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Vector valued spherical functions and

Macdonald–Koornwinder polynomials

Alexei A. Oblomkov and Jasper V. Stokman

Abstract

We interpret the five-parameter family of Macdonald–Koornwinder polynomials as vector
valued spherical functions on quantum Grassmannians.

Introduction

The representation theoretic construction of (quantum) conformal blocks in certain conformal
field theories is closely related to harmonic analysis on (quantum) symmetric spaces of group
type, see, e.g., [FR92, EV00]. A striking consequence is the interpretation of A-type Macdonald
polynomials as vector valued spherical functions for the quantum analogue of the symmetric pair
(U(n) × U(n),diag(U(n))) of group type on the one hand (see [EK94]), and as quantum conformal
blocks on the other hand (see [EV00]). With these interpretations many properties of A-type Mac-
donald polynomials, such as the Macdonald–Ruijsenaars difference equations, quantum Khnizhnik–
Zamolodchikov equations, dualities and orthogonality relations, obtain their natural representation
theoretic and conformal field theoretic interpretations. In this paper we consider the harmonic
analytic part of these constructions for the quantum analogues of the symmetric pair (U,K) =
(U(2n),U(n) × U(n)). This leads to the interpretation of the five-parameter family of Macdonald–
Koornwinder polynomials as vector valued spherical functions.

In [Obl04] the classical analogue of our main result was established. It yields the interpretation
of BC-type Heckman–Opdam polynomials as the restriction to the maximal torus of regular vector
valued functions

f : U → C det−κ1 ⊗Snκ(Cn) detκ1−κ, κ1 ∈ Z, κ ∈ Z�0

(with Snκ(Cn) the homogeneous polynomials of degree nκ) which transform under the left
(respectively right) regular K-action on U according to the natural K-action on the image space
(respectively the K-character det−κ2 ⊗ detκ2 for some κ2 ∈ Z).

In this paper we define a continuous one-parameter family of quantum analogues of the sym-
metric pair (U,K), following closely Letzter’s [Let97, Let99, Let00, Let02, Let03] approach of
constructing quantum symmetric pairs as coideal subalgebras. One may as well view this fam-
ily of quantum symmetric pairs as a continuous one-parameter family of quantum analogues of
the complex Grassmannian U/K. We proceed by defining the analogue of the K-representation
C det−κ1 ⊗Snκ(Cn) detκ1−κ for the associated coideal subalgebras. This allows us to define vector
valued spherical functions for the one-parameter family of quantum symmetric pairs in essentially
the same manner as in the classical case [Obl04], with the exception that we have now the additional
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Spherical functions and Macdonald–Koornwinder polynomials

freedom to choose different coideal subalgebras for the transformation behaviour under the left
and right regular action, respectively. We relate the resulting vector valued spherical functions,
which now depend on two continuous and three discrete parameters, to the five-parameter family
of Macdonald–Koornwinder polynomials. The Macdonald–Koornwinder polynomials are Koorn-
winder’s [Koo92] extension of the BC-type Macdonald polynomials that contain all Macdonald
polynomials of classical type as special cases.

The interpretation of the five-parameter family of Macdonald–Koornwinder polynomials as
vector valued spherical functions contains several known results as special cases. It entails the inter-
pretation of a two-parameter subfamily of Macdonald–Koornwinder polynomials as zonal spherical
functions on quantum Grassmannians, which was established by Noumi et al. [NDS97] (see also
[DS99]). In fact, this special case plays an essential role in establishing our general result. In rank
one we re-obtain the interpretation of the four-parameter family of Askey–Wilson polynomials as
matrix coefficients of quantum sl(2) representations, established before by Koornwinder [Koo93]
(zonal case), and by Noumi and Mimachi [NM90] and Koelink [Koe96] (general case).

The content of this paper is as follows. In § 1 we give the main definitions and formulate the
main result. In § 2 we define the notion of expectation value for the quantum symmetric pairs under
investigation and establish branching rules using deformation theory. In § 3 we prove the zonal
case by translating the main results of [NDS97] to our setup. In § 4 we generalize the Chevalley
restriction theorem to the setup of vector valued spherical functions. Its description involves the
vector valued spherical function of the smallest degree, which we call the ground state (in the zonal
case the ground state is the unit). The restriction of the ground state to the quantum torus is
computed explicitly in § 5. In § 6 we establish the quantum Schur orthogonality relations for the
vector valued spherical functions and, combined with the results of previous sections, we establish
the explicit interpretation of the Macdonald–Koornwinder polynomials as vector valued spherical
functions.

The construction of expectation values in § 2 and the dynamical quantum group interpretation
of the rank one results in [Sto03] hint at a natural interpretation of the Macdonald–Koornwinder
polynomials as quantum conformal blocks. A more detailed study in this direction is the subject of
future research.

1. Formulation of the main result

In this section we give definitions of the Macdonald–Koornwinder polynomials, the quantum sym-
metric pairs and the associated class of vector valued spherical functions, and we formulate the
main result of the paper. We add insightful proofs of some of the intermediate results, but we post-
pone the more technical parts to later sections. We fix a positive integer n � 1 and a deformation
parameter 0 < q < 1 throughout the paper.

1.1 Macdonald–Koornwinder polynomials
Koornwinder [Koo92] extended the definition of the Macdonald polynomials [Mac00] associated to
the non-reduced, irreducible root system BCn to a family of orthogonal polynomials depending on,
besides the deformation parameter q, five additional coupling parameters. This family of polynomi-
als, known nowadays as Macdonald–Koornwinder polynomials, reduces for n = 1 to the celebrated
four-parameter family of Askey–Wilson polynomials. In this subsection we recall their definition.

Denote by Λn the lattice Zn and let Λ+
n ⊂ Λn be the set of partitions of length � n. The

dominance partial order on Λn is defined by

λ � µ ⇐⇒
j∑

i=1

λi �
j∑

i=1

µi, j = 1, . . . , n.
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The Weyl group W = Sn � {±1}n of BCn, where Sn is the symmetric group in n letters, acts on
Λn by permutations and sign changes. Each W -orbit in Λn intersects Λ+

n exactly once.
Let C[u±1] = C[u±1

1 , . . . , u±1
n ] be the algebra of Laurent polynomials in n independent variables

uk (1 � k � n), or, equivalently, the algebra of regular functions on the complex n-torus TC = (C∗)n.
A basis of C[u±1] is given by the monomials uλ = uλ1

1 uλ2
2 · · · uλn

n (λ = (λ1, λ2, . . . , λn) ∈ Λn).
The Weyl group W acts on C[u±1] by permutations and inversions of the uk. Let C[u±1]W ⊂

C[u±1] be the subalgebra of W -invariant Laurent polynomials. The orbit sums mλ =
∑

µ∈Wλ u
µ

(λ ∈ Λ+
n ) form a linear basis of C[u±1]W .

The Macdonald–Koornwinder polynomials form an orthogonal basis of C[u±1]W with respect to
a particular scalar product on C[u±1]W . The scalar product, which we now define first, depends on
five additional coupling parameters a, b, c, d and t. It is defined in terms of an absolutely continuous
measure with respect to the normalized Haar measure on the natural compact real form T = Tn of
TC = (C∗)n, where T is the unit circle in the complex plane. The corresponding weight function ∆
is most conveniently expressed in terms of the q-shifted factorial,

(a; q)k =
k−1∏
i=0

(1 − aqi), ∀k ∈ Z+ ∪ {∞}

by ∆(u) = ∆+(u)∆+(u−1) with ∆+(u) = ∆+(u; a, b, c, d; q, t) defined by

∆+(u) =
n∏

i=1

(u2
i ; q)∞

(aui, bui, cui, dui; q)∞

∏
1�i<j�n

(ui/uj , uiuj; q)∞
(tui/uj , tuiuj; q)∞

.

Here (a1, . . . , as; q)k =
∏s

j=1(aj ; q)k is a short-hand notation for products of q-shifted factorials.
If a, b, c, d, t are real and

|a|, |b|, |c|, |d| < 1, 0 < t < 1, (1.1)
then ∆(u) is a positive continuous weight function on T . Under these assumptions, we can define
the Macdonald–Koornwinder polynomials as follows, see [Koo92].

Theorem 1.1. There exist unique W -invariant Laurent polynomials

Pλ(u) = Pλ(u; a, b, c, d; q, t) ∈ C[u±1]W , λ ∈ Λ+
n

satisfying the two conditions

Pλ(u) = mλ +
∑

µ∈Λ+
n :µ<λ

cλµmµ, some cλµ ∈ C,

∫
T
Pλ(u)Pµ(u)∆(u)

du

u
= 0, if λ 
= µ,

where
du

u
=
du1

u1

du2

u2
· · · dun

un

is the Haar measure on T . We call Pλ(u) the monic Macdonald–Koornwinder polynomial of degree
λ ∈ Λ+

n .

The theorem does not follow by a straightforward Gram–Schmidt type procedure since the
dominance ordering is not a total ordering. The key tool in proving the theorem is an explicit
self-adjoint difference operator which maps a symmetric monomial mλ to a linear combination of
symmetric monomials mµ involving only degrees µ � λ (see [Koo92]). In our setup, the self-adjoint
operator arises as the radial part of the quadratic Casimir element for the corresponding quantum
symmetric pair (see [NDS97, Theorem 3.3]).
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Remark 1.2. Theorem 1.1 is also valid for generic values of the parameters a, b, c and d outside the
region (1.1) after deforming the compact torus T in the definition of the orthogonality relations in
a suitable way. In general, one loses positivity of the weight function, but for suitable values of the
parameters (still violating the condition that the modulus of all the four parameters a, b, c and d is
less than one), one can re-obtain a positive measure by shifting the deformed compact torus to T
while picking up residues, see [Sto00].

1.2 The quantized universal enveloping algebra

We introduce here the notation for the quantized universal enveloping algebra of gl(m). For further
details and standard facts, we refer to [NYM93] and [Nou96].

In the notation below we suppress the dependence on m ∈ Z>0 as much as possible. For most
of our applications, m will be either 2n (in which case we write g for the Lie algebra gl(2n)) or
m will be n (in which case we stick to the notation gl(n)). Let δi,j be the usual Kronecker delta
function (= 1 if i = j, and = 0 otherwise). The quantized universal enveloping algebra Uq(gl(m))
is the unital algebra over C generated by K±1

i (i = 1, . . . ,m), xj, yj (j = 1, . . . ,m− 1), subject to
the relations

KiKj = KjKj , KiK
−1
i = 1 = K−1

i Ki,

KixjK
−1
i = qδi,j−δi,j+1xj, KiyjK

−1
i = q−δi,j+δi,j+1yj,

xiyj − yjxi =
KiK

−1
i+1 −K−1

i Ki+1

q − q−1
δi,j,

xixj = xjxi and yiyj = yjyi, when |i− j| � 2,

x2
ixj − (q + q−1)xixjxi + xjx

2
i = 0, when |i− j| = 1,

y2
i yj − (q + q−1)yiyjyi + yjy

2
i = 0, when |i− j| = 1.

The quantized universal enveloping algebra Uq(gl(m)) is a Hopf ∗-algebra, with co-multiplication

∆(xj) = xj ⊗ 1 +KjK
−1
j+1 ⊗ xj ,

∆(yj) = yj ⊗K−1
j Kj+1 + 1 ⊗ yj,

∆(K±1
i ) = K±1

i ⊗K±1
i ,

co-unit

ε(xj) = ε(yj) = 0, ε(K±1
i ) = 1,

antipode

S(xj) = −K−1
j Kj+1xj, S(yj) = −yjKjK

−1
j+1, S(K±1

i ) = K∓1
i (1.2)

and ∗-structure

x∗j = q−1yjKjK
−1
j+1, y∗j = qK−1

j Kj+1xj, (K±1
i )∗ = K±1

i .

This ∗-structure corresponds classically to choosing the skew-hermitean matrices u(m) as the (com-
pact) real form of gl(m). We use the (modified) Sweedler notation ∆(X) =

∑
X1 ⊗X2 (X ∈ Uq(g))

for the co-multiplication.

1.3 The quantum analogues of the symmetric pair (gl(2n), gl(n) × gl(n))

The realization of a two-parameter subfamily of the Macdonald–Koornwinder polynomials as zonal
spherical functions on quantizations of the complex Grassmannian by Noumi et al. [NDS97], see also
[DS99], plays a crucial role in the present paper. A one-parameter family of quantum Grassmannians
is defined in [NDS97] in terms of invariance properties with respect to a one-parameter family of
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two-sided coideals, which are analogues of the Lie subalgebra k = gl(n) × gl(n) ⊂ g = gl(2n).
Although there is a natural way to define the analogue of the trivial representation of k to the
coideal setup, this is no longer the case for other representations. To get a grip on the non-trivial
representations, we replace the two-sided coideals by coideal subalgebras of Uq(g), an idea which
was suggested by Noumi [Nou96] and developed in full generality in a series of papers [Let97, Let99,
Let00, Let02, Let03, Let04] by Letzter. For the quantum symmetric pair (g, k) = (gl(2n), gl(n) ×
gl(n)) the coideal algebras have a particularly nice presentation in terms of generators and relations,
closely resembling the relations of the Drinfeld–Jimbo quantized universal enveloping algebras (see
[Let99, Let03]).

One of the more technical parts of this paper is the translation of the results of Noumi et al.
[NDS97] into the language of right coideal algebras. Unfortunately, in doing so it turns out to be
more convenient to work with a slightly modified version of Letzter’s right coideal algebra. In this
subsection we define the modified right coideal algebra for the symmetric pair (g, k), and we present
some of its important properties.

Let {εi}2n
i=1 be the standard orthonormal basis of the Euclidean space (R2n, (·, ·)) and denote

αj = εj − εj+1, j = 1, . . . , 2n − 1.

Definition 1.3. Let A be the unital, associative algebra over C with generators γ±1
i (i = 1, . . . , 2n)

and βj (j = 1, . . . , 2n − 1) satisfying the relations:

γiγj = γjγi, γiγ
−1
i = 1 = γ−1

i γi, γi = γ2n+1−i (1.3)

for i, j = 1, . . . , 2n;

γiβj = q−(εi+ε2n+1−i,αj)βjγi (1.4)

for i = 1, . . . , 2n and j = 1, . . . , 2n − 1;

βiβj − βjβi = q

(
γ−2

i − γ−2
i+1

q − q−1

)
δi,2n−j (1.5)

for i, j = 1, . . . , 2n− 1 with |i− j| � 2;

q−1β2
i βi+1 − (q + q−1)βiβi+1βi + qβi+1β

2
i = qβn+1γ

−2
n δi,n (1.6)

for i = 1, . . . , 2n − 2 and

qβ2
i βi−1 − (q + q−1)βiβi−1βi + q−1βi−1β

2
i = q−1βn−1γ

−2
n δi,n (1.7)

for i = 2, . . . , 2n − 1.

Observe that A becomes a ∗-algebra with ∗-structure defined by

γ∗i = γi, β∗j = β2n−j

for i = 1, . . . , 2n and j = 1, . . . , 2n − 1.

Proposition 1.4. Let σ ∈ R. The assignment

πσ(γ±1
i ) = K±1

i K±1
2n+1−i,

πσ(βj) = yjK
−1
j+1K

−1
2n−j +K−1

j x2n−jK
−1
2n−j ,

πσ(βn) = ynK
−1
n+1K

−1
n +K−1

n xnK
−1
n +

(
q−σ − qσ

q − q−1

)
K−2

n

(1.8)

for i ∈ {1, . . . , 2n} and j ∈ {1, . . . , 2n − 1} \ {n} uniquely extends to an injective ∗-algebra homo-
morphism πσ : A → Uq(g).
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Proof. This is essentially [Let03, Theorem 7.1] for the symmetric pair of type AIII (Case 2), see
[Let03, § 7]. More specifically, following the proof of [Let97, Lemma 2.2] one shows that the assign-
ment (1.8) uniquely extends to a unital ∗-algebra homomorphism πσ : A → Uq(g) for σ ∈ R. The
injectivity of πσ follows by a straightforward modification of the proof of [Let97, Proposition 2.3].

Definition 1.5. Let σ ∈ R. We call (Uq(g),Aσ) with Aσ = πσ(A) a quantum analogue of the
symmetric pair (g, k) = (gl(2n), gl(n) × gl(n)). We denote

Ci = πσ(γi), Bj = πσ(βj), Bσ
n = πσ(βn) (1.9)

(i ∈ {1, . . . , 2n} and j ∈ {1, . . . , 2n − 1} \ {n}) for the image of the generators of A under the
embedding πσ.

We fix σ ∈ R once and for all, unless specified differently.
The terminology in Definition 1.5 can formally be justified as follows, see e.g., [Let97, § 3].

Taking the classical limit q → 1 of the (modified) generators of Aσ gives

Ci − C−1
i

q − q−1
→ Ei,i +E2n+1−i,2n+1−i,

Bj → Ej+1,j + E2n−j,2n+1−j,

Bσ
n → En+1,n + En,n+1 − σ1

(1.10)

for i ∈ {1, . . . , n} and j ∈ {1, . . . , 2n − 1} \ {n}, where Ei,j ∈ g ⊂ U(g) is the matrix unit with
a one in row i and column j, and zeros elsewhere. The unital subalgebra Ã of U(g) generated
by the classical limits (1.10) of the generators of Aσ is independent of σ and isomorphic to the
subalgebra U(k) ⊂ U(g). The isomorphism is induced by the inner automorphism Ad(g) of g, with
g ∈ GL(2n; C) given explicitly by

g =
1√
2

n∑
i=1

(Ei,i + Ei,2n+1−i + E2n+1−i,i − E2n+1−i,2n+1−i). (1.11)

In fact, the associated inner automorphism of U(g) preserves all classical generators (1.10) of Ã
besides En+1,n + En,n+1 − σ1, which is mapped to En,n − En+1,n+1 − σ1.

The classical isomorphism Ã 
 U(k) via the inner automorphism Ad(g) has the following weak
analogue on the quantum group level. Let Uq(k) be the Hopf ∗-subalgebra of Uq(g) generated by
K±1

i (i ∈ {1, . . . , 2n}) and xj, yj (j ∈ {1, . . . , 2n− 1} \ {n}). Denote

B̂σ
n =

q−σK−2
n+1 − qσK−2

n

q − q−1
∈ Uq(k), (1.12)

which has En,n − En+1,n+1 − σ1 as classical limit.

Proposition 1.6. Let I ⊆ Uq(k) be the two-sided ∗-ideal generated by xn−1yn+1. The assignment

φσ(γi) = Ci + I, φσ(βj) = Bj + I, φσ(βn) = B̂σ
n + I

for i ∈ {1, . . . , n} and j ∈ {1, . . . , 2n − 1} \ {n} uniquely extends to a ∗-algebra homomorphism
φσ : A → Uq(k)/I.

Proof. In view of Proposition 1.4, φσ extends to an algebra homomorphism φσ : A → Uq(k)/I if φσ

respects the defining relations of A involving βn. This is a straightforward, but tedious computation.
The ∗-ideal I only plays a role for the relations (1.6) for i = n − 1 and relation (1.7) for i = n + 1
(which in turn are each others ∗-images). In Uq(k) we have the relation

q−1B2
n−1B̂

σ
n − (q + q−1)Bn−1B̂

σ
nBn−1 + qB̂σ

nB
2
n−1 = q−σ−1(q−2 − q2)xn+1yn−1K

−1
n−1K

−1
n K−4

n+1,
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which, modulo I, reduces to the φσ-image of relation (1.6) for i = n − 1. The case i = n + 1 is
checked similarly. It is clear that the algebra homomorphism φσ respects the ∗-structure.

Remark 1.7. Denote Uq(gl(2))(n) ⊂ Uq(g) for the copy of the unital Hopf-∗-algebra Uq(gl(2)) in
Uq(g), generated by xn, yn,K

±1
n ,K±1

n+1. Note that both Bσ
n ∈ Uq(gl(2))(n) and B̂σ

n ∈ Uq(gl(2))(n),
with B̂σ

n given by (1.12). By [Ros00], there exists an invertible element xσ in a suitable completion
of Uq(gl(2))(n) such that xσB

σ
nx

−1
σ = B̂σ

n . Explicitly, xσ can be given as an formal infinite series by

xσ =
∞∑

l,m=0

q−(l+m)σ(−1)m

(−q2−2σ; q2)l

ql2+2lm−l−m

(q2; q2)l(q2; q2)m
(1 − q2)l+mxl

n(ynKnK
−1
n+1)

m. (1.13)

The element xσ is essentially Babelon’s [Bab91] vertex-IRF transformation, which leads to an inter-
pretation of the parameter σ as a dynamical parameter in the sense of dynamical quantum groups
(see [Sto03] for a detailed discussion and further references). Note, furthermore, that conjugating
by xσ fixes all other generators Bj and C±1

i of Aσ besides Bn−1 and Bn+1.

Let E ⊂ Aσ ⊂ Uq(g) be the unital subalgebra generated by the σ-independent generators C±1
i

(i ∈ {1, . . . , 2n}) and Bj (j ∈ {1, . . . , 2n − 1} \ {n}) of Aσ. We end this subsection by proving that
E is essentially the subalgebra Uq(gl(n)), diagonally embedded in Uq(g).

Throughout this paper we identify

Uq(gl(n)) ⊗ Uq(gl(n)) 
 Uq(k) ⊂ Uq(g)

as ∗-Hopf algebras, by identifying xj ⊗1, yj ⊗1 and K±1
i ⊗1 (respectively 1⊗xj , 1⊗yj and 1⊗K±1

i )
with xj, yj and K±1

i (respectively xn+j, yn+j and K±1
n+i) for j = 1, . . . , n − 1 and i = 1, . . . , n. Let

ψ : Uq(gl(n)) → Uq(gl(n)) be the ∗-algebra isomorphism defined by

ψ(xj) = yn−j, ψ(yj) = xn−j, ψ(K±1
i ) = K±1

n+1−i (1.14)

for j = 1, . . . , n− 1 and i = 1, . . . , n. Let ∆op be the opposite comultiplication of Uq(gl(n)).

Lemma 1.8. For j = 1, . . . , n− 1 and i = 1, . . . , n we have

(id⊗ψ)∆op(yjK
−1
j+1) = Bj,

(id⊗ψ)∆op(xjK
−1
j ) = B2n−j ,

(id⊗ψ)∆op(K±1
i ) = C±1

i .

Furthermore, (id⊗ψ)∆op defines a ∗-algebra isomorphism

(id⊗ψ)∆op : Uq(gl(n)) ∼−→ E ⊆ Aσ ∩ Uq(k) ⊂ Uq(g).

Proof. The proof is straightforward.

Other crucial properties of the quantum symmetric pairs (Uq(g),Aσ), such as the coideal property
of Aσ ⊂ Uq(g), are discussed in later sections.

1.4 Representations
We discuss those aspects of the representation theory associated to the quantum symmetric pairs
(Uq(g),Aσ) which are relevant for the purposes of this paper. We start by recalling some standard
facts on the finite-dimensional representation theory of the quantized universal enveloping algebra
Uq(gl(m)). If no confusion can arise, we surpress in the following definitions the dependence on m
as much as possible.

Let Pm =
⊕m

i=1 Zεi 
 Z×m be the rational character lattice of GL(m; C) and

P+
m = {(λ1, . . . , λm) ∈ Pm | λ1 � · · · � λm}

the associated cone of dominant weights.
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We only consider finite-dimensional left Uq(gl(m))-modules M with weights in Pm, i.e. we assume
that M has weight decomposition

M =
⊕

µ∈Pm

M [µ],

M [µ] = {v ∈M | Kiv = qµiv, i = 1, . . . ,m}.
Any such finite-dimensional Uq(g)-module M is Uq(g)-semisimple. The irreducible ones are the
irreducible finite-dimensional highest weight representations Lλ of Uq(gl(m)) with highest weight
λ ∈ P+

m .
The irreducible module Lλ (λ ∈ P+

m) has a one-dimensional weight space Lλ[λ]. A vector vλ

spanning Lλ[λ] is called a highest weight vector of Lλ. A highest weight vector vλ is a cyclic vector
of Lλ satisfying xjvλ = 0 for j = 1, . . . ,m− 1. In particular,

Lλ =
⊕

µ∈Pm : µ�λ

Lλ[µ],

with � the A-type dominance order on Pm: λ � µ for λ, µ ∈ Pm if
j∑

i=1

λi �
j∑

i=1

µi (j ∈ {1, . . . ,m− 1}),
m∑

i=1

λi =
m∑

i=1

µi.

There exists a scalar product 〈·, ·〉λ on Lλ, unique up to constant multiples, such that

〈Xv,w〉λ = 〈v,X∗w〉λ, ∀v,w ∈ Lλ, ∀X ∈ Uq(gl(m)).

Consequently, any finite-dimensional Uq(gl(m))-module M is ∗-unitarizable.

Definition 1.9. We write Mσ for a left Uq(g)-module M , viewed as a Aσ-module by restriction of
the action to the subalgebra Aσ ⊂ Uq(g).

Since Aσ ⊂ Uq(g) is ∗-invariant, we have the following result, see e.g., [Let00, Theorem 3.3].

Lemma 1.10. If M is a finite-dimensional Uq(g)-module, then Mσ is Aσ-semisimple.

An abstract representation theory for Aσ was developed by Letzter [Let00, §§ 5–7] in the general
context of quantum symmetric pairs. For our purposes it is more convenient to have concrete
realizations of certain special Aσ-representations. These special representations are constructed
using the following corollary of Proposition 1.6.

Corollary 1.11. Let V be a finite-dimensional Hilbert space and let ρ : Uq(k) → EndC(V )
be a ∗-representation such that I ⊆ Ker(ρ). Denote by ρ : Uq(k)/I → EndC(V ) the associated
∗-representation of Uq(k)/I. Then

ρσ = ρ ◦ φσ ◦ π−1
σ : Aσ → End(Vσ),

with Vσ = V as finite-dimensional Hilbert space, defines a ∗-representation of Aσ such that
ρσ|E = ρ|E .

Remark 1.12. With the conventions of Corollary 1.11 we can define a ∗-representation ρσ,τ =
ρ ◦ φτ ◦ π−1

σ of Aσ for arbitrary σ, τ ∈ R. The ∗-representation ρσ,τ thus satisfies

ρσ,τ (Bσ
n) = ρ(B̂τ

n).

The special role of ρσ = ρσ,σ follows from the fact that Bσ
n and B̂σ

n are conjugate in Uq(g)
(cf. Remark 1.7) and from the fact that the formal classical limit of ρσ = ρσ,σ is equivalent to
the formal classical limit of ρ via the isomorphism Ã 
 U(k) constructed in § 1.3.
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Let κ1 ∈ Z and κ ∈ Z�0. Denote by V (κ, κ1) the irreducible, finite-dimensional Uq(k)-module

V (κ, κ1) = L(−κ1)n ⊗ L(κ1+(n−1)κ,(κ1−κ)n−1).

Here we have used the shorthand notation (κm) ∈ P+
m for the m-tuple with all entries equal to

κ. The representation map of V (κ, κ1) will be denoted by ρ(κ, κ1). Clearly there exists a scalar
product on V (κ, κ1), unique up to constant multiples, such that ρ(κ, κ1) : Uq(k) → EndC(V (κ, κ1))
is a ∗-representation. Since L(−κ1)n is one-dimensional, xn−1 ∈ Uq(gl(n)) acts as zero, and hence
I ⊆ Ker(ρ(κ, κ1)). Thus we obtain a ∗-representation

ρ(κ, κ1)σ : Aσ → EndC(V (κ, κ1)σ)

by the previous corollary. To simplify the notation, we denote

(ρ(κ1)σ, V (κ1)σ) = (ρ(0, κ1)σ, V (0, κ1)σ).

The Uq(gl(n))-module L((n−1)κ,(−κ)n−1) is the quantum analogue of the GL(n; C)-module
Snκ(Cn) det−κ, where Sm(Cn) is the space of homogeneous polynomials on Cn of degree m. This
is precisely the Uq(gl(n))-module which plays the crucial role in Etingof’s and Kirillov’s [EK94]
theory on A-type Macdonald polynomials and generalized quantum group characters. The module
L((n−1)κ,(−κ)n−1) admits a concrete description (see, e.g., [EK94, § 5]) which can be directly lifted
to V (κ, κ1)σ, leading to the following result.

Lemma 1.13. Let Jκ be the set of n-tuples m = (m1, . . . ,mn) ∈ Zn
�0 which sum up to nκ. There

exists a σ-independent basis {rm | m ∈ Jκ} of V (κ, κ1) such that

ρ(κ, κ1)σ(Ci)rm = qmi−κrm,

ρ(κ, κ1)σ(Bj)rm = q−mj+1+κ

(
qmj − q−mj

q − q−1

)
rm−εj+εj+1,

ρ(κ, κ1)σ(B2n−j)rm = q−mj+κ

(
qmj+1 − q−mj+1

q − q−1

)
rm+εj−εj+1,

ρ(κ, κ1)σ(Bσ
n)rm =

(
q−σ+2(κ−κ1−mn) − qσ+2κ1

q − q−1

)
rm

for i = 1, . . . , n and j = 1, . . . , n − 1, where we have used the convention that rm = 0 if m 
∈ Jκ.

Lemma 1.13 implies that the common eigenspace

Ṽ (κ, κ1)σ = {v ∈ V (κ, κ1)σ | ρ(κ, κ1)σ(Ci)v = v, ∀i} (1.15)

is one-dimensional and spanned by r(κn).
The following lemma follows directly from Lemma 1.13.

Lemma 1.14. The Aσ-module V (κ, κ1)σ, viewed as a Uq(gl(n))-module by restricting the module
structure to E ⊂ Aσ and using the isomorphism E 
 Uq(gl(n)) of Lemma 1.8, is isomorphic to the
simple Uq(gl(n))-module L((n−1)κ,(−κ)n−1). In particular, V (κ, κ1)σ is a simple Aσ-module.

We end this subsection by formulating branching rules for the quantum symmetric pair
(Uq(g),Aσ). For the formulation it is convenient to define an injective map 	 : Λn → P2n by

µ	 = (µ1, µ2, . . . , µn,−µn, . . . ,−µ2,−µ1). (1.16)

Observe that 	 restricts to a map 	 : Λ+
n → P+

2n, and that 	 respects the dominance order, so µ	 � ν	

for µ, ν ∈ Λn if µ � ν.
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Proposition 1.15. Let κ2 ∈ Z and κ, κ1 ∈ Z�0 with −κ1 � κ2 � κ1, and set

δ(κ, κ1) = (κ1 + (n− 1)κ, κ1 + (n− 2)κ, . . . , κ1) ∈ Λ+
n . (1.17)

Let λ ∈ P+
2n. The simple Aσ-modules V (κ, κ1)σ and V (κ2)σ are both constituents of the Aσ-module

Lσ
λ if and only if λ ∈ (Λ+

n +δ(κ, κ1))	. For such λ, both V (κ, κ1)σ and V (κ2)σ occur with multiplicity
one in Lσ

λ.

For κ = κ1 = κ2 = 0, Proposition 1.15 states which of the simple, finite-dimensional Uq(g)-
modules Lλ are spherical with respect to Aσ. This was proven for general quantum symmetric
pairs in [Let00, Theorem 4.3]. This special case can also be derived from the results in [NDS97],
see Lemma 3.5. The classical case (q = 1) of Proposition 1.15 was proven in [Obl04] using the
Littlewood–Richardson rule. Finally, for n = 1 (in which case the parameter κ is redundant),
Proposition 1.15 is due to Koornwinder [Koo93], who used q-special functions for the proof. The
general proof of Proposition 1.15 is discussed in § 2.

Remark 1.16. In the remainder of this paper we always assume the conditions κ, κ1 ∈ Z�0 and
−κ1 � κ2 � κ1 on the representation labels κ, κ1, κ2 ∈ Z, and we use the shorthand notation �κ =
(κ1, κ2, κ). There are three other parameter domains for �κ for which similar results can be derived
with only minor alterations, namely κ1, κ2 ∈ Z, κ ∈ Z�0 satisfying κ1 ∈ Z�0 and κ1 � κ2 � −κ1,
or κ2 ∈ Z�0 and −κ2 � κ1 � κ2, or κ2 ∈ Z�0 and κ2 � κ1 � −κ2 (cf. [Koe96] for the special case
n = 1 and [Obl04] for the classical case (q = 1)).

1.5 Vector valued spherical functions
We write G = GL(2n; C) for the general linear group. The quantized algebra of regular functions
Cq[G] ⊆ Uq(g)∗ is the span of the matrix coefficients of the irreducible Uq(g)-representations Lλ

(λ ∈ P+
2n). The quantized function algebra Cq[G] inherits from Uq(g) the structure of a Hopf

∗-algebra. In particular, the ∗-structure on Cq[G] is defined by

f∗(X) = f(S(X)∗), ∀X ∈ Uq(g).

The left and right regular Uq(g)-action on Cq[G] is defined by

(Y · f · Z)(X) = f(ZXY ), X, Y, Z ∈ Uq(g).

The Peter–Weyl decomposition

Cq[G] =
⊕

λ∈P+
2n

W (λ), (1.18)

with W (λ) the span of the matrix coefficients of Lλ, is the irreducible decomposition of Cq[G] as
Uq(g)-bimodule. For any vector space V , we may and will view elements f ∈ Cq[G] ⊗ V as linear
maps f : Uq(g) → V .

Recall the conventions and notations for the representation labels �κ from Remark 1.16. We
fix σ, τ ∈ R once and for all, unless specified differently. In the following definition we identify
V (κ2)σ 
 C as vector spaces and view ρ(κ2)σ as a character of Aσ.

Definition 1.17. We call f ∈ Cq[G] ⊗ V (κ, κ1)τ a vector valued spherical function if, for all
X ∈ Uq(g),

f(Xa) = ρ(κ2)σ(a) f(X), ∀a ∈ Aσ,

f(bX) = ρ(κ, κ1)τ (b) f(X), ∀b ∈ Aτ .

We denote by F σ,τ

κ the space of vector valued spherical functions.

By standard arguments (see, e.g., [Obl04] for the classical setup, and Lemma 4.1), we obtain the
following corollary of Lemma 1.10 and Proposition 1.15.
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Corollary 1.18. The space of vector valued spherical functions F σ,τ

κ decomposes as

F σ,τ

κ =

⊕
µ∈Λ+

n

F σ,τ

κ (µ),

with F σ,τ

κ (µ) the one-dimensional vector space

F σ,τ

κ (µ) = F σ,τ


κ ∩ (W ((µ+ δ(κ, κ1))	) ⊗ V (κ, κ1)τ ), µ ∈ Λ+
n .

We call a function 0 
= f ∈ F σ,τ

κ (µ) an elementary vector valued spherical function of degree

µ ∈ Λ+
n .

We consider now the restriction of vector valued spherical functions to the commutative sub-
algebra U0 ⊂ Uq(g) generated by the group-like elements K±1

j (j = 1, . . . , 2n). Denote

Kλ = Kλ1
1 Kλ2

2 · · ·Kλ2n
2n , λ ∈ P2n,

which form a linear basis of U0, and define δ = δ2n ∈ P+
2n by

δ = (2n − 1, 2n − 2, . . . , 1, 0).

Let C[z±1] be the algebra of Laurent polynomials in 2n variables z1, . . . , z2n.

Definition 1.19. Let V be a complex vector space and f ∈ Cq[G] ⊗ V , viewed as the linear map
f : Uq(g) → V . We define a regular function f |T : (C∗)2n → V (or, equivalently, f |T ∈ C[z±1] ⊗ V )
by the requirement that

f |T (qλ) = f(Kλ−δ), ∀λ ∈ P2n,

where qλ = (qλ1 , . . . , qλ2n). The resulting linear map

|T : Cq[G] ⊗ V → C[z±1] ⊗ V, f �→ f |T
is called the restriction map.

We define elements ui ∈ C[z±1] by

ui = ziz
−1
2n+1−i, i = 1, . . . , n, (1.19)

and we write C[u±1] ⊂ C[z±1] for the subalgebra generated by the u±1
i . Recall the one-dimensional

subspace Ṽ (κ, κ1)τ ⊆ V (κ, κ1)τ defined by (1.15).

Lemma 1.20. If f ∈ F σ,τ

κ ⊂ Cq[G] ⊗ V (κ, κ1)τ , then f |T ∈ C[u±1] ⊗ Ṽ (κ, κ1)τ . Identifying the

one-dimensional vector space Ṽ (κ, κ1)τ with C, the restriction map thus gives rise to a linear map

|T : F σ,τ

κ → C[u±1].

Proof. Fix f ∈ F σ,τ

κ . For i = 1, . . . , n and X ∈ U0 we compute

ρ(κ, κ1)τ (Ci)f(X) = f(CiX)
= f(XCi)
= ρ(κ2)σ(Ci)f(X) = f(X),

and hence f(X) ∈ Ṽ (κ, κ1)τ . Identifying Ṽ (κ, κ1)τ 
 C, we thus conclude that f |T ∈ C[z±1]. The
formulas f(XCi) = f(X) for X ∈ U0 and i = 1, . . . , n imply that f |T ∈ C[u±1].

The following main result of this paper gives a representation theoretic interpretation of the full
five-parameter family of Macdonald–Koornwinder polynomials (with two parameters continuous,
and three parameters discrete).
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Theorem 1.21. Fix parameters σ, τ ∈ R and �κ = (κ1, κ2, κ) ∈ Z×3 with κ, κ1 ∈ Z�0 and −κ1 �
κ2 � κ1. Let f0 ∈ F σ,τ


κ (0) be an elementary vector valued spherical function of degree 0 ∈ Λ+
n .

(i) The restriction map |T defines a linear bijection

|T : F σ,τ

κ → f0|T C[u±1]W .

(ii) We have

f0|T = C uδ(κ,κ1)
n∏

i=1

(q1−σ+τu−1
i ; q2)κ1−κ2(−q1+σ+τu−1

i ; q2)κ1+κ2

∏
1�i<j�n

(q2u−1
i uj , q

2u−1
i u−1

j ; q2)κ

for some nonzero constant C.

(iii) If fµ ∈ F σ,τ

κ (µ) is an elementary vector valued spherical function of degree µ ∈ Λ+

n , then

fµ|T
f0|T = DPµ(u;−qσ+τ+1+κ1+κ2 ,−q−σ−τ+1, qσ−τ+1, q−σ+τ+1+κ1−κ2 ; q2, q2κ+2)

for some nonzero constant D.

Remark 1.22. In the special case n = 1, Theorem 1.21 gives a representation theoretic interpretation
of the Askey–Wilson polynomials, which is in accordance with the results from [Koo93], [NM90]
and [Koe96]. The classical case (q = 1) of Theorem 1.21 was proven in [Obl04]. In § 3 we show that
Theorem 1.21 for κ1 = κ2 = κ = 0 follows from the main results in [NDS97].

The proofs of Theorem 1.21(i), (ii) and (iii) are given in § 4, § 5 and § 6, respectively.

2. Branching rules

The main goal of this section is to establish the specific branching rules for the quantum symmetric
pairs (Uq(g),Aσ) as formulated in Proposition 1.15. We start by defining and studying the notion
of the expectation value for the quantum symmetric pairs (Uq(g),Aσ).

2.1 The expectation value
The expectation value for intertwiners plays a crucial role in the representation theoretic approach
to quantum field theory, see, e.g., [EV00]. The notion of expectation value is naturally associated
to symmetric pairs (H × H,diag(H)) with H a semisimple Lie group and diag(H) the diagonal
embedding of H in H ×H, as well as to their quantum analogues (Uq(h) ⊗ Uq(h),∆(Uq(h))) with
h a semisimple Lie algebra. In this subsection we define the expectation value for the quantum
symmetric pair (Uq(g),Aσ). As we shall see, this directly leads to information on branching rules
for the quantum symmetric pairs (Uq(g),Aσ).

For λ ∈ P+
2n we choose a highest weight vector 0 
= vλ ∈ Lλ[λ] and a lowest weight vector

0 
= vw0λ ∈ Lλ[w0λ], where w0 ∈ S2n is the longest Weyl group element, w0(i) = 2n+ 1− i for all i.
Both vλ and vw0λ are unique up to a multiplicative constant.

Definition 2.1. Let M be a left Aσ-module and denote HomAσ(Lσ
λ,M) for the space of

Aσ-intertwiners Lσ
λ →M . The maps hλ

M , l
λ
M : HomAσ(Lσ

λ,M) →M , defined by hλ
M (φ) = φ(vλ) and

lλM (φ) = φ(vw0λ), are called the higher and lower expectation maps, respectively. The values hλ
M (φ)

and lλM (φ) are called the higher and lower expectation values of φ, respectively.

Define a map � : P2n → Λn by

λ� = (λ1 + λ2n, λ2 + λ2n−1, . . . , λn + λn+1), λ ∈ P2n.
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Observe that the kernel of � equals Λ	
n and that (w0λ)� = λ� for all λ ∈ P2n. If M is a left Aσ-module

and µ ∈ Λn, then we define

Mµ = {m ∈M | Cim = qµim, ∀i = 1, . . . , n}. (2.1)

Proposition 2.2. Let M be a left Aσ-module and let λ ∈ P+
2n. The expectation maps hλ

M and lλM
are injective, with image contained in Mλ� .

Proof. We prove the proposition for the expectation map hλ
M , the proof for lλM is analogous. For

i = 1, . . . , n and φ ∈ HomAσ(Lσ
λ,M) we have

Cih
λ
M (φ) = Ciφ(vλ) = φ(Civλ) = qλi+λ2n+1−ihλ

M (φ),

so hλ
M (φ) ∈Mλ� . Thus the image of hλ

M is contained in Mλ� .
Suppose φ ∈ Hom(Lσ

λ,M) is in the kernel of hλ
M , so φ(vλ) = 0. We show that φ(v) = 0 for

v ∈ Lλ[ν] and ν � λ by induction on the height ht(λ − ν) ∈ Z�0, where ht(λ − ν) =
∑2n−1

i=1 mi if
mi are the unique positive integers such that λ − ν =

∑
imiαi. So suppose that φ(v) = 0 for all

vectors v ∈ Lλ[ν] with ν � λ and ht(λ− ν) � N .
For arbitrary ν ∈ P2n we have Lλ[ν] = {0} unless ν � λ and

Lλ[ν] =
2n−1∑
j=1

ỹjLλ[ν + αj],

where ỹj = yjK
−1
j+1K

−1
2n−j . To prove the induction step, it thus suffices to show that φ(ỹjv) = 0 for

all j when v ∈ Lλ[ν], ν � λ and ht(λ − ν) = N . If v is such a vector, then by the explicit form of
Bj and Bσ

n and by the induction hypothesis,

φ(ỹjv) = φ(Bjv) = Bjφ(v) = 0,
φ(ỹnv) = φ(Bσ

nv) = Bσ
nφ(v) = 0

for j ∈ {1, . . . , 2n − 1} \ {n}, as desired.

Since Lσ
λ is Aσ-semisimple by Lemma 1.10, the previous proposition has the following immediate

consequence.

Corollary 2.3. If M is a simple Aσ-module and λ ∈ P+
2n, then the number of summands isomor-

phic to M in the irreducible decomposition of Lσ
λ is bounded by Dim(Mλ�).

Recall the conditions on the representation labels �κ = (κ1, κ2, κ) from Remark 1.16.

Lemma 2.4. Let λ ∈ P+
2n. If both V (κ, κ1)σ and V (κ2)σ occur as constituents in the irreducible

decomposition of the Aσ-semisimple module Lσ
λ, then λ ∈ (Λ+

n + δ(κ, κ1))	. For such λ, the modules
V (κ, κ1)σ and V (κ2)σ occur at most with multiplicity one in Lσ

λ.

Proof. The weight spacesMµ (see (2.1)) for the simple Aσ-modulesM = V (κ, κ1)σ andM = V (κ2)σ
are at most one-dimensional by Lemma 1.13. Thus, for any λ ∈ P+

2n, the number of summands
isomorphic to V (κ, κ1)σ or to V (κ2)σ in the irreducible decomposition of Lσ

λ is at most one by
Corollary 2.3.

If v ∈ V (κ2)σ then Civ = v for all i; hence, V (κ2)σ can only occur as a constituent in the
irreducible decomposition of Lσ

λ when λ ∈ P+
2n ∩ Ker(�) = (Λ+

n )	.
Fix µ ∈ Λ+

n such that V (κ, κ1)σ occurs as a constituent of the irreducible decomposition
of Lσ

µ� . It remains to show that this assumption imposes the additional restrictions µn � κ1

and µj − µj+1 � κ (j = 1, . . . , n − 1) on µ. Throughout the proof, we fix a nonzero intertwiner
φ ∈ HomAσ (Lσ

µ� , V (κ, κ1)σ).
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We start with proving µn � κ1. We use the notation of Remark 1.7. Standard Uq(gl(2))-
representation theory implies that V = Uq(gl(2))(n)vµ� ⊆ Lµ� is the (2µn + 1)-dimensional irre-
ducible representation of Uq(gl(2))(n) 
 Uq(gl(2)) with highest weight (µn,−µn) and highest weight
vector vµ� , and that B̂σ

n |V ∈ EndC(V ) is semisimple with simple spectrum

sl =
q−σ+2l − qσ−2l

q − q−1
, l = −µn, . . . , µn − 1, µn.

Observe, furthermore, that V is xσ-stable. Since xσB
σ
nx

−1
σ = B̂σ

n , it follows that Bσ
n |V ∈ EndC(V )

is semisimple with simple spectrum {sl | l = −µn, . . . , µn − 1, µn}. Proposition 2.2 and the fact
that Ci centralizes Uq(gl(2))(n) for i = 1, . . . , n imply that φ(V ) = Ṽ (κ, κ1)σ with Ṽ (κ, κ1)σ the
one-dimensional space defined by (1.15). On the other hand, Lemma 1.13 shows that Ṽ (κ, κ1)σ is
the eigenspace of ρ(κ, κ1)σ(Bσ

n) with eigenvalue s−κ1; hence s−κ1 must be in the spectrum of Bσ
n |V .

Consequently, µn � κ1.
Next we show that µj − µj+1 � κ for j = 1, . . . , n − 1. Fix j ∈ {1, . . . , n − 1}. Since 0 
=

φ(vµ�) ∈ Ṽ (κ, κ1)σ by Proposition 2.2, we conclude from the explicit description of V (κ, κ1)σ (see
Lemma 1.13) that

φ(Bκ
j vµ�) = ρ(κ, κ1)σ(Bκ

j )φ(vµ�) 
= 0.

This implies that Bκ
j vµ� 
= 0 in Lµ� . We write Bj = ỹj + x̃2n−j with

ỹj = yjK
−1
j+1K

−1
2n−j , x̃2n−j = K−1

j x2n−jK
−1
2n−j .

Since vµ� ∈ Lµ� is a highest weight vector, the commutation relation x̃2n−j ỹj = q2ỹjx̃2n−j in Uq(g)
implies

ỹκ
j vµ� = Bκ

j vµ� 
= 0,

and consequently yκ
j vµ� 
= 0. Standard arguments from Uq(gl(2)) 
 C〈xj , yj,K

±1
j ,K±1

j+1〉 represen-
tation theory imply that µj −µj+1 is the largest positive integer m for which ym

j vµ� 
= 0 in Lµ� . We
conclude that µj − µj+1 � κ, as desired.

In, for example, [Nou96] and [NDS97], highest weight considerations are used to determine
branching rules for quantum symmetric pairs. These highest weight arguments can be formalized
and generalized in the present setting as follows.

Lemma 2.5. Let λ ∈ P+
2n and let {0} 
= M ⊆ Lσ

λ be an Aσ-submodule. Then

M 
⊆
⊕
ν≺λ

Lλ[ν], M 
⊆
⊕

ν�w0λ

Lλ[ν].

In other words, there exists a vector m+ ∈ M (respectively m− ∈ M) whose decomposition in
U0-weights has a nonzero highest (respectively lowest) weight contribution.

Proof. Suppose M ⊆ Lσ
λ is an Aσ-submodule and

M ⊆
⊕
ν≺λ

Lλ[ν]. (2.2)

Let M⊥ be the orthocomplement of M in Lλ with respect to the ∗-unitary scalar product 〈·, ·〉λ
on Lλ. Then M⊥ is an Aσ-module complement of M in Lσ

λ. Let π ∈ HomAσ(Lσ
λ,M) be the

projection onto M along M⊥. By the ∗-self-adjointness of the Ki, we have Lλ[ν] ⊥ Lλ[ν ′] for
ν 
= ν ′. Condition (2.2) thus implies Lλ[λ] ⊆M⊥. Hence the higher expectation value hλ

M (π) is zero.
Proposition 2.2 then implies π ≡ 0, hence M = {0}. The second statement is proved similarly.
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Remark 2.6. For an arbitrary quantum symmetric pair (U,Bθ) in the sense of Letzter (see [Let03,
§ 7] for a complete list), one can make a similar definition of higher and lower expectation maps
and of expectation values. Following the reasoning of this section, one can establish the analogues
of Proposition 2.2, Corollary 2.3 and Lemma 2.5 in this general setup (cf. the proof of [Let04,
Lemma 5.6]).

2.2 Deformation arguments
In this subsection we complete the proof of Proposition 1.15 by using deformation arguments.
Without loss of generality we may take q = eh to be a formal deformation parameter. We use part
four of Kassel’s book [Kas95] as main reference for facts and the notation related to topological
C[[h]]-modules and topological C[[h]]-algebras.

Let Uh(g) be the topological version of the quantized universal enveloping algebra Uq(g), with
topological generators Ei,i, xj and yj (i ∈ {1, . . . , 2n}, j ∈ {1, . . . , 2n − 1}), where Ki = ehEi,i . Let
Uh(sl(2n)) be the subalgebra of Uh(gl(2n)) topologically generated by the elements Ej,j −Ej+1,j+1,
xj and yj (j ∈ {1, . . . , 2n−1}). Note that Uh(g) is the central extension of Uh(sl(2n)) by the central
element E1,1 + E2,2 + · · · + E2n,2n.

The topological version of Aσ is the subalgebra of Uh(g) topologically generated by Bj , B
σ
n

and Ei,i + E2n+1−i,2n+1−i for j ∈ {1, . . . , 2n − 1} \ {n} and i ∈ {1, . . . , n}. We denote by Aσ the
subalgebra of Uh(sl(2n)) topologically generated by BjCj+1, Bσ

nCn and Ei,i−Ei+1,i+1−E2n−i,2n−i+
E2n+1−i,2n+1−i for j ∈ {1, . . . , 2n − 1} \ {n} and i ∈ {1, . . . , n − 1}. Note that Aσ is the central
extension of Aσ by the central element E1,1 + E2,2 + · · · + E2n,2n ∈ Uh(g).

We fix λ = (µ + δ(κ, κ1))	 with µ ∈ Λ+
n . To complete the proof of Proposition 1.15, it suffices

to show that the irreducible Aσ-module V (κ, κ1)σ occurs as a constituent of Lσ
λ. Since the central

element E1,1 + · · · + E2n,2n acts as zero on the topological versions of V (κ, κ1)σ and Lλ, it suffices
to show that V (κ, κ1)σ is a constituent of Lσ

λ when viewed as Aσ-modules.
The formal computations after Definition 1.5 and [Let02, Theorem 7.5] imply that the algebra

Aσ is a deformation of the universal enveloping algebra U(k) with

k = Ad(g)(k) ∩ sl(2n) = kss ⊕ CZ,

where g is given by (1.11), kss = Ad(g)(sl(n) ⊕ sl(n)), and Z ∈ k is the central element

Z = Ad(g)(Z ′) = − 1
2n

2n∑
j=1

Ej,2n+1−j,

where

Z ′ = − 1
2n

(E1,1 + E2,2 + · · · + En,n − En+1,n+1 − En+2,n+2 − · · · − E2n,2n).

Since k is reductive with one-dimensional centre, we have H2(k, U(k)) = {0}. By [Kas95, Theorem
XVIII.2.2] there exists a topological algebra isomorphism

βσ : Aσ → U(k)[[h]]

which is the identity modulo h. We define

Ass
σ = β−1

σ (U(kss)[[h]]), Zσ = β−1
σ (Z),

so then Ass
σ is a deformation of U(kss), Zσ is central in Aσ and Aσ is topologically generated by Ass

σ

and Zσ. We denote by (β−1
σ )∗(V (κ, κ1)σ) the module V (κ, κ1)σ viewed as a module over U(k)[[h]] via

the isomorphism βσ : Aσ → U(k)[[h]] (we will use a similar notation to indicate the pull back of an
action by some algebra morphism). The way we constructed the module V (κ, κ1)σ in § 1 immediately
implies that, modulo h, we re-obtain the irreducible, finite-dimensional (gl(n) × gl(n)) ∩ sl(2n) 
 k
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module V clas(κ, κ1) of highest weight

((−κ1)n, (κ1 + (n− 1)κ, (κ1 − κ)n−1)) ∈ P+
n × P+

n . (2.3)

Observe that the central element Z acts as multiplication by κ1 on V clas(κ, κ1), while V clas(κ, κ1)
is independent of κ1 when viewed as module over kss. Since kss is semisimple, we conclude that
(β−1

σ )∗(V (κ, κ1)σ), viewed as the U(kss)[[h]]-module, is isomorphic to the C[[h]]-linear extension of
the kss-module V clas(κ, κ1).

Lemma 2.7. There exists a Aσ-submodule V (κ, κ1)σ ⊂ Lσ
λ such that:

(i) V (κ, κ1)σ 
 V (κ, κ1)σ as Ass
σ -modules;

(ii) the central element Zσ acts as multiplication by a scalar ξσ ∈ C[[h]] on V (κ, κ1)σ;

(iii) modulo h, V (κ, κ1)σ is the k-module V clas(κ, κ1).

Proof. Since Uh(sl(2n)) is a deformation of the universal enveloping algebra of the simple Lie algebra
sl(2n), there exists by [Kas95, Theorem XVIII.2.2] a topological algebra isomorphism

α : Uh(sl(2n)) → U(sl(2n))[[h]]

which is the identity modulo h. The natural embedding ισ : Aσ → Uh(sl(2n)) of topological algebras
can thus be pulled back to obtain an embedding

γσ = α ◦ ισ ◦ β−1
σ : U(k)[[h]] → U(sl(2n))[[h]]

of topological algebras, which is the identity modulo h. Since kss is semisimple, we have H1(kss,
U(sl(2n))) = {0}, and hence there exists an invertible element Fσ ∈ U(sl(2n))[[h]] which is 1
modulo h such that

γσ(X) = FσXF
−1
σ , ∀X ∈ U(kss)[[h]] ⊂ U(k)[[h]] ⊂ U(sl(2n))[[h]] (2.4)

by [Kas95, Theorem XVIII.2.1].
Let Lclas

λ be the irreducible U(sl(2n))-module corresponding to the highest weight λ. We denote
V ⊂ Lclas

λ for its V clas(κ, κ1)-isotypical component viewed as a U(kss)-module. The central element
Z ∈ k acts semisimply on V and the corresponding Z-eigenspaces Vr of V (with r the Z-eigenvalue)
yield the V clas(κ, r) -isotypical components of Lclas

λ viewed now as a k-module. By the classical
branching rules [Obl04, Lemma 3] for the symmetric pair (g, gl(n)×gl(n)) we have Vκ1 
 V clas(κ, κ1).

Let Lclas
λ [[h]] be the U(sl(2n))[[h]]-module obtained by C[[h]]-linear extension of the U(sl(2n))-

module structure on Lclas
λ . Then Lσ

λ is isomorphic to (α ◦ ισ)∗(Lclas
λ [[h]]) as topological Aσ-module.

Now consider the U(k)[[h]]-module

(β−1
σ )∗(Lσ

λ) = γ∗σ(Lclas
λ [[h]]).

By (2.4), FσV [[h]] is the V clas(κ, κ1)[[h]]-isotypical component of the U(kss)[[h]]-module γ∗σ(Lclas
λ [[h]]).

The proof is now completed by observing that FσV [[h]] contains a nonzero Z-eigenspace V (κ, κ1)σ
for some eigenvalue ξσ ∈ C[[h]] satisfying ξσ = κ1 modulo h.

The central element Zσ ∈ Aσ acts by a scalar ξσ ∈ C[[h]] on V (κ, κ1)σ . To complete the
arguments it thus remains to prove the following lemma.

Lemma 2.8. ξσ = ξσ in C[[h]].

Proof. We use the fact that Bσ
nCn ∈ Aσ is conjugate to the Cartan type element

B
σ
n =

q−σKnK
−1
n+1 − qσK−1

n Kn+1

q − q−1
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in Uh(sl(2n)), see [Ros00] and Remark 1.7. We first show that Bσ
nCn acts semisimply on V (κ, κ1)σ,

with spectrum contained in {
tl =

q−σ+l − qσ−l

q − q−1

∣∣∣∣ l ∈ Z

}
.

Indeed, Bσ
nCn acts semisimply on Lσ

λ, with spectrum contained in {tl}l∈Z. Hence any vectors v ∈
V (κ, κ1)σ can be written as v =

∑
l vl with vl ∈ Ker(Bσ

nCn − tl) ⊆ Lσ
λ. Since Bσ

nCn preserves
V (κ, κ1)σ, we have (Bσ

nCn)k(v) =
∑

l t
k
l vl ∈ V (κ, κ1)σ for all k ∈ Z�0. Simple calculations involving

the Vandermonde determinant show that there exist clk ∈ C[[h]] such that vl =
∑

k c
l
k(Bσ

nCn)kv for
all l, and hence vl ∈ V (κ, κ1)σ for all l. By Lemma 1.13, the same statement about the spectrum is
valid for the action of Bσ

nCn on V (κ, κ1)σ .
Lemma 2.7 and the fact that the eigenvalues tl|h=0 = σ − l (l ∈ Z) remain separated mod-

ulo h imply that the dimensions over C[[h]] of the Bσ
nCn-eigenspaces of V (κ, κ1)σ and V (κ, κ1)σ

corresponding to a given eigenvalue tl are the same. In particular, we have

TrV (κ,κ1)σ
(Bσ

nCn) = TrV (κ,κ1)σ
(Bσ

nCn). (2.5)

Next we expand Bσ
nCn in its semisimple and central parts

Bσ
nCn =

∞∑
j=0

ajZ
j
σ

in Aσ, with aj ∈ Ass
σ . Then (2.5) leads to the equality

∞∑
j=0

bjξ
j
σ =

∞∑
j=0

bjξ
j
σ (2.6)

as a formal power series in h, with

bj = TrV (κ,κ1)σ
(aj) ∈ C[[h]].

Now the computations after Definition 1.5 show that

Ad(g)(Bσ
nCn|h=0) = En,n − En+1,n+1 − σ1 = a0|h=0 + a1|h=0Z

′

with

a0|h=0 = − 1
n
E1,1 − · · · − 1

n
En−1,n−1 +

n− 1
n

En,n

+
1 − n

n
En+1,n+1 +

1
n
En+2,n+2 + · · · + 1

n
E2n,2n − σ1

and a1|h=0 = −2. Thus b1|h=0 
= 0 and bj |h=0 = 0 for j � 2. Now we can expand (2.6) in powers of
h, and compare coefficients of hk on each side. An easy induction argument using b1|h=0 
= 0 and
bj|h=0 = 0 for j � 2 then leads to ξσ = ξσ (this may be viewed as a formal version of the inverse
function theorem).

3. Zonal spherical functions

The purpose of this section is to establish Theorem 1.21 for �κ = �0 = (0, 0, 0). This is done by
translating the results for zonal spherical functions on quantum Grassmannians proved in [NDS97]
and [DS99] to the present setting. In [NDS97] and [DS99], extensive use is made of the L-operators
of Uq(g). Roughly speaking, the L-operators L± for Uq(g) are the 2n × 2n matrices with entries
in Uq(g) obtained from the universal R-matrix of Uq(g) by applying the vector representation of
Uq(g) to one of its components. We refer to Letzter [Let99, § 6] and Noumi [Nou96] for precise
definitions; here we only recall those properties of the L-operators which are used in this paper.
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The matrix L+ (respectively L−) is upper (respectively lower) triangular. If l±ij ∈ Uq(g) is the (i, j)th
matrix coefficient of L±, then

l+ii = Ki, l−ii = K−1
i ,

l+j,j+1 = (q − q−1)Kjyj , l−j+1,j = (q−1 − q)xjK
−1
j

(3.1)

for i = 1, . . . , 2n and j = 1, . . . , 2n − 1. More generally, l+ij (respectively l−ij) is an analogue of the
root vector of g corresponding to the root εi − εj (respectively εj − εi). Furthermore,

∆(l±ij) =
2n∑

k=1

l±ik ⊗ l±kj , ε(l±ij) = δi,j, (l±ij)
∗ = S(l∓ji)

and S(L±) = (L±)−1, where the antipode is applied componentwise.
Define a scalar valued 2n × 2n matrix Jσ, depending on an auxiliary parameter σ ∈ R, by

Jσ = (1 − q2σ)
n∑

k=1

Ek,k − qσ
2n∑

k=1

Ek,2n+1−k.

The matrix Jσ is a solution of a reflection equation, see [NDS97, Proposition 2.2] or [DS99, § 6] for
details. Observe, furthermore, that Jσ is invertible, with inverse

(Jσ)−1 = (1 − q−2σ)
n∑

k=1

E2n+1−k,2n+1−k − q−σ
2n∑

k=1

Ek,2n+1−k.

Definition 3.1 [NDS97, DS99]. Let kσ ⊂ Uq(g) be the linear subspace spanned by the 4n2 matrix
coefficients of L+Jσ − JσL−.

Observe that kσ ⊂ Uq(g) is a two-sided coideal, i.e. ∆(kσ) ⊆ kσ⊗Uq(g)+Uq(g)⊗kσ and ε(kσ) = 0.
Note, furthermore, that k∗σ = S(kσ) since Jσ is symmetric, so kσ is not ∗-stable but kσ is ω-stable,
where ω : Uq(g) → Uq(g) is the involutive, anti-linear algebra isomorphism ω = ∗ ◦S. Note that the
involution ω is related to the ∗-structure on Cq[G] by

f∗(X) = f(ω(X)), f ∈ Cq[G], X ∈ Uq(g). (3.2)

It is convenient to write

ωδ(X) = K−δω(X)Kδ , X ∈ Uq(g). (3.3)

Note that ωδ is an anti-linear algebra involution of Uq(g), which acts on the algebraic generators of
Uq(g) by

ωδ(K±1
i ) = K∓1

i , ωδ(xj) = −yj, ωδ(yj) = −xj

for i = 1, . . . , 2n and j = 1, . . . , 2n − 1.
For a subspace U ⊂ Uq(g), let I(U) ⊆ Uq(g) be the left ideal of Uq(g) generated by U and let

A(U) ⊆ Uq(g) be the unital subalgebra generated by I(U). Applied to kσ and k∗σ, we thus obtain
two unital subalgebras A(kσ) and A(k∗σ) of Uq(g). In the following lemma we link the algebras A(kσ)
and A(k∗σ) to Aσ.

Lemma 3.2.

(i) Aσ ∪ ω(Aσ) ⊆ A(kσ).

(ii) ωδ(Aσ) ⊆ A(k∗σ).

Proof. (i) Note that A(kσ) is ω-stable, because kσ is ω-stable. It thus suffices to prove that Aσ ⊆
A(kσ).
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The left ideal I(kσ) contains the matrix coefficients of the Uq(g)-valued matrix

(ti,j)i,j = S(L+)(L+Jσ − JσL−) = Jσ − S(L+)JσL−.

By direct computations, one can verify that

ti,2n+1−i = −qσ + qσC−1
i , tj,2n−j = qσ(q−1 − q)Bj ,

tn,n = qσ(q−1 − q)Bσ
n + 1 − q2σ

for i ∈ {1, . . . , n} and j ∈ {1, . . . , 2n − 1} \ {n}. The left ideal I(kσ) also contains the matrix
coefficients of

S(L−)(Jσ)−1(L+Jσ − JσL−)(Jσ)−1 = S(L−)(Jσ)−1L+ − (Jσ)−1.

Computing the coefficients of the antidiagonal shows that q−σ − q−σCi ∈ I(tσ) for i ∈ {1, . . . , n}.
Consequently, all algebraic generators of Aσ are contained in A(kσ), and hence Aσ ⊆ A(kσ).

(ii) Observe that

ωδ(C±1
i ) = C∓1

i ,

ωδ(Bj) = −q(K2n−jy2n−jKj +K2n−jKj+1xj),

ωδ(Bσ
n) = −

(
KnynKn +KnKn+1xn +

(
qσ − q−σ

q − q−1

)
K2

n

)
,

(3.4)

for i ∈ {1, . . . , n} and j ∈ {1, . . . , 2n − 1} \ {n}, are algebraic generators of ωδ(Aσ). Using similar
arguments as in the proof of (i), it can be shown that all these generators are contained in A(k∗σ) =
A(S(kσ)).

For a left Uq(g)-module M and a unital subalgebra A ⊂ Uq(g) we define the subspace of
A-invariant vectors in M by

MA = {m ∈M | am = ε(a)m, ∀a ∈ A}.
Lemma 3.3. For the Uq(g)-subalgebras A = Aσ, A = ω(Aσ) and A = ωδ(Aσ), we have

(i) Dim(LA
λ ) = 0 if λ ∈ P+

2n \ (Λ+
n )	;

(ii) Dim(LA
λ ) � 1 if λ ∈ (Λ+

n )	.

Proof. The statement for A = Aσ follows from the results in § 2.
For ω(Aσ) and ωδ(Aσ), we first remark that any simple, finite-dimensional Uq(g)-module Lλ

(λ ∈ P+
2n) is semisimple as module over the subalgebras ω(Aσ) and ωδ(Aσ). Clearly it suffices to

prove this for ωδ(Aσ). In this case we first note that

ωδ(X∗) = (ωδ(X))∗, X ∈ Uq(g), (3.5)

which follows easily from the fact that

S2(X) = K−2δXK2δ , X ∈ Uq(g). (3.6)

We conclude that ωδ(Aσ) is a ∗-subalgebra of Uq(g), and hence Lλ is ωδ(Aσ)-semisimple.
Straightforward adjustments of the arguments in § 2 now lead to the construction of expectation

values and to the analogue of Proposition 2.2 for the algebras ω(Aσ) and ωδ(Aσ). Since the elements
Ci (i = 1, . . . , n) are in ω(Aσ) and ωδ(Aσ), the lemma now follows for these two subalgebras in the
same way as for Aσ.

If the algebra A ⊆ Uq(g) is of the form A = A(U) for some vector space U ⊂ Uq(g) and ε|U ≡ 0,
then MA(U) consists of the vectors m ∈M which are annihilated by u ∈ U . In this situation, MA(U)

is called the subspace of U -fixed vectors, cf. [NDS97, DS99]. In particular, this applies to U = kσ and
U = k∗σ. We now recall the following result (see [NDS97, Theorem 2.6] and [DS99, Theorem 6.6]).

1328

https://doi.org/10.1112/S0010437X05001636 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001636


Spherical functions and Macdonald–Koornwinder polynomials

Proposition 3.4. For U = kσ and U = k∗σ we have

Dim(LA(U)
λ ) =

{
0 if λ ∈ P+

2n \ (Λ+
n )	,

1 if λ ∈ (Λ+
n )	.

Combined with Lemma 3.2 and Lemma 3.3, we obtain the following.

Lemma 3.5. For λ ∈ P+
2n we have:

(i) LAσ
λ = L

ω(Aσ)
λ = L

A(kσ)
λ ;

(ii) L
ωδ(Aσ)
λ = L

A(k∗σ)
λ .

Proof. By Lemma 3.3 and Proposition 3.4, all spaces in (i) and (ii) are {0} when λ ∈ P+
2n \ (Λ+

n )	.

Let λ ∈ (Λ+
n )	. Lemma 3.2 implies LAσ

λ ⊇ L
A(kσ)
λ , Lω(Aσ)

λ ⊇ L
A(kσ)
λ and L

ωδ(Aσ)
λ ⊇ L

A(k∗σ)
λ . Since

Dim(LA
λ ) = 1 for A = A(kσ) and A = A(k∗σ) by Proposition 3.4, we conclude from Lemma 3.3 that

LAσ
λ = L

A(kσ)
λ , Lω(Aσ)

λ = L
A(kσ)
λ and Lωδ(Aσ)

λ = L
A(k∗σ)
λ .

The following result is a direct consequence of the definition of ωδ and of Lemma 3.5.

Corollary 3.6. LA(k∗σ)
λ = K−δL

A(kσ)
λ for all λ ∈ P+

2n.

The main object of study in [NDS97] and [DS99] is the space of (kσ , kτ )-fixed regular functions
on Uq(g), which is defined as follows.

Definition 3.7. The space of (kσ, kτ )-fixed functions on Uq(g) is defined by

Hσ,τ = {f ∈ Cq[G] | Y · f = f · Z = 0, ∀Y ∈ kσ, ∀Z ∈ kτ}.
Proposition 3.8. The subspaces Hσ,τ and F σ,τ


0
of Cq[G] are related by

Hσ,τ = F σ,τ

0

·K−δ.

Proof. Any f ∈ Hσ,τ can be written as a linear combination of functions

Uq(g) � X �→ 〈Xvσ, ṽτ 〉λ
with vσ ∈ L

A(kσ)
λ , ṽτ ∈ L

A(k∗τ )
λ and λ ∈ (Λ+

n )	. On the other hand, any g ∈ F σ,τ

0

can be written as a
linear combination of functions

Uq(g) � X �→ 〈Xvσ, v̂τ 〉λ
with vσ ∈ LAσ

λ , v̂τ ∈ LAτ
λ and λ ∈ (Λ+

n )	 since ρ(0, 0)σ = ρ(0)σ = ε|Aσ . The proposition now follows
from the fact that LA(kσ)

λ = LAσ
λ , LA(k∗τ )

λ = K−δL
A(kτ )
λ = K−δLAτ

λ and from the fact that K−δ is
∗-self-adjoint.

Remark 3.9.

(i) The fact that kσ and kτ are ω-stable two-sided coideals implies that Hσ,τ ⊆ Cq[G] is a unital
∗-subalgebra, cf. [NDS97, DS99]. Furthermore, K−δ ∈ Uq(g) is a group-like element, so the
previous proposition shows that F σ,τ


0
⊆ Cq[G] is a unital subalgebra (but it is not ∗-stable!).

(ii) Observe that ε(ωδ(X)) = ε(X) for X ∈ Uq(g). Combined with Lemma 3.5, the proof of Propo-
sition 3.8 and (3.5), this leads to the alternative description

Hσ,τ = {f ∈ Cq[G] | f(ωδ(b)Xa) = ε(a)ε(b)f(X), ∀X ∈ Uq(g), ∀a ∈ Aσ, ∀b ∈ Aτ}
for the space of (kσ , kτ )-fixed regular functions on Uq(g).
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Recall that the restriction map |T : F σ,τ

0

→ C[u±1] involved a δ-shift: f |T (qλ) = f(Kλ−δ) for
all λ ∈ P2n. When dealing with the ∗-subalgebra Hσ,τ , it is convenient to use the restriction map
without δ-shift,

ResT : Hσ,τ → C[u±1], ResT (f)(qλ) = f(Kλ), ∀λ ∈ P2n,

since then we have
ResT (f ·K−δ) = f |T , ∀f ∈ F σ,τ


0
;

cf. Proposition 3.8. Note that ResT is a ∗-algebra homomorphism, with the ∗-structure on C[u±1]
defined by

p∗ =
∑

µ∈Λn

cµu
−µ if p =

∑
µ∈Λn

cµu
µ ∈ C[u±1]. (3.7)

We are now in a position to translate the main result from [NDS97] to our present setup.

Proposition 3.10. Theorem 1.21 is valid for �κ = �0.

Proof. Observe that δ(0, 0) = 0; hence we can take the unit 1 ∈ Cq[G] as nonzero element in F σ,τ

0

(0).
Clearly 1|T is the unit of C[u±1]. This gives Theorem 1.21(ii) for �κ = �0.

The generalized Chevalley restriction theorem (Theorem 1.21(i)) for �κ = �0 reduces to the
statement that |T : F σ,τ


0
→ C[u±1]W is a linear isomorphism. In view of Proposition 3.8 and

the δ-shift in the definition of the restriction map |T , this is equivalent to the statement that
ResT : Hσ,τ → C[u±1]W is a linear isomorphism, which follows from [NDS97, Theorem 3.2], see also
[DS99, Theorem 7.5]. For a direct proof of this result for an arbitrary quantum symmetric pair, see
[Let03].

Let 0 
= fµ ∈ F σ,τ

0

(µ) be an elementary spherical function of degree µ ∈ Λ+
n , then fµ ·K−δ ∈

Hσ,τ ∩W (µ	). Consequently, [NDS97, Theorem 3.4] shows that the restriction fµ|T = ResT (fµ ·
K−δ) ∈ C[u±1]W is a nonzero scalar multiple of the Macdonald–Koornwinder polynomial

P σ,τ
µ (u) = Pµ(u;−qσ+τ+1,−q−σ−τ+1, qσ−τ+1, q−σ+τ+1; q2, q2), (3.8)

(see also [DS99, Theorem 7.5]). This proves Theorem 1.21(iii) for �κ = �0.

4. The generalized Chevalley theorem

In this section we prove the generalized Chevalley restriction theorem (see Theorem 1.21(i)).
To simplify the notation, we write [·, ·]µ for the scalar product 〈·, ·〉(µ+δ(κ,κ1))� on the Uq(g)-

module L(µ+δ(κ,κ1))� (µ ∈ Λ+
n ).

Lemma 4.1. Let µ ∈ Λ+
n and identify V (κ, κ1)τ with its unique copy in the semisimple Aτ -module

Lτ
(µ+δ(κ,κ1))� and V (κ2)σ with its unique copy in the semisimple Aσ-module Lσ

(µ+δ(κ,κ1))� . Let fµ ∈
F σ,τ


κ (µ) be an elementary vector valued spherical function of degree µ. Then

fµ|T (qλ) = [Kλ−δv,w]µ, ∀λ ∈ P2n

for suitably normalized vectors 0 
= v ∈ V (κ2)σ and 0 
= w ∈ Ṽ (κ, κ1)τ . Furthermore,

fµ|T =
∑

−µ−δ(κ,κ1)�ν�µ+δ(κ,κ1)

cνu
ν ∈ C[u±1]

for certain constants cν ∈ C (ν ∈ Λn), and c±µ±δ(κ,κ1) 
= 0.

Proof. Choose an orthonormal basis {b1, . . . , bm} of V (κ, κ1)τ with respect to the restriction of
[·, ·]µ to V (κ, κ1)τ such that b1 ∈ Ṽ (κ, κ1)τ . In particular, b1 is a nonzero constant multiple of w.
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Then fµ ∈ F σ,τ

κ (µ) can be realized as

fµ(X) =
m∑

i=1

[Xv, bi]µbi, X ∈ Uq(g)

for some 0 
= v ∈ V (κ2)σ. We have fµ(X) ∈ Ṽ (κ, κ1)τ for X ∈ U0, see (the proof of) Lemma 1.20.
Using the identification Ṽ (κ, κ1)τ 
 C of vector spaces given by the assignment b1 �→ 1, we obtain

fµ|T (qλ) = fµ(Kλ−δ) = [Kλ−δv, b1]µ, ∀λ ∈ P2n.

Now both vectors v and b1 satisfy Civ = v and Cib1 = b1 for i = 1, . . . , n, hence v[λ] = 0 and
b1[λ] = 0 for λ ∈ P2n unless λ ∈ (Λn)	. Since � : Λn → (Λn)	 ⊂ P2n is a bijection of partially ordered
sets and (−ν)	 = w0(ν	) for ν ∈ Λn, we conclude that the weight decompositions of v and b1 are of
the form

v =
∑

−µ−δ(κ,κ1)�ν�µ+δ(κ,κ1)

v[ν	], b1 =
∑

−µ−δ(κ,κ1)�ν�µ+δ(κ,κ1)

b1[ν	],

with v[ν	] and b1[ν	] the components of the vectors v and b1 in the weight space of the Uq(g)-module
L(µ+δ(κ,κ1))� of weight ν	.

A simple application of Lemma 2.5 shows that v[(±µ ± δ(κ, κ1))	] 
= 0. Denote by L̃τ
(µ+δ(κ,κ1))�

the vectors v ∈ Lτ
(µ+δ(κ,κ1))� satisfying Civ = v for i = 1, . . . , n. This subspace contains the one-

dimensional weight spaces L(µ+δ(κ,κ1))� [(±µ ± δ(κ, κ1))	] and L̃τ
(µ+δ(κ,κ1))� ∩ Ṽ (κ, κ1)τ = C{b1}.

Lemma 2.5 implies b1[(±µ± δ(κ, κ1))	] 
= 0. Hence

fµ|T =
∑

−µ−δ(κ,κ1)�ν�µ+δ(κ,κ1)

[K−δv[ν	], b1[ν	]]µ uν

=
∑

−µ−δ(κ,κ1)�ν�µ+δ(κ,κ1)

cνu
ν

with cν ∈ C satisfying the conditions as stated in the lemma.

A more detailed analysis of the elementary vector valued spherical functions requires the right
coideal algebra structure of Aσ. Recall that a right Uq(g)-comodule (M, δM ) is a vector space M
together with a linear map δM : M →M ⊗ Uq(g) satisfying

(δM ⊗ IdUq(g)) ◦ δM = (IdM ⊗ ∆) ◦ δM , (IdM ⊗ ε) ◦ δM = IdM .

If M is a unital algebra and δM is a (unit preserving) algebra homomorphism, then (M, δM ) is
called a right Uq(g)-comodule algebra. In particular, a unital subalgebra A ⊆ Uq(g) satisfying
∆(A) ⊆ A⊗Uq(g) gives rise to the right comodule algebra (A,∆|A). In this case, A is called a right
coideal subalgebra of Uq(g).

By computing the action of the comultiplication ∆ on the algebraic generators of Aσ, one verifies
that Aσ ⊆ Uq(g) is a right Uq(g)-coideal algebra. Using the isomorphism πσ : A → Aσ of algebras,
see Proposition 1.4, A inherits a unique right Uq(g)-comodule structure such that πσ : A → Aσ is
an isomorphism of right Uq(g)-comodule algebras. The right comodule map for A turns out to be
independent of σ, and is given as follows (cf., e.g., [Let02]).

Proposition 4.2. The algebra A has the structure of a right Uq(g)-comodule algebra, with comod-
ule map δA given explicitly by

δA(γ±1
i ) = γ±1

i ⊗K±1
i K±1

2n+1−i,

δA(βj) = βj ⊗K−1
j K−1

2n−j + γ−1
j+1 ⊗ yjK

−1
j+1K

−1
2n−j + γ−1

j ⊗K−1
j x2n−jK

−1
2n−j
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for i = 1, . . . , 2n and j = 1, . . . , 2n − 1. The map πσ : A → Aσ is an isomorphism of right
Uq(g)-comodule algebras.

Finite-dimensional Aσ-modules do not form a tensor category, since Aσ ⊂ Uq(g) is not a coal-
gebra. However, the right coideal algebra structure of Aσ implies that the tensor product M ⊗ N
of an Aσ-module M and a Uq(g)-module N is an Aσ-module by the usual formula

a · (m⊗ n) =
∑

a1 ·m⊗ a2 · n, m ∈M, n ∈ N,

where (recall) ∆(a) =
∑
a1 ⊗ a2 for a ∈ Aσ with the a1 from Aσ. In the special case that M is the

one-dimensional Aσ-module V (k)σ (k ∈ Z), we can naturally relate the Aσ-module V (k)σ ⊗ N to
the Aσ+2k-module Nσ+2k in the following manner.

Let χσ
k : Aσ → C be the character of V (k)σ . The Aσ-action on V (k)σ ⊗N can then be rewritten

as

a · (m⊗ n) = m⊗ ζσ
k (a) · n, a ∈ Aσ, m ∈ V (k)σ , n ∈ N,

with ζσ
k : Aσ → Uq(g) the unital algebra homomorphism

ζσ
k (a) =

∑
χσ

k(a1)a2, a ∈ Aσ. (4.1)

Lemma 4.3. The map ζσ
k defines an algebra isomorphism ζσ

k : Aσ → Aσ+2k, with inverse ζσ+2k
−k :

Aσ+2k → Aσ. Furthermore, ζσ
k = πσ+2k ◦π−1

σ |Aσ (see Proposition 1.4 for the definition of πσ), which
means that

ζσ
k (Ci) = Ci, ζσ

k (Bj) = Bj , ζσ
k (Bσ

n) = Bσ+2k
n (4.2)

for i ∈ {1, . . . , 2n} and j ∈ {1, . . . , 2n − 1} \ {n}.
Proof. By Lemma 1.13 the values of χσ

k on the algebraic generators of Aσ are given by

χσ
k(Ci) = 1, χσ

k(Bj) = 0, χσ
k(Bσ

n) = ϑ0(qσ+2k) (4.3)

for i ∈ {1, . . . , 2n} and j ∈ {1, . . . , 2n − 1} \ {n}, with ϑl(s) (l ∈ Z) defined by

ϑl(s) =
s−1 − sq−2l

q − q−1
.

Combined with Proposition 4.2 one can now easily derive (4.2). The remaining statements follow
immediately.

Corollary 4.4. Let N be a finite-dimensional Uq(g)-module and suppose that N ′ ⊂ Nσ+2k is an
Aσ+2k-submodule.

(i) V (k)σ ⊗N ′ is an Aσ-submodule of V (k)σ ⊗N .

(ii) If N ′ 
 V (κ, κ1)σ+2k, then V (k)σ ⊗N ′ 
 V (κ, κ1 + k)σ as Aσ-modules.

Proof. (i) follows from Lemma 4.3, and (ii) follows from Lemma 4.3 and Lemma 1.13.

As a first application of these tensor product constructions we derive (a refinement of) the
generalized Chevalley restriction theorem (see Theorem 1.21(i)). Before stating the result, we first
recall some basic facts on tensor products of finite-dimensional Uq(g)-modules which we need in
the proof. For any λ, µ ∈ P+

2n, the irreducible decomposition of the finite-dimensional Uq(g)-module
Lλ ⊗ Lµ is of the form

Lλ ⊗ Lµ = Lλ+µ ⊕
⊕

ν∈P+
2n

ν≺λ+µ

L⊕dλ,µ
ν

ν (4.4)
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for certain multiplicities dλ,µ
ν ∈ Z�0. The copy Lλ+µ has vλ ⊗ vµ as highest weight vector. We

write prλ,µ : Lλ ⊗ Lµ → Lλ+µ for the projection along the direct sum decomposition (4.4), and
prµ = prµ�,δ(κ,κ1)� for µ ∈ Λ+

n .

Proposition 4.5. Let µ ∈ Λ+
n and choose elementary vector valued spherical functions fµ ∈ F σ,τ


κ (µ)
and f0 ∈ F σ,τ


κ (0). Then fµ|T is divisible by f0|T in C[u±1], and

fµ|T
f0|T =

∑
ν∈Λ+

n
ν�µ

cνmν ∈ C[u±1]W (4.5)

for some constants cν ∈ C with cµ 
= 0.

Proof. The proof is by induction on µ ∈ Λ+
n along the dominance order �. For µ = 0 the proposition

is trivial. We identify V (0)σ with its unique copy in Lσ
µ� and V (κ2)σ with its unique copy in Lσ

δ(κ,κ1)� ,
and we choose nonzero vectors

wσ ∈ V (0)σ ⊂ Lσ
µ� , uσ ∈ V (κ2)σ ⊂ Lσ

δ(κ,κ1)� .

We, furthermore, fix nonzero intertwiners

φµ ∈ HomAτ (Lτ
µ� , V (0)τ ), φ0 ∈ HomAτ (Lτ

δ(κ,κ1)� , V (κ, κ1)τ )

and we identify V (0)τ 
 C as vector spaces. Then

gµ(X) = φµ(Xwσ), f0(X) = φ0(Xuσ)

for X ∈ Uq(g) define elementary vector valued spherical functions gµ ∈ F σ,τ

0

(µ) and f0 ∈ F σ,τ

κ (0).

Furthermore, gµ|T is of the form

gµ|T =
∑

ν∈Λ+
n

ν�µ

dνmν (4.6)

for some constants dν ∈ C with dµ 
= 0 in view of Proposition 3.10 (in fact, gµ|T is a nonzero
constant multiple of a Macdonald–Koornwinder polynomial of degree µ).

We now consider the linear map f : Uq(g) → V (κ, κ1)τ defined by

f(X) = φ(X(wσ ⊗ uσ)), X ∈ Uq(g),

with φ : Lµ� ⊗ Lδ(κ,κ1)� → V (κ, κ1)τ the linear map defined by

φ(u⊗ v) = φµ(u)φ0(v), u ∈ Lµ� , v ∈ Lδ(κ,κ1)� .

Observe that C{wσ ⊗ uσ} is an Aσ-submodule of (Lµ� ⊗ Lδ(κ,κ1)�)σ which is isomorphic to V (κ2)σ
by Corollary 4.4. Furthermore,

φ ∈ HomAτ ((Lµ� ⊗ Lδ(κ,κ1)�)τ , V (κ, κ1)τ ),

since

φ(a(v ⊗ w)) =
∑

φµ(a1v)φ0(a2w)

= φµ(v)φ0(ζτ
0 (a)w)

= ρ(κ, κ1)τ (a)φ(v ⊗w)

for a ∈ Aτ , v ∈ Lµ� and w ∈ Lδ(κ,κ1)� , where, besides the intertwining properties of φµ and φ0, we
have used the fact that ζτ

0 = IdAτ . Hence we conclude that f ∈ F σ,τ

κ .

By (4.4) and Corollary 1.18 we have an expansion

f =
∑

ν′∈Λ+
n

ν′�µ

fν′ (4.7)
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with fν′ ∈ F σ,τ

κ (ν ′) and fµ(·) = φ(·prµ(wσ ⊗ uσ)). Lemma 2.5 implies that prµ(wσ ⊗ uσ) spans the

unique copy of V (κ2)σ in Lσ
(µ+δ(κ,κ1))� . Furthermore, φ ◦ prµ 
= 0 since

φ(vµ� ⊗ vδ(κ,κ1)�) = φµ(vµ�)φ0(vδ(κ,κ1)�) 
= 0 (4.8)

by Proposition 2.2. Consequently, fµ is nonzero.
Up to a nonzero multiplicative constant, fµ is the unique elementary vector valued spherical

function of degree µ. It thus suffices to prove the induction step for fµ. By the construction of the
vector valued spherical function f , we have

f |T = (gµ|T )(f0|T ) (4.9)

in C[u±1]. Substituting the expansions (4.6) and (4.7) of gµ|T and f , respectively, in (4.9), gives∑
ν∈Λ+

n
ν�µ

dνf0|Tmν = f |T = fµ|T +
∑

ν′∈Λ+
n

ν′<µ

fν′ |T .

By the induction hypothesis applied to the fν′ |T (ν ′ < µ), we conclude that (4.5) is valid for some
cν ∈ C and that cµ = dµ 
= 0. This completes the proof of the induction step.

As an immediate corollary of Proposition 4.5, we obtain the generalized Chevalley restriction
theorem (see Theorem 1.21(i)).

Corollary 4.6. Let f0 ∈ F σ,τ

κ (0) be an elementary vector valued spherical function of degree zero.

The restriction map |T induces a linear bijection |T : F σ,τ

κ → f0|T C[u±1]W .

5. The ground state

We define a ground state f0 (with respect to (�κ, σ, τ)) to be an elementary vector valued spherical
function f0 ∈ F σ,τ


κ (0) of degree zero. Note that a ground state f0 is unique up to nonzero scalar
multiples. In this section we compute the radial part f0|T of a ground state f0 explicitly. In the first
subsection we show that it suffices to compute the ground state for �κ = (0, 0, κ) and �κ = (κ1, κ2, 0)
separately. The second and third subsections are devoted to the explicit computation of the ground
state for these two special cases.

5.1 Splitting of the ground state
For the computation of the radial part of the ground state it is sufficient to compute the radial part
for the special cases κ1 = κ2 = 0 and κ = 0 in view of the following lemma.

Lemma 5.1. Let f ∈ F σ,τ
(κ1,κ2,0)(0) and f ′ ∈ F σ+2κ2,τ+2κ1

(0,0,κ) (0) be ground states with respect to

(κ1, κ2, 0, σ, τ) and (0, 0, κ, σ + 2κ2, τ + 2κ1), respectively. Then f |T f ′|T = f0|T in C[u±1] with
f0 ∈ F σ,τ


κ (0) a ground state with respect to (�κ, σ, τ).

Proof. We proceed as in the first part of the proof of Proposition 4.5. We identify V (κ2)σ with its
unique copy in Lσ

δ(0,κ1)� and V (0)σ+2κ2 with its unique copy in Lσ+2κ2

δ(κ,0)� , and we fix nonzero vectors
u ∈ V (κ2)σ and v ∈ V (0)σ+2κ2 . We, furthermore, fix nonzero intertwiners

ϕ ∈ HomAτ (Lτ
δ(0,κ1)� , V (κ1)τ ), φ ∈ HomAτ+2κ1

(Lτ+2κ1

δ(κ,0)� , V (κ, 0)τ+2κ1),

then the formulas
f(X) = ϕ(Xu), f ′(X) = φ(Xv)

for X ∈ Uq(g) define ground states f ∈ F σ,τ
(κ1,κ2,0)(0) and f ′ ∈ F σ+2κ2,τ+2κ1

(0,0,κ) (0). We now consider the
function f0(X) = ψ(X(u ⊗ v)) for X ∈ Uq(g), with

ψ : Lδ(0,κ1)� ⊗ Lδ(κ,0)� → V (κ1)τ ⊗ V (κ, 0)τ+2κ1 
 V (κ, κ1)τ (5.1)
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defined by ψ(w ⊗ w′) = ϕ(w) ⊗ φ(w′) for w ∈ Lδ(0,κ1)� and w′ ∈ Lδ(κ,0)� (see Corollary 4.4 for the
isomorphism V (κ1)τ ⊗ V (κ, 0)τ+2κ1 
 V (κ, κ1)τ of Aτ -modules in (5.1)). Similarly as in the proof
of Proposition 4.5 we have

f0|T = (f |T )(f ′|T )
in C[u±1] and 0 
= f0 ∈ F σ,τ


κ . In the expansion of f0 in elementary vector valued spherical functions,
there is only a contribution of degree zero in view of (4.4) and Corollary 1.18; hence, we conclude
that f0 ∈ F σ,τ

(κ1,κ2,κ)(0) is the ground state with respect to (�κ, σ, τ).

5.2 The ground state for κ1 = κ2 = 0
We compute the radial part f0|T ∈ C[u±1] of the ground state f0 ∈ F σ,τ

(0,0,κ)(0) by relating f0|T to
the ground state for vector valued Uq(gl(n))-characters, which in turn was computed explicitly by
Etingof and Kirillov [EK94].

We use the notation of § 1. Denote (ρκ, Vκ) for the finite-dimensional, irreducible Uq(gl(n))-
representation L(n−1)κ,(−κ)n−1 . We view an element f ∈ Cq[GL(n; C)]⊗2 ⊗ V as a linear map f :
Uq(gl(n))⊗2 → V .

Definition 5.2. Let F̃κ be the space of functions f ∈ Cq[GL(n; C)]⊗2 ⊗ Vκ satisfying

f(X∆op(a)) = ε(a)f(X), ∀a ∈ Uq(gl(n)),
f(∆op(b)X) = ρκ(b)f(X), ∀b ∈ Uq(gl(n))

for all X ∈ Uq(gl(n))⊗2.

Recall from Lemma 1.14 that the isomorphism Uq(gl(n)) 
 E of Lemma 1.8 implies that the
restriction of V (κ, κ1)τ to E is isomorphic to Vκ as Uq(gl(n))-modules. In the following lemma we,
furthermore, use the natural identification Uq(gl(n))⊗2 
 Uq(k) ⊂ Uq(g), cf. § 1.3.

Lemma 5.3. The assignment

f �→ f ◦ (Id⊗ψ),
with ψ defined by (1.14), defines a linear map F σ,τ


κ → F̃κ.

Proof. With the identifications discussed above, the lemma follows immediately from the explicit
form of the isomorphism Uq(gl(n)) 
 E , see Lemma 1.8.

For a left Uq(gl(n))-module V , we consider its linear dual V ∗ as a Uq(gl(n))-module by

(Xφ)(v) = φ(S−1(X)v), X ∈ Uq(gl(n)), φ ∈ V ∗, v ∈ V.
Let (V ⊗ V ∗)op be the Uq(gl(n))-module with representation space V ⊗ V ∗ and Uq(gl(n))-action

X(v ⊗ φ) =
∑

X2v ⊗X1φ, X ∈ Uq(gl(n)), v ∈ V, φ ∈ V ∗.

Lemma 5.4. Let V be a finite-dimensional Uq(gl(n))-module. The Uq(gl(n))-intertwiners ξ : (V ⊗
V ∗)op → Vκ are in bijective correspondence with Uq(gl(n))-intertwiners ξ∗ : V → V ⊗ Vκ, where
V ⊗ Vκ is now considered as a Uq(gl(n))-module by

X(v ⊗ w) =
∑

X1v ⊗X2w, X ∈ Uq(gl(n)), v ∈ V, w ∈ Vκ.

The bijective correspondence is explicitly given by the formula

(φ⊗ Id)ξ∗(v) = ξ(v ⊗K2δnφ), φ ∈ V ∗, v ∈ V

where (recall) K2δn = K
2(n−1)
1 K

2(n−2)
2 · · ·K2

n−1 ∈ Uq(gl(n)).

Proof. The standard proof is left to the reader.
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Let V be a finite-dimensional Uq(gl(n))-module with basis {vi} and corresponding dual
basis {v∗i }. Let ξ : (V ⊗ V ∗)op → Vκ be an Uq(gl(n))-intertwiner. Then

gV,ξ(·) =
∑

i

ξ(·(vi ⊗ v∗i ))

defines an element in F̃κ. Any element in F̃κ is of this form for some V and ξ.

Lemma 5.5. The radial part f |T ∈ C[u±1] of a vector valued spherical function f ∈ F σ,τ

κ is divisible

by

I = uδ(κ,0)
∏

1�i<j�n

(q2u−1
i uj ; q2)κ

in C[u±1]. Moreover, the quotient f |T/I ∈ C[u±1] is Sn-invariant.

Proof. Let f ∈ F σ,τ

κ be a vector valued spherical function and set g = f◦(Id⊗ψ) ∈ F̃κ. Then g = gV,ξ

for some finite-dimensional Uq(gl(n))-module V and some Uq(gl(n))-intertwiner ξ : (V ⊗V ∗)op → Vκ.
Let λ ∈ P2n, then

f |T (qλ) = f(Kλ−δ2n) = g(Kλ‡−(1n) ⊗K2δn)

with

λ‡ = (λ1 − λ2n, λ2 − λ2n−1, . . . , λn − λn+1) ∈ Pn. (5.2)

By the previous lemma we thus obtain

f |T (qλ) =
∑

i

ξ(Kλ‡−(1n)vi ⊗K2δnv∗i )

=
∑

i

(v∗i ⊗ Id)ξ∗(Kλ‡−(1n)vi)

= Tr |V (ξ∗(Kλ‡−(1n)(·))).
The results of Etingof and Kirillov [EK94] imply

Tr |V (ξ∗(Kµ(·))) = I(qµ)p(qµ), ∀µ ∈ Pn

with qµ = (qµ1 , qµ2 , . . . , qµn) and p ∈ C[u±1]Sn . Since I ∈ C[u±1] is a homogeneous Laurent polyno-
mial, we arrive at the desired result.

We continue our analysis of the ground state for κ1 = κ2 = 0 following the method of Kirillov
[Kir95]. We express the elements Bj (j 
= n) and Bσ

n of Aσ by

Bj = ỹj + x̃2n−j, Bσ
n = ỹn + x̃n + ϑ0(qσ)K−2

n

with

x̃j = K−1
2n−jxjK

−1
j , ỹj = yjK

−1
j+1K

−1
2n−j ,

and with ϑl given by

ϑl(s) =
s−1 − sq−2l

q − q−1
, l ∈ Z; (5.3)

cf. Lemma 4.3. We define elements En−1, En, Fn−1, Fn ∈ Uq(g) by

En−1 = x̃n+1, En = x̃nx̃n+1 − x̃n+1x̃n,

Fn−1 = ỹn−1, Fn = ỹnỹn−1 − q−2ỹn−1ỹn.

Direct computations lead to the following lemma.
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Lemma 5.6.

(i) For any σ,

En = Bσ
nEn−1 − En−1B

σ
n ,

Fn = Bσ
nFn−1 − q−2Fn−1B

σ
n .

(ii) The following commutation relations hold in Uq(g),

En−1Fn−1 = q2Fn−1En−1, En−1Fn = q2FnEn−1,

EnFn−1 = Fn−1En, EnFn = q2FnEn + (q−2 − 1)Fn−1En−1C
−2
n .

For an ordered r-tuple J = (j1, j2, . . . , jr) with js ∈ {n− 1, n} and r � κ we write

FJ = Fj1Fj2 · · ·Fjr , EJ = Ejr · · ·Ej2Ej1

and

rJ,n−1 = #{s | js = n− 1}, rJ,n = r − rJ,n−1.

We, furthermore, define the Laurent polynomial ∆J ∈ C[u±1] ⊂ C[z±1] by

∆J =
∏
s,t

(1 − q2s2+2st+2t2(u−1
n−1un)s(u−1

n−1u
−1
n )t),

where the product is taken over (s, t) ∈ Z×2
�0 with 0 < s + t � r and t � rJ,n. For J = ∅, we write

F∅ = E∅ = 1, r∅,n−1 = r∅,n = 0 and ∆∅ = 1. Using the notation of Lemma 1.13, we can now
formulate the following result.

Lemma 5.7. Let f ∈ F σ,τ
(0,0,κ) be a vector valued spherical function. Let r ∈ Z�0 with r � κ and

fix an ordered r-tuple J with coefficients from {n − 1, n}. Then there exists a Laurent polynomial
PJ ∈ C[z±1] such that

∆J(qλ)f(FJK
λ−δ) = PJ(qλ)f |T (qλ)r(κn−2,κ−r,κ+r)

for all λ ∈ P2n.

Proof. First note that the four elements Y = En−1, En, Fn−1, Fn all have the same restricted weight,

CjY = qδj,n−δj,n−1Y Cj, ∀j = 1, . . . , n.

In particular, we conclude that

f(FJK
λ−δ) ∈ span{r(κn−2,κ−r,κ+r)},

cf. Lemma 1.13, hence

f(FJK
λ−δ) = fJ(qλ)r(κn−2,κ−r,κ+r), ∀λ ∈ P2n

for a unique Laurent polynomial fJ ∈ C[z±1]. Furthermore, we may and will view all formulas below
as identities in C[z±1] by identifying Cr(κn−2,κ−r,κ+r) 
 C.

We thus need to prove the existence of a Laurent polynomial PJ ∈ C[z±1] such that ∆JfJ =
PJf |T . To avoid unnecessary technicalities we avoid the use of the underlying root data as much
as possible. Let Fr be the finite set of r-tuples J = (j1, j2, . . . , jr) with js ∈ {n − 1, n}, and write
Fκ =

⋃
0�r�κ Fr. For I, J ∈ Fκ we write I < J if #I � #J and rI,n � rJ,n, or if #I = #J

and rI,n � rJ,n. We prove the lemma by induction to J ∈ Fκ along <. For the smallest element
J = ∅ ∈ F0, we have ∆∅ = 1, f∅ = f |T , hence we can take P∅ = 1. Suppose there exists a
Laurent polynomial PJ such that ∆JfJ = PJf |T for all J ∈ Fκ with J < I = (i1, i2, . . . , ir) ∈ Fr.
For simplicity, we write r1 = rI,n−1 and r2 = rI,n.
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We write g ≡ g′ for g, g′ ∈ C[z±1] if g − g′ lies in the ideal of C[z±1] generated by the fJ for
J ∈ Fκ with J < I. Sometimes it is convenient to write g(qλ) ≡ g′(qλ), where we have formally
evaluated the equivalence g ≡ g′ of the Laurent polynomials g and g′ in z = qλ for arbitrary λ ∈ P2n.

To prove the existence of the Laurent polynomial PI satisfying ∆IfI = PIf |T , it suffices to show
that

(1 − q2r2
1+2r1r2+2r2

2(u−1
n−1un)r1(u−1

n−1u
−1
n )r2)fI ≡ 0 (5.4)

due to the induction hypothesis and the fact that ∆J divides ∆I in C[u±1] ⊂ C[z±1] when J < I.
We start by noting that

f(Fn−1X) = −f(En−1X) + ρ(κ, 0)τ (Bn−1)(f(X)),

f(FnX) = −q−2f(EnX) + (1 − q−2)ρ(κ, 0)τ (Bτ
n)(f(Fn−1X)) + ρ(κ, 0)τ ([Bτ

n, Bn−1])(f(X))
(5.5)

and
f(XEn−1) = −f(XFn−1),

f(XEn) = −f(XFn) + (1 − q−2)ϑ0(qσ)f(XFn−1)
(5.6)

for any X ∈ Uq(g), which follows easily from Lemma 5.6(i) and the fact that f is a vector valued
spherical function. Denote I ′ = (i2, i3, . . . , ir), which is < I. Then it follows from (5.5) that

fI(qλ) ≡ −q−2δi1,nf(Ei1FI′K
λ−δ).

By Lemma 5.6(ii) we now conclude that

fI(qλ) ≡
{
−q2(r−1)f(FI′Ei1K

λ−δ), if i1 = n− 1,
−q−2q2(r2−1)f(FI′Ei1K

λ−δ), if i1 = n.

Continuing inductively while taking (5.6) into account, we obtain

fI(qλ) ≡ (−1)rq−2r2+r2(r2−1)+2
∑

s:is=n−1(r−s)f(EIK
λ−δ)

≡ (−1)rqr1+r2(r2−1)+2
∑

s:is=n−1(r−s)q−r2λn−r1λn+1+rλn+2f(Kλ−δEI).
(5.7)

We follow a similar procedure to return from f(Kλ−δEI) to fI(qλ). The starting point is

f(Kλ−δEI) ≡ −f(Kλ−δEI′Fi1),

which follows from (5.6). Moving Fi1 to the left using Lemma 5.6(ii) gives

f(Kλ−δEI) ≡
{
−q2(r1−1)f(Kλ−δFi1EI′), if i1 = n− 1,
−q2(r−1)f(Kλ−δFi1EI′), if i1 = n.

Repeating this procedure inductively gives

f(Kλ−δEI) ≡ (−1)rqr1(r1−1)+2
∑

s:is=n(r−s)f(Kλ−δFI)

≡ (−1)rqr2
1+2r2+2

∑
s:is=n(r−s)q−rλn−1+r1λn+r2λn+1fI(qλ).

(5.8)

Combining (5.7) and (5.8) yields the induction step (5.4).

Lemma 5.8. The radial part f |T ∈ C[u±1] of a vector valued spherical function f ∈ F σ,τ
(0,0,κ) is

divisible by (1 − q2ru−1
n−1u

−1
n ) for r = 1, . . . , κ.

Proof. It is easy to check that ∆(nκ) is divisible by 1−q2ru−1
n−1u

−1
n in C[u±1] for r = 1, . . . , κ. By the

previous lemma it thus suffices to show that P(nκ) is nonzero and relative prime to 1 − q2ru−1
n−1u

−1
n

for r = 1, . . . , κ. Clearly it is enough to prove this in the classical limit q = 1. We thus consider
q = eh as a formal parameter and we repeat part of the computations of the proof of Lemma 5.7
for J = (nr), now modding out to hC[[h]][z±1].
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We simplify the notation by writing

f(F s
nK

λ−δ) = fs(qλ)r(κn−2,κ−s,κ+s),

f(EnF
s−1
n Kλ−δ) = gs(qλ)r(κn−2,κ−s,κ+s)

for all λ ∈ P2n and s ∈ {1, . . . , κ}, with fs, gs ∈ C[[h]][z±1]. Lemma 1.13 gives

ρ(κ, 0)τ ([Bτ
n, Bn−1])f(F r−1

n Kλ−δ) = q2−τ−3r[r − 1 − κ]qfr−1(qλ)r(κn−2,κ−r,κ+r),

with

[α]q =
qα − q−α

q − q−1

the (symmetric) q-number. Identifying Cr(κn−2,κ−r,κ+r) 
 C as in the proof of Lemma 5.7, we obtain
from the second formula of (5.5),

fr = −q−2gr−1 + q2−τ−3r[r − 1 − κ]qfr−1 mod h.

By Lemma 5.6(ii), we can move En to the other side in the expression

gr−1(qλ) = f(EnF
r−1
n Kλ−δ),

after which we can use the second formula in (5.6) to replace En by −Fn modulo h. This yields

gr−1 = −q2(r+1)u−1
n−1u

−1
n fr mod h.

Consequently,

(1 − q2ru−1
n−1u

−1
n )fr = q2−τ−3r[r − 1 − κ]qfr−1 mod h,

or, more precisely,

(1 − u−1
n−1u

−1
n )fr = (r − 1 − κ)fr−1 mod h

for r = 1, . . . , κ. Thus P(nκ) is nonzero, and

P(nκ) = C(1 − u−1
n−1u

−1
n )−κ∆(nκ) mod h, (5.9)

for some nonzero constant C ∈ C. Using the explicit expression of ∆(nκ), it is easy to check that
the right-hand side of (5.9) (mod h) is relative prime to 1 − u−1

n−1u
−1
n in C[z±1], which completes

the proof of the lemma.

We are now in a position to determine the explicit form of the radial part of the ground state
when κ1 = κ2 = 0.

Corollary 5.9. Let f ∈ F σ,τ
(0,0,κ)(0) be a ground state. With a suitable normalization of f , we have

f |T = uδ(κ,0)
∏

1�i<j�n

(q2u−1
i uj, q

2u−1
i u−1

j ; q2)κ (5.10)

in C[u±1].

Proof. We write I ∈ C[u±1] for the right-hand side of (5.10). Lemma 5.5 and Lemma 5.8 show that
f |T is divisible by I in C[u±1], so f |T = Ip for some Laurent polynomial p ∈ C[u±1]. It remains
to show that p is a nonzero constant. For this we expand both sides of the equality f |T = Ip in
monomials uµ (µ ∈ Λn).

We write

p =
∑

ν

eµu
ν ,
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and we denote ν+ ∈ Λn (respectively ν− ∈ Λn) for a maximal (respectively minimal) element with
respect to the dominance order � such that eν+ 
= 0 
= eν− . Observe that

I =
∑

−δ(κ,0)�ν�δ(κ,0)

cνu
ν

with cν ∈ C and c−δ(κ,0) 
= 0 
= cδ(κ,0). Consequently, in the expansion of Ip in monomials uµ

(µ ∈ Λn), the coefficients of uδ(κ,0)+ν+ and u−δ(κ,0)−ν− are nonzero.
On the other hand, Lemma 4.1 implies that

f |T =
∑

−δ(κ,0)�ν�δ(κ,0)

dνu
ν

with dν ∈ C and d−δ(κ,0) 
= 0 
= dδ(κ,0). Hence the equality f |T = Ip forces ν+ � 0 and ν− � 0. This
in turn implies ν+ = ν− = 0, and hence p is a nonzero constant.

5.3 The ground state for κ = 0
We start with the following preliminary lemma, which will be convenient for several computations
in this subsection. Recall the definition of ϑk(s), see (5.3).

Lemma 5.10. Let W1 and W2 be left Uq(g)-modules and let k ∈ Z.

(i) If w0 ∈W1 is a vector satisfying Bσ
nw0 = ϑ0(qσ+k)w0 and Cnw0 = w0, then

Bσ
n(w0 ⊗ w′) = w0 ⊗Bσ+k

n w′, ∀w′ ∈W2

in the Uq(g)-module W1 ⊗W2.

(ii) If w± ∈W1 is a vector satisfying Bσ
nw± = ϑk(±q±σ)w± and Cnw± = qkw±, then

Bσ
n(w± ⊗w′) = w± ⊗ q−kBσ∓k

n w′, ∀w′ ∈W2

in the Uq(g)-module W1 ⊗W2.

Proof. Recall that the generator Bσ
n ∈ Aσ is explicitly given by

Bσ
n = ynK

−1
n+1K

−1
n +K−1

n xnK
−1
n + ϑ0(qσ)K−2

n .

The proof of (i) now follows immediately from the explicit formula for ∆(Bσ
n) (see Proposition 4.2)

and from the fact that Cn = Cn+1. For the proof of (ii), let w± ∈W1 be as indicated in the lemma,
and let w′ ∈W2. Then Proposition 4.2 implies

Bσ
n(w± ⊗ w′) = w± ⊗ q−k(ynK

−1
n+1K

−1
n +K−1

n xnK
−1
n + qkϑk(±q±σ)K−2

n )w′

= w± ⊗ q−kBσ∓k
n w′

since qkϑk(±q±σ) = ϑ0(qσ∓k).

In this subsection the realization of the fundamental, simple Uq(g)-modules within the q-exterior
algebra of the vector representation of Uq(g) is used to explicitly construct the one-dimensional
Aσ-modules V (κ1)σ and V (κ2)σ within simple Uq(g)-modules. As a consequence, we obtain an
explicit expression for the radial part of the ground state for κ = 0.

The vector representation of Uq(g) is the 2n-dimensional vector space V with linear basis vi

(i = 1, . . . , 2n) and with Uq(g)-action defined by

K±1
r vj = q±δr,jvj , xivj = δi+1,j vj−1, yivj = δi,j vj+1 (5.11)

for r, j = 1, . . . , 2n and i = 1, . . . , 2n − 1, with the convention that v0 = v2n+1 = 0. This is a
realization of the finite-dimensional irreducible highest weight module Lε1 of Uq(g), with highest
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weight vector v1. Similarly, the dual vector representation is the 2n-dimensional vector space V ∗

with basis v∗i (i = 1, . . . , 2n) and with Uq(g)-action given explicitly by

K±1
r v∗j = q∓δr,jv∗j , xiv

∗
j = −q−1δi,j v

∗
j+1, yiv

∗
j = −qδi+1,j v

∗
j−1

for r, j = 1, . . . , 2n and i = 1, . . . , 2n − 1, with the convention that v∗0 = v∗2n+1 = 0 (it corresponds
to the linear dual V ∗ of V viewed as Uq(g)-module by (Xφ)(v) = φ(S(X)v) for φ ∈ V ∗, v ∈ V
and X ∈ Uq(g)). This is a realization of the finite-dimensional irreducible highest weight module
L−ε2n of Uq(g), with highest weight vector v∗2n. For s ∈ R \ {0} we define n-dimensional subspaces
W (s) = span{wi(s)}i ⊆ V and W ∗(s) = span{w∗

i (s)}i ⊆ V ∗ by

wi(s) = vi + s−1v2n+1−i, w∗
i (s) = v∗i + s−1q2i−2n−1v∗2n+1−i

for i = 1, . . . , n.

Proposition 5.11. The vector spaces W (±q±σ) (respectively W ∗(±q±σ)) are inequivalent simple
Aσ-submodules of V σ (respectively V ∗σ). The irreducible decompositions of the semisimple Aσ-
modules V σ and V ∗σ are

V σ = W (qσ) ⊕W (−q−σ), V ∗σ = W ∗(qσ) ⊕W ∗(−q−σ).

Proof. The action of the algebraic generators of E ⊂ Aσ (see Lemma 1.8) on wi(s) and w∗
i (s) is

given by the formulas

Cjwi(s) = qδi,jwi(s), Cjw
∗
i (s) = q−δi,jw∗

i (s), i, j = 1, . . . , n,

Biwi(s) = wi+1(s), Biw
∗
i+1(s) = −q2w∗

i (s), i = 1, . . . , n− 1,
B2n+1−iwi(s) = wi−1(s), B2n+1−iw

∗
i−1(s) = −w∗

i (s), i = 2, . . . , n,
Bjwi(s) = 0, Bjw

∗
i (s) = 0, otherwise.

(5.12)

Hence W (s) (respectively W ∗(s)) is a E-submodule of V (respectively V ∗) which is isomorphic to
the vector representation (respectively dual vector representation) of Uq(gl(n)) 
 E , cf. Lemma 1.8.
In particular, W (s) and W ∗(s) are simple E-modules.

Recall the notation (5.3). By a direct computation one can verify that

Bσ
nwi(s) = ϑ0(qσ)wi(s), Bσ

nw
∗
i (s) = ϑ0(qσ)w∗

i (s) (5.13)

for all i = 1, . . . , n− 1, and

Bσ
nwn(±q±σ) = ϑ1(±q±σ)wn(±q±σ), Bσ

nw
∗
n(±q±σ) = ϑ−1(±q±σ)w∗

n(±q±σ). (5.14)

It is now clear that W (±q±σ) ⊂ V σ are simple Aσ-submodules, and that V σ = W (qσ)⊕W (−q−σ)
(and similarly for V ∗σ). To prove that W (qσ) 

 W (−q−σ) (respectively W ∗(qσ) 

 W ∗(−q−σ)) as
Aσ-modules, it suffices to observe that the spectrum of Bσ

n is different. This follows from the fact
that ϑk(qσ) = ϑk(−q−σ) for σ ∈ R implies k = 0.

We now consider the q-exterior algebras of V and V ∗, cf. [NYM93]. Let T (V ) and T (V ∗) be the
tensor algebras of V and V ∗, respectively. Let J ⊂ T (V ) be the graded, two-sided ideal generated by
the tensors vi ⊗ vi and vr ⊗ vs + q−1vs ⊗ vr for i = 1, . . . , 2n and 1 � r < s � 2n. Similarly, we write
J∗ ⊂ T (V ∗) for the graded, two-sided ideal generated by the tensors v∗i ⊗v∗i and v∗s ⊗v∗r +q−1v∗r ⊗v∗s
for i = 1, . . . , 2n and 1 � r < s � 2n. The exterior algebras Λ(V ) and Λ(V ∗) are defined to be the
graded algebras T (V )/J and T (V ∗)/J∗, respectively. The action of Uq(g) on V and V ∗ naturally
extends to a grading-preserving, left Uq(g)-module algebra structure on the exterior algebras Λ(V )
and Λ(V ∗). We denote by ∧ the products in Λ(V ) and Λ(V ∗). Let Λm(V ) and Λm(V ∗) be the mth
graded pieces of Λ(V ) and Λ(V ∗) respectively, then

Λ(V ) =
2n⊕

m=0

Λm(V ), Λ(V ∗) =
2n⊕

m=0

Λm(V ∗)
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and

Λm(V ) 
 L(1m,02n−m), Λm(V ∗) 
 L(02n−m,−1m)

as Uq(g)-modules. For I = {i1, . . . , im} ⊆ {1, . . . , 2n} with i1 < i2 < · · · < im we define

vI = vi1 ∧ vi2 ∧ · · · ∧ vim , v∗I = v∗i1 ∧ v∗i2 ∧ · · · ∧ v∗im.
Then {vI | #I = m} and {v∗I | #I = m} are linear bases of Λm(V ) and Λm(V ∗), respectively. The
action of Uq(g) on these basis elements is explicitly given by

K±1
i vI = q±δ(i,I)vI , xivI = v(I\{i+1})∪{i}, yivI = v(I\{i})∪{i+1},

K±1
i v∗I = q∓δ(i,I)v∗I , xiv

∗
I = −q−1v∗(I\{i})∪{i+1}, yiv

∗
I = −qv∗(I\{i+1})∪{i},

where δ(i, I) = 1 if i ∈ I and δ(i, I) = 0 otherwise, and where v(I\{k})∪{l} = 0 and v∗(I\{k})∪{l} = 0
if k 
∈ I or if l ∈ I. Note, in particular, that v{1,...,m} ∈ Λm(V ) and v∗{2n−m+1,...,2n} ∈ Λm(V ∗) are
highest weight vectors. The formulas

〈vI , vJ〉 = δI,J , 〈v∗I , v∗J 〉∗ = q2
∑

i∈I i δI,J

define ∗-unitary scalar products on Λ(V ) and Λ(V ∗), respectively.
Using the notation (2.1), we observe that any one-dimensional Aσ-module in Λn(V )σ (respec-

tively Λn(V ∗)σ) necessarily lies in the subspace Λn(V )(1n) (respectively Λn(V ∗)(−1n)). This follows
easily using Lemma 1.8, since a one-dimensional Uq(gl(n))-module is of highest weight (mn) ∈ P+

n

for some integer m. For s = (s1, . . . , sn) an n-tuple of nonzero reals, we define ξ(s) ∈ Λn(V )(1n) and
ξ∗(s) ∈ Λn(V ∗)(−1n) by

ξ(s) = w1(s1) ∧w2(s2) ∧ · · · ∧ wn(sn),
ξ∗(s) = w∗

1(s1) ∧ w∗
2(s2) ∧ · · · ∧ w∗

n(sn).

It is also convenient to use the opposite elements ξop(s) ∈ Λn(V )(1n) and ξ∗op(s) ∈ Λn(V ∗)(−1n),
defined by

ξop(s) = wn(sn) ∧ · · · ∧ w2(s2) ∧w1(s1),
ξ∗op(s) = w∗

n(sn) ∧ · · · ∧ w∗
2(s2) ∧ w∗

1(s1).

For 1 � i < j � n we have

wi(si) ∧ wj(sj) = −q−1wj(sj) ∧ wi(q−2si),

w∗
i (si) ∧ w∗

j (sj) = −qw∗
j (sj) ∧ w∗

i (q
2si)

in Λ(V ) (respectively Λ(V ∗)); hence, ξ and ξop (respectively ξ∗ and ξ∗op) are related by the formulas

ξ(q2(n−1)s1, . . . , q
2sn−1, sn) = (−q)n(1−n)/2ξop(s),

ξ∗(q−2(n−1)s1, . . . , q
−2sn−1, sn) = (−q)n(n−1)/2ξ∗op(s).

(5.15)

The norms of such vectors can be evaluated explicitly by an easy induction argument. The result is

〈ξ(s), ξ(t)〉 =
n∏

i=1

(1 + s−1
i t−1

i q2(n−i)),

〈ξ∗(s), ξ∗(t)〉∗ = qn(n+1)
n∏

i=1

(1 + s−1
i t−1

i q2(i−n)).

(5.16)

We use the abbreviation ξ(t) = ξ((tn)) for t ∈ R\{0}, where (tn) is the n-tuple with t in each entry.
Similarly we write ξop(t), ξ∗(t) and ξ∗op(t).
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Lemma 5.12.

(i) Let s ∈ (R \ {0})n. Then spanC{ξop(s)} ⊂ Λn(V ) and spanC{ξ∗op(s)} ⊂ Λn(V ∗) are
one-dimensional E-submodules if and only if s = (tn) for some t ∈ R \ {0}.

(ii) The two subspaces span{ξop(±q±σ)} ⊂ Λn(V )σ are one-dimensional Aσ-submodules of Λn(V )σ .
The generator Bσ

n ∈ Aσ acts by

Bσ
nξop(±q±σ) = ϑ1(±q±σ)ξop(±q±σ).

(iii) The two subspaces span{ξ∗op(±q±σ)} ⊂ Λn(V ∗)σ are one-dimensional Aσ-submodules of
Λn(V ∗)σ . The generator Bσ

n ∈ Aσ acts by

Bσ
n ξ

∗
op(±q±σ) = ϑ−1(±q±σ)ξ∗op(±q±σ).

Proof. (i) Fix i ∈ {1, . . . , n− 1}. By (5.11) we have

x2n−iwj(s) = yiwj(s) = 0, ∀j ∈ {1, . . . , n} \ {i}.
Combined with (5.12) and Proposition 4.2 we obtain

Biξ(s) = w1(s1) ∧ · · · ∧ wi−1(si−1) ∧Biwi(si) ∧K−1
i K−1

2n−i(wi+1(si+1) ∧ · · · ∧ wn(sn))

= w1(s1) ∧ · · · ∧ wi−1(si−1) ∧ wi+1(si) ∧ wi+1(qsi+1) ∧ wi+2(si+2) ∧ · · · ∧ wn(sn).

Since

wi+1(si) ∧ wi+1(qsi+1) = (s−1
i − q−2s−1

i+1)v2n−i ∧ vi+1

in Λ(V ), we see that Bi ξ(s) = 0 for all i = 1, . . . , n − 1 if and only if s = (tq2(n−1), . . . , tq2, t) for
some t ∈ R \ {0}. Furthermore, Cjξ(s) = qξ(s) for j = 1, . . . , n by (5.12). Then Lemma 1.8 and
(5.15) imply that ξop(s) is a lowest E 
 Uq(gl(n))-weight vector of weight (1n) in Λn(V ) if and only
if s = (tn) for some t ∈ R \ {0}, which implies (i) for ξop. The proof for ξ∗op is similar.

For the proof of (ii) and (iii), we note that Lemma 5.10(ii), (5.12) and (5.13) imply

Bσ
nξ(s) = w1(s1) ∧ w2(s2) ∧ · · · ∧ wn−1(sn−1) ∧Bσ

nwn(sn),
Bσ

nξ
∗(s) = w∗

1(s1) ∧ w∗
2(s2) ∧ · · · ∧ w∗

n−1(sn−1) ∧Bσ
nw

∗
n(sn).

Formula (5.14) now completes the proof.

In the following proposition we consider the Uq(g)-module Λn(V )⊗Λn(V ∗). By the Pieri formula
(cf. [DS99]) its decomposition in irreducibles is given by

Λn(V ) ⊗ Λn(V ∗) 

n⊕

m=0

L
ω�

m
, (5.17)

where ωm = (1m, 0n−m) ∈ Λ+
n . We denote by πn : Λn(V ) ⊗ Λn(V ∗) → L

ω�
n

the projection onto L
ω�

n

along the decomposition (5.17).
Since δ(0, κ1) = κ1ωn, (5.17) and our earlier analysis of branching rules easily imply that the

V (±1)σ-isotypical component of (Λn(V )⊗Λn(V ∗))σ is one-dimensional (and necessarily lies in the
component L

ω�
n
), while the V (0)σ-isotypical component of (Λn(V )⊗Λn(V ∗))σ is (n+1)-dimensional.

In [DS99], the V (0)σ-isotypical component was constructed using the explicit solution Jσ of the
reflection equation. In the following proposition we give an explicit construction of one particular
vector in the V (0)σ-isotypical component and we explicitly construct the V (±1)σ-isotypical com-
ponents of (Λn(V ) ⊗ Λn(V ∗))σ .
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Proposition 5.13. Define ηk(s) ∈ Λn(V ) ⊗ Λn(V ∗) (s ∈ R \ {0}, k ∈ {−1, 0, 1}) by the formulas

η−1(s) = ξop(s) ⊗ ξ∗op(−qs−1),

η0(s) = ξop(s) ⊗ ξ∗op(q
−1s),

η1(s) = ξop(−s−1) ⊗ ξ∗op(qs).

Then C{ηk(qσ)} ⊂ (Λn(V ) ⊗ Λn(V ∗))σ is a one-dimensional Aσ-submodule, isomorphic to V (k)σ.
Furthermore, C{ηk(qσ)} (k = ±1) and πn(C{η0(qσ)}) are realizations of the one-dimensional
Aσ-modules V (k)σ (k = ±1) and V (0)σ in Lσ

ω�
n
, respectively.

Proof. By Proposition 4.2 and the previous lemma, C{ξop(s)⊗ ξ∗op(t)} ⊂ Λn(V )⊗Λn(V ∗) is a copy
of the trivial E 
 Uq(gl(n)) module for all s, t ∈ R \ {0}. Furthermore, by Lemma 5.10 and the
previous lemma,

Bσ
n(ξop(±q±σ) ⊗ ξ∗op(t)) = ξop(±q±σ) ⊗ q−1Bσ∓1

n (ξ∗op(t))

in Λn(V ) ⊗ Λn(V ∗) for all t ∈ R \ {0}. The first statement now follows from Lemma 5.12 and the
equalities

q−1ϑ−1(−q−σ+1) = ϑ0(qσ−2), q−1ϑ−1(qσ−1) = ϑ0(qσ), q−1ϑ−1(qσ+1) = ϑ0(qσ+2),

which are the scalars by which Bσ
n acts on V (−1)σ , V (0)σ and V (1)σ , respectively.

We have already observed that C{η±1(qσ)} automatically lies in the component Lσ
ω�

n
of the

decomposition (5.17). In the decomposition of η0(qσ) as the sum of basis elements vI ⊗ v∗J (#I =
#J = n), the coefficient of v{1,...,n} ⊗ v∗{n+1,...,2n} is nonvanishing, hence πn(η0(qσ)) 
= 0. This
completes the proof of the second statement of the proposition.

We define a ∗-unitary scalar product on Λn(V ) ⊗ Λn(V ∗) by

〈v ⊗ v∗, w ⊗ w∗〉1 = 〈v,w〉〈v∗, w∗〉∗.
The previous proposition implies that

fσ,τ
k (·) = 〈·πn(ηk(qσ)), η1(qτ )〉1 = 〈·ηk(qσ), η1(qτ )〉1 ∈ F σ,τ

(1,k,0)(0),

for k = −1, 0, 1, are ground states. Their radial parts fσ,τ
k |T ∈ C[u±1] can now be explicitly evaluated

as follows.

Lemma 5.14. After suitable normalization, we have

fσ,τ
−1 |T =

n∏
i=1

(1 − q1−σ+τu−1
i )(1 − q−3+σ−τui),

fσ,τ
0 |T =

n∏
i=1

(1 − q1−σ+τu−1
i )(1 + q−1−σ−τui),

fσ,τ
1 |T =

n∏
i=1

(1 + q1+σ+τu−1
i )(1 + q−3−σ−τui)

in C[u±1].

Proof. For λ ∈ P2n, we write |λ|n = λ1 + λ2 + · · · + λn. By (5.15) we have

Kλ−δ ξop(s) = (−1)n(n−1)/2q|λ|n−n2
ξ(sqλ1−λ2n−1, sqλ2−λ2n−1−1, . . . , sqλn−λn+1−1),

Kλ−δ ξ∗op(s) = (−1)n(n−1)/2q−|λ|n+n2
ξ∗(sq1−λ1+λ2n , sq1−λ2+λ2n−1 , . . . , sq1−λn+λn+1)
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for all λ ∈ P2n. By (5.15) and (5.16), we conclude that

〈Kλ−δξop(s), ξop(t)〉 = q|λ|n−n(n+1)/2
n∏

i=1

(1 + s−1t−1q1+λ2n+1−i−λi),

〈Kλ−δξ∗op(s), ξ
∗
op(t)〉∗ = q−|λ|n+3n(n+1)/2

n∏
i=1

(1 + s−1t−1q−1+λi−λ2n+1−i)

for all λ ∈ P2n. The lemma now follows easily from the definition of the ηk.

Lemma 5.15. Let f ∈ F σ,τ
(κ1,κ2,0)(0) be a ground state. After a suitable renormalization of f , we have

f |T = uδ(0,κ1)
n∏

i=1

(−q1+σ+τu−1
i ; q2)κ1+κ2(q

1−σ+τu−1
i ; q2)κ1−κ2

in C[u±1].

Proof. We consider the Uq(g)-module W = (Λn(V ) ⊗ Λn(V ∗))⊗κ1 , with ∗-unitary inner product

〈v1 ⊗ · · · ⊗ vκ1 , w1 ⊗ · · · ⊗ wκ1〉κ1 =
κ1∏
i=1

〈vi, wi〉1

for all vi, wj ∈ Λn(V ) ⊗ Λn(V ∗). Lemma 5.10 implies that the nonzero vector

χτ = η1(qτ ) ⊗ η1(qτ+2) ⊗ · · · ⊗ η1(qτ+2(κ1−1)) ∈W

spans a copy of the one-dimensional Aτ -module V (κ1)τ within W τ . By (5.17) we have

W 
 Lδ(0,κ1)� ⊕
⊕

λ∈P+
2n:λ≺δ(0,κ1)�

L⊕dλ
λ (5.18)

as Uq(g)-modules for certain multiplicities dλ ∈ Z�0. By Proposition 1.15, C{χτ} lies in the com-
ponent Lδ(0,κ1)� of the decomposition (5.18).

For the realization of V (κ2)σ in W σ, we need to consider the cases 0 � κ2 � κ1 and −κ1 � κ2 � 0
separately. For 0 � κ2 � κ1, Lemma 5.10 implies that the nonzero vector

χ+
σ = η0(qσ)⊗(κ1−κ2) ⊗ η1(qσ) ⊗ η1(qσ+2) ⊗ · · · ⊗ η1(qσ+2(κ2−1)) ∈W

spans a copy of the one-dimensional Aσ-module V (κ2)σ in W σ. If p : W → Lδ(0,κ1)� denotes the pro-
jection on Lδ(0,κ1)� along the decomposition (5.18), then p(C{χ+

σ }) is a copy of the
one-dimensional Aσ-module V (κ2)σ in Lσ

δ(0,κ1)� by highest weight considerations, cf. Lemma 2.5.
Thus

f(·) = 〈·p(χ+
σ ), χτ 〉κ1 = 〈·χ+

σ , χτ 〉κ1

defines a ground state f ∈ F σ,τ
(κ,κ2,0)(0). Since

f |T =
κ1−κ2∏

i=1

f
σ,τ+2(i−1)
0 |T

κ2∏
j=1

f
σ+2(j−1),τ+2(κ1−κ2+j−1)
1 |T ,

the result now follows from the previous lemma by a straightforward manipulation of q-shifted
factorials. For −κ1 � κ2 � 0 the vector χ+

σ should be replaced by

χ−
σ = η0(qσ)⊗(κ1+κ2) ⊗ η−1(qσ) ⊗ η−1(qσ−2) ⊗ · · · ⊗ η−1(qσ−2(−κ2−1)) ∈W.

We leave the remaining straightforward computations to the reader.
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Theorem 1.21(ii) now follows immediately by combining Lemma 5.1, Corollary 5.9 and
Lemma 5.15.

6. Generalized quantum Schur orthogonality relations

We freely use the notation of the previous sections. The normalized Haar functional h : Cq[G] → C

is the unique linear map which intertwines the (left) regular Uq(g)-action on Cq[G] with the trivial
Uq(g)-action on C and which maps 1 ∈ Cq[G] to 1 ∈ C. In particular, h is identically zero on the
summands W (λ) (λ ∈ P+

2n \ {0}) in the Peter–Weyl decomposition (1.18).
The Haar functional h defines a pre-Hilbert space structure on Cq[G] by

〈a, b〉h = h(b∗a), ∀a, b ∈ Cq[G].

The quantum Schur orthogonality relations imply that the Peter–Weyl decomposition (1.18) is an
orthogonal decomposition with respect to 〈·, ·〉h.

We fix a scalar product 〈·, ·〉
κ on the simple Uq(k)-module V (κ, κ1) such that the representation
map ρ(κ, κ1) is ∗-unitary (of course, 〈·, ·〉
κ only depends on the parameters κ, κ1 of �κ, and is unique up
to scalar multiples). From Corollary 1.11 it follows that the simple Aτ -module (ρ(κ, κ1)τ , V (κ, κ1)τ )
is ∗-unitary with respect to 〈·, ·〉
κ.

Definition 6.1. Let π = πσ,τ

κ : F σ,τ


κ × F σ,τ

κ → Hom(Uq(g),C) be the sesquilinear form

π(f, g)(X) =
∑

〈f(K−δX1), g(K−δω(X2))〉
κ, f, g ∈ F σ,τ

κ , X ∈ Uq(g).

Let f, g ∈ F σ,τ

κ . We write f ·K−δ for the right regular action of K−δ ∈ Uq(g) on the first tensor

component of f ∈ Cq[G] ⊗ V (κ, κ1)τ , and similarly for g ·K−δ. If

f ·K−δ =
∑

fi ⊗ vi, g ·K−δ =
∑

gj ⊗ wj ,

with fi, gj ∈ Cq[G] and vi, wj ∈ V (κ, κ1)τ , then the definition of the pairing π and (3.2) imply that

π(f, g)(X) =
∑

fi(X1)g∗j (X2)〈vi, wj〉
κ =
∑

(fig
∗
j )(X)〈vi, wj〉
κ (6.1)

for all X ∈ Uq(g). In particular, the image of π is contained in Cq[G]. This observation can be
strengthened as follows.

Proposition 6.2. The image of the pairing πσ,τ

κ is contained in Hσ,τ .

Proof. We use the characterization of the space Hσ,τ as given in Remark 3.9(ii).
Fix f, g ∈ F σ,τ


κ . Let a ∈ Aσ and write ∆(a) =
∑
a1 ⊗ a2 with the a1 from Aσ (which can be

done in view of Proposition 4.2). Using the fact that the character χ(κ2)σ : Aσ → C of V (κ2)σ is
∗-unitary, χ(κ2)σ(a∗) = χ(κ2)σ(a) for a ∈ Aσ, we obtain for X ∈ Uq(g),

π(f, g)(Xa) =
∑

χ(κ2)σ(a1)〈f(K−δX1), g(K−δω(X2)ω(a2))〉
κ
=
∑

〈f(K−δX1), g(K−δω(X2)ω(a2)a∗1)〉
κ
= ε(a)π(f, g)(X)

since ∑
ω(a2)a∗1 =

(∑
a1S(a2)

)∗
= ε(a)1

by the antipode axiom for the Hopf algebra Uq(g). For the left invariance with respect to Aτ , let
b ∈ Aτ , and again write ∆(b) =

∑
b1⊗b2 with all b1 from Aτ . Now ∆ is a ∗-algebra homomorphism
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and S is an anti-coalgebra homomorphism, so

∆(ωδ(b)) =
∑

ωδ(b2) ⊗ ωδ(b1).

Furthermore, note that (ω ◦ ωδ)(X) = KδXK−δ for X ∈ Uq(g). Combined with (3.6), we thus
obtain for X ∈ Uq(g),

π(f, g)(ωδ(b)X) =
∑

〈f(K−δωδ(b2)X1), g(b1K−δω(X2))〉
κ
=
∑

〈f(K−2δω(b2)KδX1), ρ(κ, κ1)τ (b1)g(K−δω(X2))〉
κ
=
∑

〈f(b∗1S
2(ω(b2))K−δX1), g(K−δω(X2))〉
κ

= ε(b)π(f, g)(X),

since ∑
b∗1S

2(ω(b2)) =
∑

b∗1S(b∗2) = ε(b∗)1 = ε(b)1.

Choose a vector v ∈ Ṽ (κ, κ1)τ such that 〈v, v〉
κ = 1. Without loss of generality we may and will
assume that the implicit identification Ṽ (κ, κ1)τ 
 C in the definition of the restriction map |T is
realized by the explicit map zv �→ z (z ∈ C).

Corollary 6.3. If f, g ∈ F σ,τ

κ , then f |T (g|T )∗ ∈ C[u±1]W .

Proof. Let f, g ∈ F σ,τ

κ . Since the Cartan elements Kλ (λ ∈ P2n) are group-like and ∗-self-adjoint

elements in Uq(g), it follows from Lemma 1.20 and from the definition of π that

ResT (π(f, g))(qλ) = π(f, g)(Kλ)

= 〈f(Kλ−δ), g(K−λ−δ)〉
κ
= f |T (qλ)(g|T )∗(qλ)

for λ ∈ P2n, and hence
ResT (π(f, g)) = f |T (g|T )∗

in C[u±1]. On the other hand, ResT (π(f, g)) ∈ C[u±1]W by the previous proposition and by Propo-
sition 3.10.

We define a linear functional hσ,τ : C[u±1] → C by integrating against the orthogonality measure
of the Macdonald–Koornwinder polynomials P σ,τ

µ (µ ∈ Λ+
n ), see (3.8). We renormalize hσ,τ so that

hσ,τ (1) = 1. In particular, for real parameters σ, τ satisfying

qεσ+ε′τ < q−1, ∀ε, ε′ ∈ {±1}, (6.2)

the functional hσ,τ is given by

hσ,τ (p) =
1
N

∫
T
p(u)∆σ,τ (u)

du

u
, p ∈ C[u±1],

with ∆σ,τ (u) = ∆(u;−qσ+τ+1,−q−σ−τ+1, qσ−τ+1, q−σ+τ+1; q2, q2) the Macdonald–Koornwinder
weight function and with positive normalization constant N =

∫
T ∆σ,τ (u) du. Then hσ,τ gives rise

to a pre-Hilbert structure on C[u±1],

〈p, r〉σ,τ = hσ,τ (r∗p), p, r ∈ C[u±1]

with ∗-structure on C[u±1] defined by (3.7). Theorem 1.21 for �κ = �0 and the orthogonality
relations for the Macdonald–Koornwinder polynomials P σ,τ

µ imply h(f) = hσ,τ (f |T ) for f ∈ F σ,τ

0

.
By Proposition 3.8 this implies

h(f) = hσ,τ (ResT (f)), ∀f ∈ Hσ,τ . (6.3)
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Since ResT : Hσ,τ → C[u±1]W is a ∗-algebra isomorphism, we conclude from (6.3) that

ResT : (Hσ,τ , 〈·, ·〉h) → (C[u±1]W , 〈·, ·〉σ,τ )

is an isomorphism of pre-Hilbert spaces.

Proposition 6.4 (Generalized quantum Schur orthogonality relations). Let µ, ν ∈ Λ+
n and

choose elementary vector valued spherical functions f ∈ F σ,τ

κ (µ) and g ∈ F σ,τ


κ (ν). If µ 
= ν, then
〈f |T , g|T 〉σ,τ = 0.

Proof. Let f, g ∈ F σ,τ

κ . By the proof of Corollary 6.3, by Proposition 6.2 and by (6.3) we have

h(π(f, g)) = 〈f |T , g|T 〉σ,τ . (6.4)

Let f ∈ F σ,τ

κ (µ) and g ∈ F σ,τ


κ (ν) with µ, ν ∈ Λ+
n and µ 
= ν. We can show that the left-hand side of

(6.4) vanishes. Since f ·K−δ ∈W (µ	) ⊗ V (κ, κ1)τ and g ·K−δ ∈W (ν	) ⊗ V (κ, κ1)τ , we may write

f ·K−δ =
∑

fi ⊗ vi, g ·K−δ =
∑

gj ⊗ wj ,

with fi ∈ W (µ	), gj ∈ W (ν	) and vi, wj ∈ V (κ, κ1)τ . By (6.1) and by the quantum Schur orthogo-
nality relations, we conclude that

h(π(f, g)) =
∑

h(fig
∗
j )〈vi, wj〉
κ = 0,

as desired.

The main application of the generalized quantum Schur orthogonality relations is the identifica-
tion of the vector valued spherical functions with Macdonald–Koornwinder polynomials, as stated
in Theorem 1.21(iii).

Corollary 6.5. Let µ ∈ Λ+
n and choose elementary vector valued spherical functions fµ ∈ F σ,τ


κ (µ)
and f0 ∈ F σ,τ


κ (0). Then

fµ|T
f0|T = DPµ(u;−qσ+τ+1+κ1+κ2 ,−q−σ−τ+1, qσ−τ+1, q−σ+τ+1+κ1−κ2; q2, q2κ+2)

for some nonzero constant D.

Proof. It suffices to prove the corollary for real parameters σ, τ satisfying (6.2). By Proposition 4.5
we can normalize the elementary vector valued spherical functions fµ ∈ F σ,τ


κ (µ) (µ ∈ Λ+
n ) such that

pµ :=
fµ|T
f0|T = mµ +

∑
µ′∈Λ+

n

µ′<µ

cµ′mµ′ ∈ C[u±1]W (6.5)

for some constants cµ′ ∈ C. We now prove that pµ is the monic Macdonald–Koornwinder polyno-
mial of degree µ with suitable specialization of the parameters. By the generalized quantum Schur
orthogonality relations we have∫

T
pµ(u)p∗ν(u)W (u)

du

u
= 0, ∀ν ∈ Λ+

n : ν 
= µ (6.6)

with weight function W (u) = f0|T (u)(f0|T )∗(u)∆σ,τ (u). By Theorem 1.21(ii), the weight func-
tion W (u) (u ∈ T ) can be expressed in terms of the Macdonald–Koornwinder weight function
∆(u; a, b, c, d; q, t) as

W (u) = C∆(u;−qσ+τ+1+κ1+κ2,−q−σ−τ+1, qσ−τ+1, q−σ+τ+1+κ1−κ2; q2, q2κ+2)

for some nonzero constant C. Properties (6.5) and (6.6) thus imply∫
T
pµ(u)mν(u)W (u)

du

u
= 0, ∀ν ∈ Λ+

n : ν < µ. (6.7)
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The proof now follows from the fact that the Macdonald–Koornwinder polynomial

Pµ(u;−qσ+τ+1+κ1+κ2 ,−q−σ−τ+1, qσ−τ+1, q−σ+τ+1+κ1−κ2; q2, q2κ+2) ∈ C[u±1]W

has been defined as the unique W -invariant Laurent polynomial satisfying the properties (6.5)
and (6.7).
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