Σac

Σba Σbb Σbc

Σca Σcb Σcc

 ,
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where Σaa = [σij ] denotes the pairwise associations between variables i, j ∈ Va, and Σab =
[σij ] denotes the pairwise associations between variables i ∈ Va and j ∈ Vb. Let xa be the
vector of responses for the variables i ∈ Va. Then the probability distribution in Eq. (2)
can be reformulated as

p(xa, xb, xc) = 1
Z exp

(
xT

a Σaaxa + 2xT
a Σabxb + 2xT

a Σacxc + xT
b Σbbxb + 2xT

b Σbcxc + xT
c Σccxc

)
.

The global Markov property states that any two subsets of the variables Va and Vb

are conditionally independent, given a separating subset Vc:

Xa ⊥⊥ Xb | Xc,

thus, any path from a variable in Va to a variable in Vb passes through one or more variables
in Vc. This implies that there are no direct links or edges between Va and Vb, and thus

Σab = ΣT
ba = [0].

All we need to show is that, in this case, the conditional distribution of the two separated
sets factors as follows

p(xa, xb | xc) = p(xa | xc) p(xb | xc).

Assuming that Σab = ΣT
ba = [0], the conditional distribution p(xa, xb | xc) is

p(xa, xb | xc) = p(xa, xb, xc)∑
xa∈Xa

∑
xb∈Xb

p(xa, xb, xc)

=
1
Z exp

(
xT

a Σaaxa + 2xT
a Σacxc + xT

b Σbbxb + 2xT
b Σbcxc + xT

c Σccxc

)
∑

xa∈Xa

∑
xb∈Xb

1
Z exp

(
xT

a Σaaxa + 2xT
a Σacxc + xT

b Σbbxb + 2xT
b Σbcxc + xT

c Σccxc
)

=
exp

(
xT

a Σaaxa + 2xT
a Σacxc + xT

b Σbbxb + 2xT
b Σbcxc

)
∑

xa∈Xa

∑
xb∈Xb

exp
(
xT

a Σaaxa + 2xT
a Σacxc + xT

b Σbbxb + 2xT
b Σbcxc

)
=

exp
(
xT

a Σaaxa + 2xT
a Σacxc

)
exp

(
xT

b Σbbxb + 2xT
b Σbcxc

)
∑

xa∈Xa
exp (xT

a Σaaxa + 2xT
a Σacxc)

∑
xb∈Xb

exp
(
xT

b Σbbxb + 2xT
b Σbcxc

)
=

exp
(
xT

a Σaaxa + 2xT
a Σacxc

)
∑

xa∈Xa
exp (xT

a Σaaxa + 2xT
a Σacxc)

exp
(
xT

b Σbbxb + 2xT
b Σbcxc

)
∑

xb∈Xb
exp

(
xT

b Σbbxb + 2xT
b Σbcxc

)
= p(xa | xc) p(xb | xc).

Which is what we needed to show.
The global Markov property is stronger than the local and pairwise Markov prop-

erties, and they follow easily from the proof above. The pairwise Markov property states
that any two variables i and j for which σij = 0 are conditionally independent given the
remaining variables:

Xi ⊥⊥ Xj | X(i,j).

Here, Va = {i}, Vb = {j}, and Vc = V \ {i, j}. The local Markov property states that any
variable i is conditionally independent of all other variables given its neighbors:

Xi ⊥⊥ XV\{i, N(i)} | XN(i),
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where N(i) denotes the set of neighbors of variable i:

N(i) = {all j ∈ V for which σij ̸= 0}}

Note that this excludes i itself, since σii = 0. Here, Va = {i}, Vb = V \ {i, N(i)}, and
Vc = N(i).

Appendix B
Assessing Bias in Maximum Likelihood and Pseudolikelihood Estimates

The pseudolikelihood provides a practical approximation to the full likelihood, facilitating
easier computations. We suspect that maximum pseudolikelihood estimates (MPLEs) are
similar to maximum likelihood estimates (MLEs) in their ability to recover the underlying
model parameters. This similarity was demonstrated by Keetelaar et al. (2024) in their
study of the Ising model. Our goal is to investigate whether this property extends to
the ordinal MRF. Keetelaar and colleagues also found that recovering pairwise interaction
parameters is generally easier than recovering threshold parameters. As the number of
category threshold parameters increases, which reduces the amount of information available
for each, we expect that estimating these thresholds in the ordinal MRF could be more
challenging.

In our evaluation of the Bayesian edge selection method in Section 5.2, we copy
an analysis setup used by Park et al. (2022), which allows a direct comparison between
our method and theirs as applied to the Ising model. To maintain consistency between
our simulations and other numerical illustrations, we used 24 variables (p = 24) and 300
observations (n = 300) throughout. Our focus here is on ordinal variables with five response
categories, hence m = 4, while Park et al. (2022) and Keetelaar et al. (2024) focused on
binary outcomes, i.e., m = 1. For each variable in our simulations, we generate four
threshold parameters from a uniform distribution ranging from −2.0 to −0.5, following the
approach of Park et al., and sort the parameters in decreasing order. In this simulation,
where edge selection is not an issue, a complete graph assumption is made. The pairwise
interaction parameters are sampled from a normal distribution with a mean of zero and a
standard deviation of 1/25. Attempts to increase this standard deviation resulted in data
sets with zero variance in certain variables, which was undesirable. Using these simulated
parameter values, we generate 500 data sets from the ordinal MRF.

Due to the unavailability of MLEs in closed form and the computational intractabil-
ity of the likelihood’s derivatives, traditional numerical methods such as Newton’s method
or gradient descent are not feasible for our analysis. Therefore, we use the Robbins-Monro
algorithm as an alternative approach (Robbins & Monro, 1951). This algorithm, when used
to estimate a parameter θ, iteratively updates the value of θ as follows

θ(t+1) = θ(t) + α/t ∇̂θ log p(X | θ(t)),

where α is a positive constant, and ∇̂θ log p(X | θ(t)) is a stochastic approximation of the
log likelihood’s derivative at θ(t). In the context of the ordinal MRF, which belongs to the
exponential family, the derivative of the log likelihood for any model parameter θs can be
expressed as

Os(x) − Es(µ̂, Σ̂),
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where Os(x) denotes the observed value of the sufficient statistic. For example, for the cate-
gory threshold µic it is

∑n
v=1 I(xvi = c) and for the pairwise interaction σij it is 2

∑n
v=1 xixj .

The term Es(µ̂, Σ̂) = E(Os(X) ; µ̂, Σ̂) is the expected value of the sufficient statistic under
the current model parameter estimates. Since this expected value does not have a closed-
form solution and is difficult to compute numerically due to the presence of the intractable
normalizing constant, we resort to (Markov chain) Monte Carlo methods for its estimation.

In our numerical experiments, we used the MPLEs as starting values for the Robbins-
Monro algorithm for each of the 500 data sets. During these experiments, we tested different
values for the algorithm’s tuning parameter, α. We found that a value of α = 0.01 worked
well for the threshold parameters, while a much smaller value of α = 0.0001 worked bet-
ter for the pairwise interaction parameters. To compute the expected values needed in
the algorithm, we used the final states of 200 separate Gibbs samplers, each run for 200
iterations. We ran the Robbins-Monro algorithm until the difference between successive
estimates fell below 0.00001. To ensure computational feasibility, we also set an upper limit
of 150 iterations for each run of the algorithm.

For each dataset, MPLEs were estimated using Newton’s method, while MLEs were
estimated using the previously described Robbins-Monro algorithm. The data simulation
for the Robbins-Monro algorithm was implemented in C++. For each of the data sets,
we used Newton’s method to estimate the MPLEs. The MLEs, on the other hand, were
computed using the Robbins-Monro algorithm as described above. The implementation
of the data simulation for the Robbins-Monro algorithm was done in C++. In terms of
computational efficiency, the process of calculating the MLEs was relatively fast, taking
about 1 second on a single core of a MacBook Pro with an M1 chip. However, running the
150 iterations of the Robbins-Monro algorithm was more time consuming, taking about 45
minutes.

To evaluate the bias in the MPLEs and MLEs, we computed their average across
all data sets. Figure B1 shows scatterplots that compares these averaged estimates to the
parameter values used for generating data. The scatterplot in the left panel illustrates the
pairwise interaction parameters, while the right panel focuses on the category threshold
parameters. In these plots, dashed lines represent regression lines.

Note that the MPLEs for the pairwise interaction parameters are very similar to
their MLE counterparts, as indicated by the nearly overlapping regression lines. However,
there is a noticeable difference in variability, with MLEs showing greater variation compared
to MPLEs. The comparison of category thresholds presents a different scenario. In contrast
to the pairwise interaction parameters, the recovery of the category thresholds is less precise.
Here, the scatterplot shows noticeable differences between MLEs and MPLEs. Interestingly,
MPLEs tend to perform slightly better than MLEs in this respect, a detail that becomes
clear when examining the regression lines.

It is also important to note that both MLEs and MPLEs exhibit bias in the estima-
tion of both sets of parameters. However, the performance of MPLEs is similar to that of
MLEs in terms of bias, suggesting that MPLEs are a viable and convenient alternative for
estimating these model parameters.

Appendix C
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Figure B1

Scatterplots comparing MLEs (Maximum Likelihood Estimates) and MPLEs (Maximum
Pseudolikelihood Estimates), each averaged across 500 datasets, against the values of the
data-generating parameters. The left panel presents the estimates for pairwise interaction
parameters, while the right panel focuses on the estimates for category threshold parameters.
Each scatterplot features a solid line representing a perfect match (with an intercept of zero
and a slope of one) and dashed lines depicting the actual regression lines.

The Double Metropolis-Hastings Algorithm
If we can generate observations directly from the probability model used for the likelihood
based on a particular set of parameter values, we can bypass the computation of the model’s
normalization constant using a clever implementation of the Metropolis-Hastings algorithm.
Suppose

p(x | θ) = 1
Z(θ) h(x; θ),

is a probability model for x with parameters θ, a tractable kernel h(x; θ) > 0, and Z(θ) its
normalizing constant. Suppose further that we are able to sample i.i.d. from the model, i.e.,
x1, . . . , xk ∼ p(x | θ) for some value θ of the parameter. Let p(θ) be the prior distribution
for the model parameter, and let g(θ | θ∗) be a conditional proposal distribution based on
the current state θ′ of the Markov chain, e.g., a normal random walk Metropolis. Suppose
we sample a proposed parameter value θ′ ∼ g(θ | θ∗ and use it to generate an auxiliary data
set x′ ∼ p(x | θ′). The proposed value θ′ in the pair (x′, θ′) is a draw from the posterior
distribution p(θ | x′, θ∗). Murray et al. (2012) cleverly used this idea to design a Metropolis
algorithm that has the desired posterior p(θ | x) as its invariant distribution. When we
sample a proposed value from the posterior p(θ | x′, θ∗), it is accepted with probability

π(θ∗ → θ′ | x, x′) = min
{

1, p(θ′ | x) p(θ∗ | x′)
p(θ∗ | x) p(θ′ | x′)

}
= min

{
1, h(x; θ′) h(x∗; θ∗)

h(x; θ∗) h(x∗; θ′)

}
,
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which depends only on the tractable model kernels. This is called the Single Variable
Exchange (SVE) algorithm. Marsman, Maris, Bechger, and Glas (2017) and Marsman,
Bechger, and Maris (2022) showed how SVE can be adapted to efficiently sample from the
posterior distributions of many random effects at once, such as the posterior distribution of
ability in an IRT context.

The main drawback of SVE is that it requires us to be able to sample values x
directly from the model p(x | θ). Unfortunately, this is not possible for the ordinal MRF we
are proposing. However, we can sample data from the model using a Gibbs sampler. Liang
(2010) proposed the DMH algorithm in this case, which uses a Metropolis or Gibbs sampling
algorithm to generate the auxiliary data. Liang used the detailed balance property to show
that when we sample the auxiliary data in this way, the acceptance probability for DMH
is the same as for SVE, regardless of the number of iterations T used by the Metropolis
or Gibbs sampling approach to generate the auxiliary data. Of course, the quality of the
approximation depends on T . As a rule of thumb, Liang suggests setting T equal to the
dimension of X, i.e. T = n × p. As a naming convention, we call the Gibbs sampler used
to generate auxiliary data the inner Gibbs sampler, and the Gibbs sampler used to sample
from the posterior distribution of the model parameters the outer Gibbs sampler.

Although the DMH approach has been shown by Park and Haran (2018) to be the
most efficient among MCMC methods for intractable distributions, it is extremely compu-
tationally intensive compared to the pseudolikelihood approach. The main computational
bottleneck is the need to generate auxiliary data using the inner Gibbs sampler for each
parameter of the model in each iteration of the outer Gibbs sampler. The nesting of the two
Gibbs samplers explodes the computational time. We illustrate this problem in the runtime
analysis in Appendix E.

Appendix D
The DMH-MoMS Gibbs Sampler

Park et al. (2022) proposed a DMH approach to Bayesian edge selection for the Ising model
using a continuous spike and slab prior. Although their proposed methodology is accompa-
nied by some R and C++ software, it is unfortunately out of date and no longer functional.
Because of this, and because, as we discussed in Section 3, Bayesian edge selection using a
continuous spike and slab prior is not model selection consistent, we consider here a DMH-
MoMS Gibbs approach to Bayesian edge selection using a discrete spike and slab prior.
The DMH-MoMS Gibbs sampler is implemented in the R package dmhBGM (Marsman et al.,
2024), which is available on Github: https://github.com/MaartenMarsman/dmhBGM.

The design of the proposed Gibbs sampler using DMH to bypass the computation
of the intractable normalization constant is similar to that of the proposed Gibbs sampler
using the pseudolikelihood. It includes two blocks of parameters to be updated

µ ∼ f(µ | X, Σ),
γ, Σ ∼ f(γ, Σ | X, µ),

and we update the category thresholds one by one and the (γij , σij) pairs one by one.
As with the Gibbs sampler for the pseudolikelihood approach, we follow these two block
updates with an update of the interaction parameters for the currently active edges (i.e.,
we update σ∗

ij for which γ∗
ij = 1).
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Block I: Updating the category thresholds. To update the category thresholds,
we need to sample from a conditional distributions of the form

f
(
µik | X, Σ, µ

(k)
i

)
∝ exp (nik µik) exp (r)

Z(µ Σ)
exp (µik)α

(1 + exp (µik))α+β
,

for k = 1, . . . , m, and i = 1, . . . , p. Here, we have used nik =
∑n

v=1 I(xvi = k),

r =
∑
j ̸=i

mj∑
k=1

njkµjk +
∑
k′ ̸=k

nik′µik′ +
p−1∑
i=1

p∑
j=i+1

oijσij

to denote the rest of the terms that are used in the exponent, and we have used oij =∑
v xvixvj . Observe that the nik and oij are sufficient statistics.

To simulate from this conditional distribution, we use DMH and, as for the interac-
tion parameters in the pseudolikelihood approach, propose a new parameter value from a
normal density centered on the current state of the parameter, i.e., a random walk. As be-
fore, we use an adaptive Metropolis-Hastings approach (Atchadé & Rosenthal, 2005; Griffin
& Steel, 2022) and tune the variance using a Robbins-Monro algorithm (Robbins & Monro,
1951).

When we sample µ′ as a proposed value for µik which currently has state µ∗, say,
and use that to simulate a new dataset X′ using the inner Gibbs sampler with T iterations,
it is accepted with probability

π = min
{

1, exp
(
(nik − n′

ik + α)(µ′ − µ∗)
) (1 + exp (µ∗)

1 + exp (µ′)

)α+β
}

,

where we have used n′ =
∑n

v=1 I(x′
vi = k).

Block II: Updating the edge indicators and interactions. To update the edge
indicator and the interaction parameter pair, we embed DMH in the MoMS procedure; we
first propose a new state for the edge indicator γ′ and use it to generate a proposed state
for the association parameter σ′; if γ′ = 0, we propose σ′ = 0, and if γ′ = 1, we sample
σ′ from a normal density centered on the current state σ∗. The DMH approach adds an
auxiliary variable step, and we sample the auxiliary data X′ based on the proposed state
σ′.

Let γ∗ and σ∗ denote the current state of the edge indicator and the interaction
between a variable i and j, let γ′ and σ′ denote its proposed state, and let X′ denote the
auxiliary data. We accept the proposed states with probability

π = min

1,

Likelihood ratios︷ ︸︸ ︷
p(X | Σ′, µ) p(X′ | Σ∗, µ)
p(X | Σ∗, µ) p(X′ | Σ′, µ) ×

Prior ratio︷ ︸︸ ︷
f(σ′ | γ′) p(γ′)
f(σ∗ | γ∗) p(γ∗) ×

Proposal ratio︷ ︸︸ ︷
f(σ∗ | σ′, γ∗) p(γ∗ | γ′)
f(σ′ | σ∗, γ′) p(γ′ | γ∗)

 ,

where Σ∗ is the current state of the pairwise interaction matrix, and Σ′ is the proposed
state, with elements in row i, column j, and row j, column i, set equal to the proposed
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value σ′. If γ∗ = 0, we propose γ′ = 1 and σ′ ∼ N (0, νij), and accept the proposed values
with probability

π = min
{

1, exp
(
(oij − o′

ij)(σ′ − σ∗)
) fslab(σ′)

fproposal(σ′ | σ∗)

}
.

Conversely, if γ∗ = 1, we propose γ′ = 0 and σ′ = 0. We accept γ′ and σ′ with probability

π = min
{

1, exp
(
(oij − o′

ij)(σ′ − σ∗)
) fproposal(σ∗ | σ′)

fslab(σ∗)

}
.

As in the pseudolikelihood MoMS Gibbs sampler, after updating the edge indicator and
interaction parameter pair, we perform an additional Metropolis-Hastings update step for
the interaction parameters for the edges currently in the model using DMH (i.e., we update
σ∗

ij for which γ∗
ij = 1). This additional step, which helps improve the convergence rate of

the MoMS algorithm (see the main text for details), also allows us to perform the Robbins-
Monro procedure to adjust the variance of the proposed distribution for the interaction
effects.

Appendix E
Runtime Analysis

Following our analysis of the operational characteristics of the pseudolikelihood and DMH-
based approaches, we now turn to a comparative assessment of their running times. In order
to establish a robust measure of running time, we conducted a series of experiments using
the Gibbs samplers, both with and without the selection process. Specifically, each variant
of the Gibbs sampler was run ten times over a range of iterations - 2, 20, 50, 100, and 200 -
using one of the data sets previously used in our bias assessment of the parameter estimates.
For these runtime experiments, the microbenchmark R package (Mersmann, 2023) was used
to ensure a consistent and controlled computational environment. All procedures were run
on a single-core MacBook Pro equipped with an M1 Pro chip to provide a standard baseline
for comparing the performance of the two approaches.

The results of our runtime experiments are shown in Figure E1. One observation
from these results is the almost perfect linear relationship between the runtimes and the
number of iterations performed by the Gibbs sampler. To quantify this relationship, we
performed a regression of the runtime (in seconds) against the number of iterations, with
the detailed regression results presented in Table E1. Based on these regression estimates,
we can infer that for 100,000 iterations, the pseudolikelihood approach would take about 21
minutes to estimate the posterior distribution without selection, while the DMH approach
with ten iterations of the inner Gibbs sampler would take about 55 hours, a bit over two
days. In the case of the two MoMS Gibbs samplers, the pseudolikelihood approach is
estimated to take about 26 minutes and the DMH algorithm with ten iterations of the inner
Gibbs sampler about 58 hours, about two and a half days.

An interesting point to note is the similarity in runtimes between these Gibbs sam-
plers and those used for estimation, even though the latter require sampling from an ad-
ditional full conditional distribution. But in the MoMS Gibbs samplers, we only need to
sample from this additional full conditional distribution, the posterior distribution of the
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Figure E1

The left panel shows scatterplots illustrating the relationship between the average time (in
seconds) to complete different implementations of the pseudolikelihood-based Gibbs sampler
and the number of iterations. The right panel shows similar scatterplots for the DMH-
based approach. In both panels, the straight lines represent regression lines modeling this
relationship.

Gibbs Sampler Intercept Slope Expected Runtime (Hours)
100K Iterations

PL 1.092 0.013 0.36
PL-MoMS 1.137 0.015 0.42
DMH1 0.028 0.202 5.61
DMH10 0.289 1.994 55.39
DMH10 (6 cores) 0.249 0.839 23.31
DMH10-MoMS 0.386 2.094 58.17

Table E1

This table presents the regression coefficients obtained from analyzing the total runtime (in
seconds) against the number of iterations for various implementations of the Gibbs
sampler. The rightmost column specifically quantifies the expected runtime in hours for
each method when run for 100, 000 iterations, providing a direct comparison of their
computational demand.
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pairwise interaction parameter, when the corresponding edge is present (i.e., γ = 1). Thus,
the similarity in runtime may be due to the fact that most effects are estimated to be ab-
sent, which means that we only need to sample from the full conditional posterior of a few
pairwise interaction parameters.

The duration of each iteration in the inner Gibbs sampler appears to have a direct
linear effect on the overall runtime. For example, our analysis predicts that 100,000 itera-
tions of a Gibbs sampler using the DMH algorithm with only a single iteration in its inner
Gibbs sampler would take approximately 5.6 hours to complete. This finding implies a
proportional relationship between the number of iterations in the inner Gibbs sampler and
the total runtime: reducing the number of iterations in the inner Gibbs sampler by a factor
of ten results in a tenfold reduction in runtime. Extrapolating from this, we can conclude
that 100,000 iterations of a Gibbs sampler using the DMH algorithm with n × p = 7, 200
iterations in its inner Gibbs sampler would take a considerable amount of time, about 4.5
years. This projection underscores the significant time required by the DMH algorithm,
especially when many iterations are used for its inner Gibbs sampler.

Parallelizing certain components of the DMH algorithm can play a crucial role in
reducing its computational load. To investigate this, we used the RcppParallel package
(Allaire et al., 2023) for parallel processing in the auxiliary data generation phase of DMH.
When we run 100,000 iterations of the Gibbs sampler using the DMH algorithm with ten
iterations in its inner Gibbs sampler on six cores, the total runtime is significantly reduced
to about 23 hours. Although this is not a sixfold speedup, but just over a twofold speedup,
it still represents a 60% reduction in runtime compared to performing the same computation
on a single core. This significant speedup illustrates the effectiveness of parallelization in
improving the computational efficiency of the DMH algorithm.

Appendix F
Prior Robustness Analysis

In Figure F1, we plot the estimated inclusion Bayes factors under the unit information
prior against the Cauchy(0, 1) prior (left panel) and the Cauchy(0, 2.5) prior (right panel).
We focused the plots on the interval between −5 and 5, which contains the most results.
The black diagonal line in each panel passes through the origin and has a unit slope. The
blue diagonal line in the right panel does not go through the origin, but through minus
the logarithm of the Cauchy scale (i.e., − log(2.5)). Note that the log Bayes factors are
very similar under the Cauchy(0, 1) prior and the unit information prior. The log Bayes
factors have a slightly higher value of 0.11 on average under the unit information prior (i.e.,
the inclusion Bayes factors are about 1.1 times larger under the unit information prior).
Furthermore, the log Bayes factors appear to be sensitive to the scale value of the Cauchy
density; shrinking the scale moves the evidence toward edge inclusion, while increasing the
scale moves the evidence toward edge exclusion. That increasingly diffuse priors lead to an
increase in evidence for the null hypothesis is well known (Jeffreys, 1961; Lindley, 1957) and
results from the increasingly extreme values supported by the prior but not by the data.
The log Bayes factors under the Cauchy(0, 2.5) prior are on average .91 smaller than under
the unit information prior (i.e., the inclusion Bayes factors are about 2.5 times larger under
the unit information prior). Additional analyses revealed that the relationship between the
Bayes factors under the unit information prior and the Cauchy prior becomes more diffuse
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Figure F1

Scatterplots of the log of the inclusion Bayes factors under the unit information prior versus
the log of the inclusion Bayes factors under the Cauchy(0, 1) prior in the left panel and
under the Cauchy(0, 2.5) prior in the right panel. The black diagonal line passes through
zero and has unit slope. The blue diagonal goes through −log(2.5) and also has unit slope.

as scale increases.
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