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Abstract

For each prime p, this paper constructs compact complex hyperbolic 2-manifolds with an isometric action of Z/pZ
that is not free and has only isolated fixed points. The case p = 2 is special, and finding general examples for p =2
is related to whether or not complex hyperbolic lattices are conjugacy separable on torsion.

1. Introduction

The purpose of this note is to prove the following result.

Theorem 1.1. For all primes p, there is a complex hyperbolic surface X with an action of Z/pZ that is
not free and has only isolated fixed points.

The existence of such actions was asked of us by J. Lott in the case of p =2 in connection with his
work on Ricci flow on Kéhler surfaces (see [9]). The proof of Theorem 1.1 is relatively straightforward
for odd primes, but one does find an intriguing difference between the two constructions of arithmetic
lattices, namely those of simplest and division algebra types. We refer the reader to § 2.4 for restric-
tions on torsion in arithmetic lattices in SU(2, 1) of division algebra type implying that those lattices
can only be used to prove Theorem 1.1 when p =1 (mod 3). The full proof of Theorem 1.1 is given
in § 3.

The case p =2 is handled through an explicit example whose existence is somewhat fortuitous. This
case is more delicate due to the fact that 2-torsion in lattices with isolated fixed points is not obvi-
ously differentiated from complex reflections of order 2 in finite quotients. See § 5 for more on this and
connections to open questions like conjugacy separability of complex hyperbolic lattices.

We close the introduction with a remark and some terminology. If M is a compact complex hyperbolic
surface, F is a finite group of isometries acting with isolated fixed points, and X = M/F, then X is a
normal complex surface with cyclic quotient singularities such that the projection M — X is unbranched
(i.e., unramified in codimension one). This equips X with a metric of constant holomorphic sectional
curvature — 1 whose singularities are precisely at the singularities of X. It seems reasonable to call such
an X a singular complex hyperbolic surface, and quotients of fake projective planes give an interesting
class of examples (e.g., see [7]). It would be interesting to understand these surfaces better, especially
those of small volume. In § 4, we provide several concrete examples.
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2. Complex hyperbolic preliminaries

To make this note relatively self-contained, we recall some basic facts about complex hyperbolic lattices
and their quotient orbifolds, particularly those which are arithmetic. For further details on complex
hyperbolic geometry, see [6]. Throughout, H{, will denote complex hyperbolic n-space, and by a complex
hyperbolic lattice we mean a discrete subgroup I' < SU(#, 1) such that Hf./ I" has finite volume. When
I is torsion-free, the quotient is a manifold, and otherwise it is an orbifold. When n =2 and I' is torsion-
free we call X =HZ./ T a complex hyperbolic surface.

2.1. Complex hyperbolic 2-orbifolds

This paper will require some basic facts about torsion in complex hyperbolic lattices. An element of
SU(2, 1) is elliptic if it has a fixed point in H.. The geometry of an elliptic element’s action on HZ. is
reflected in its eigenvalues and how the eigenspaces behave under the hermitian form used to define
SU2, 1):

(1) Suppose g is elliptic with only two distinct eigenvalues.

(a) If the 2-dimensional eigenspace is signature (1, 1), then g is a complex reflection acting by

the identity on a totally geodesic H. in HZ2 and by an element of U(1) on its normal bundle.

(b) If the 2-dimensional eigenspace is positive definite, then g is a reflection through a point. In

particular, it has a unique fixed point in HZ. and the action of g on its tangent space, which

is canonically identified with the rank 2 eigenspace, is by a nontrivial scalar multiple of the

identity.

(2) If g is elliptic with three distinct eigenvalues, then it is regular elliptic. Here, g has a unique

fixed point in HZ where the induced action on the tangent space to that point is by a nonscalar
cyclic group.

Note that an element with only one eigenvalue is scalar, hence it acts trivially on HZ. Of particular
importance in this paper is the observation that an elliptic element of SU(2, 1) fails to have an isolated
fixed point on HE, if and only if it is a complex reflection.

Remark 2.1. There are no regular elliptic elements in SU(2, 1) with order two action on H2, simply
since one cannot select three distinct numbers from {F1}. This is why the prime 2 is exceptional for the
proof of Theorem 1.1.

Suppose I' < SU(2, 1) is a lattice and A < I is a torsion-free, normal subgroup of finite index. Then
the finite group F =T'/A admits an isometric action on the manifold HZ/A. Whether or not F has
isolated fixed points is completely characterized by the torsion elements of I".

Lemma 2.2. Suppose X =HZ./A is a finite-volume complex hyperbolic 2-manifold and F is a finite
group of isometries of X. Writing X/F as HZ./ T', then F has isolated fixed points if and only if T’ contains
no complex reflections.

Proof. If F acts freely, then any torsion in I" is central, so there is nothing to prove. If f € F has
a fixed point y € X, then the lift f/ of f to HZ defines a torsion element of I" whose action on a lift of y
models the action of f. In particular, y is an isolated fixed point if and only if f is not a complex reflection.
The lemma follows. O

Essential to this paper for the odd prime case of Theorem 1.1 is that complex reflections and regular
elliptic elements are distinguished by congruence quotients.
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Lemma 2.3. Suppose that E is a number field with ring of integers Ry and I' < SU(2, 1) is a lattice
contained in SL;(Rg). Assume that " contains elements o, T such that o is a complex reflection and t is
regular elliptic. Then for all but finitely many prime ideals Q of R, the images of o and t in SL;(Rg/ Q)
under reduction modulo Q are not conjugate in SL;(Rz/ Q) and, moreover, the image of T is nontrivial.

Proof. Since o has a repeated eigenvalue over C and t has distinct eigenvalues, their characteristic
polynomials x,(#) and y.(¢) are different elements of R:[¢]. Thus, there are only finitely many prime
ideals Q of Ry so that x,(f) and x.(¢) are congruent modulo Q, that is, define the same element of
(Rg/Q)[t]. If the reductions o and T of o and T are conjugate in SL;(R;/Q), then they have the same
characteristic polynomial over the finite field R;/Q, hence there are only finitely many primes Q for
which & and T are conjugate in SL;(R;/Q). Applying the same argument to (r — 1)* ensures that the
image of t is nontrivial. O

2.2. Arithmetic complex hyperbolic surfaces

Throughout this discussion, k will be a totally real number field and E/k a CM-extension (i.e., a totally
imaginary quadratic extension of k). The rings of integers of these field will be denoted R, and Ry,
respectively. We will also fix an embedding of E < C and refer to this as the identity embedding of E;
note that complex conjugation restricts to the identity on k.

We now recall the construction of arithmetic subgroups of SU(2, 1), beginning with those of simplest
type. Let V be a 3-dimensional vector space over E equipped with an E-defined Hermitian form. That is,
H € GL(3, E) satisfies H = H. Furthermore, we also assume that H has signature (2, 1), and that for any
nonidentity embedding v:k < C and one (hence either) extension of v to an embedding of E, the matrix
H" obtained by applying v entry-wise has signature (3, 0). We can and will assume that the entries of H
lie in R;. Define the algebraic group SU(H) as

SU(H) = {g € SLy(C) : gHg' = H}.

The subgroup SU(H, R;) = SU(H) N SL(3, R) is an arithmetic lattice of SU(H, R) that, after appropriate
conjugation in GL(3, C) to take H to the standard form, determines an arithmetic lattice in SU(2, 1). The
arithmetic lattices of simplest type are those determined by the totality of all commensurability classes
of the groups described above. Finally, SU(H, R;) is cocompact if and only if k # Q.

Remark 2.4. In [11], it is shown that if G is a finite subgroup of U(2) x U(1), then there exists an
arithmetic lattice of simplest type that contains a subgroup isomorphic to G.

The other arithmetic lattices are those of division algebra type. Continuing with the above notation,
let A be a division algebra over E with center E and degree three over E, so then A is a 9-dimensional
E-vector space. Suppose that A also admits an involution t such that the restriction 7| from the natural
inclusion E < A is complex conjugation; such an involution is called an involution of the second kind.
A Hermitian element of A is an element & € A* such that T(h) = h. Now A ® ; C = M(3, C) and we insist
that & has signature (2, 1) and has signature (3, 0) after applying any embedding o :E < C extending a
nonidentity embedding of k.

Define the algebraic group SU(#, A) as:

SU(h,A) ={x € A" : t@hx =h},

where A! denotes the elements of A with reduced norm 1; note that the reduced norm becomes the deter-
minant under any matrix embedding of A. Let O C A be a Rg-order of A and define the arithmetic lattice
SU(h, ©O) =SU(h,A) N O. This then defines an arithmetic lattice in SU(2, 1). The arithmetic lattices of
division algebra type are those determined by the totality of all commensurability classes of the groups
described above.
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Remark 2.5. All arithmetic lattices of division algebra type are cocompact. In fact, it is well-known to
experts that taking k = Q and E = Q(v/—d) for some square-free d > 0 in the construction of lattices of
simplest type provides the only commensurability classes that are not cocompact.

The next two subsections study torsion in arithmetic lattices of simplest type and division algebra
type, respectively.

2.3. The groups G(m,p,2)

This section describes a special case of the results in [11] in some detail. Fix integers m, p > 2 such that
p divides m. In what follows, i, will denote the group of all m" roots of unity. First, consider the abelian
subgroup

0 n

A@Ln2)={<%é>igh&éﬁm,@ﬁﬁ”=1}
2

of U(2), which is normalized by the element w € U(2) of order two acting by coordinate permutations.

Then G(m, p, 2) = A(m, p, 2) x (w). Note that G(m, m, 2) is simply the dihedral group of order 2m. The

following records some standard facts about G(m, p, 2).

Proposition 2.6. The group G(m, p,2) has the following properties:

(1) G(m,p,?2) preserves the standard positive definite hermitian form on C*;

(2) 1G(m, p,2)| = 25;

(3) complex reflections in G(m, p,2) have order 2 or dividing *;

(4) complex reflections in G(m, p, 2) not of order 2 are contained in A(m, p, 2);

(5) if p=3is odd and gcd (’]’—;,p) =1, then no power of an element of G(m, p,2) of order p is a
complex reflection;

(6) if p >3, then G(m, p, 2) contains an element of order p with distinct nontrivial eigenvalues.

Proof. The first statement is clear from the fact that diagonal matrices and w all preserve the standard
inner product on C?. See [8, § 2.2] for the second statement and [8, Lemma 2.8] for the third and fourth.
The fifth statement is simply that no nontrivial divisor of p divides 2 or 2. For the last statement, the

element
, 0
&=<% Cl) (M
14

is in G(m, p, 2) for any primitive p” root of unity ¢, and has distinct eigenvalues if p > 3. O

In Proposition 2.6, complex reflection means the classical definition: an element of U(2) with 1
as an eigenvalue. However, this ends up having the same meaning once we let G(m, p, 2) act on HZ.
Specifically, take U(2, 1) with respect to the standard hermitian form |z,|*> + |z,|* — |z3|* on C3, which
by Proposition 2.6(1) gives an embedding

& 0 0
(% §>F> 0 & 0 @
: 0 0 1

of A(m, p,2)in U(2, 1). Note that G(m, p, 2) then embeds in PU(2, 1) under projection, so it acts faithfully
on HE.
Convention: For the remainder of this paper, G(m, p,2) is considered as embedded in U(2, 1) by
Equation (2).

Fortunately, the two notions of complex reflection coincide.
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Lemma 2.7. An element g € A(m, p, 2) is a complex reflection in G(m, p, 2) if and only if it acts on HZ,
as a complex reflection, and g acts as a regular elliptic if and only if & # &, and neither equals one.

Proof. Inspection of Equation (2) shows that g is a complex reflection as an element of U(2) if and
only if it has 1 as a repeated eigenvalue as an element of U(2, 1), and g then has a repeated eigenvalue
for which the 2-dimensional eigenspace has signature (1, 1). Equivalently, det (g)’% g€ SU(2, 1), which
has the same action on HZ as g, has a repeated eigenvalue with eigenspace of signature (1, 1), which
means precisely that g acts on HZ. as a complex reflection. A similar argument shows that & # &, with
neither equal to one if and only if g acts as a regular elliptic. O

The following last fact will be used in the sequel.

Corollary 2.8. Let p be an odd prime, m be divisible by p, and suppose that I' < SU(2, 1) contains
S(m, p,2)=G(m,p,2) N SU2, 1). 3)

Then T contains a regular elliptic element of order p.

Proof. The element g, from Equation (1) from the proof of Proposition 2.6 is in S(m, p, 2), and it has
distinct eigenvalues since p is odd. It acts on HL. as a regular elliptic element by Lemma 2.7. O

2.4. Torsion in lattices of division algebra type

Torsion in an arithmetic lattice of division algebra type is quite special. The first restriction on torsion
in lattices of division algebra type is as follows.

Lemma 2.9. Suppose I' < SU(2, 1) is an arithmetic lattice of division algebra type and t € T has finite
order and is not central. Then t is regular elliptic.

Proof. Let A be the division algebra associated with I" and E its center. Since A can be realized in
M;(C) as the E-span of any finite-index subgroup of I", and v normalizes some finite-index subgroup of
A'NT, t normalizes A. By the Skolem—Noether theorem, there is some scalar matrix & (i.e., an element
of the kernel of the conjugation action) so that o =&t is in A*. Note that o has distinct eigenvalues if
and only if T does. Then o has a cubic characteristic polynomial f(¢) € E[¢]. If T does not have distinct
eigenvalues, then f(¢) has a linear factor (¢ — A) for some A € E. It now follows from the Cayley—Hamilton
Theorem that T — AId is a zero-divisor in A, contradicting the fact that A is a division algebra. This
completes the proof. O

The following generalizes an observation due to Prasad and Yeung [13, Lem. 9.2].

Lemma 2.10. Suppose that ' < SU(2, 1) is of division algebra type and t € T acts on H, as an elliptic
element of order n. Then ¢(n) or ¢(3n) is divisible by 3, where ¢ is Euler’s totient function. In particular,
ifn=p>3isprimethenp=1 (mod 3).

Proof. 1t suffices to consider I' a maximal lattice in SU(2, 1). It is known that I’ N A! is a normal
subgroup of I" with index a power of 3 (see the Remark after Eq. (0) in [13]). Since 3 | ¢(9), it suffices
to prove the lemma for 7 € A', which implies that 7" is central in A. Moreover, the subalgebra E(7) is a
commutative subalgebra, hence it is a finite extension of E. Note that 7 ¢ E, since otherwise it is central
in A. Therefore, E(t)/E is an extension of degree three.

Since 7" has reduced norm one, and the reduced norm on the center is simply z > z°, it follows that "
is a 3 root of unity. In particular, t is either an n* or (3n)" root of unity, hence its minimal polynomial
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over Q has degree @(kn) for k € {1, 3}. Since Q(x) is then Galois over Q, it follows that E(t) is Galois
over the Galois closure E of E over Q, with degree 1 or 3.
First, suppose that E(t)/E is degree 3. The diagram

then consists only of Galois extensions. It is then a standard exercise in Galois theory to prove that
[Q(1):E N Q(t)] = 3 and that this degree divides ¢(kn).

Now suppose that E(7) C E. Let G denote the Galois group of E over Q, G be the stabilizer of E in
G, and G, be the stabilizer of the subfield Q(t) of E. Since E(t)/E is degree three, there is a diagram

{1}

Gy NG,

\G%>

of subgroups of G. The image of Gy in G/G, = Gal(Q(r)/Q) is then Gy /(Gy N G,) = Z/37Z. Thus
[Q(7):Q] is again divisible by three, as desired. Finally, note that if n = p > 3 is a prime not equal to 3,
then ¢(3p) =2(p — 1), hence p=1 (mod 3) for either value of k. O

In particular, one can construct many commensurability classes of lattices of division algebra type
so that SU(h, O) is torsion-free. More germane to the purposes of this paper, Lemma 2.10 implies that
it is impossible to prove Theorem 3.1 for all primes using lattices of division algebra type. However, we
can prove the following special case.

Proposition 2.11. Suppose that p is an odd prime and p =1 (mod 3). Then there are infinitely many
distinct isomorphism classes of torsion-free lattices I' < SU(2, 1) so that HZ./ T admits an isometric
action by 7./pZ that is not free and has only isolated fixed points.

Sketch of the proof. Let ¢ be a primitive p™ root of unity. If ¢(p)=p — 1 is divisible by 3, then
L =Q(¢) contains a subfield E so that L/E is Galois of degree 3. Then

k=ENQE +57)

is the maximal totally real subfield of E, and E/k is quadratic. Thus, E/k is a CM-extension, since E is
Galois over QQ and hence totally complex.
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Let A be a cyclic division algebra with center E and involution of second kind containing L as a
maximal subfield. One can then construct an order O containing the ring of integers R; of L. Choosing
an appropriate hermitian element of A produces a lattice I' < SU(2, 1) so that ¢ naturally lives in T.
Thus, I contains an element of order p. Fix any normal, torsion-free subgroup A < I' of finite index.
By Lemma 2.9, all torsion elements of A are regular elliptics, so the action of I'/A on HZ /A has only
isolated fixed points by Lemma 2.2. There is an element of I'/ A with order p that has nontrivial fixed
point set by construction, so this proves the proposition. O

3. Proof of Theorem 1.1

Theorem 1.1 will be a consequence of our next stronger result.

Theorem 3.1. For any prime p € Z, there exist infinitely many nonisomorphic cocompact torsion-free
lattices A, < SU(2, 1), such that the quotient manifold X; = H./ A}, admits an isometric action by Z./p’Z
that is not free and has only isolated fixed points.

The proof will separate the cases of p an odd prime, and p = 2. However, in both cases, we will make
use of the following lemma.

Lemma 3.2. Using the notation of § 2.2, suppose that T is a subgroup of SU(H, Ry) that contains a
regular elliptic element of order p. Then there are infinitely many nonisomorphic subgroups A; < T of
finite index so that the quotient orbifold HZ./ A; admits an isometric action by Z/pZ that is not free and
has only isolated fixed points.

Proof. Fix an elliptic element t € I" of order p as in the hypothesis. By Lemma 2.3, there are infinitely
many prime ideals Q; C R so that the image of t is nontrivial modulo Q, and no complex reflection in
I" has reduction that is SL;(R;/Q;)-conjugate to the reduction of 7. Let

pi:I' = SL3(Rg/ Q)

be the reduction homomorphism, A; be its kernel, and T, = p;(t), which is an element of order p since
T has prime order p in I'.

Note that A; is torsion-free for all but finitely many Q; by a classical result of Minkowski, so we can
assume that X; =HZ/A,; is a compact complex hyperbolic manifold for all i. Moreover, since Strong
Approximation holds for the ambient algebraic group SU(H), the reduction homomorphism is onto for
all but finitely primes Q, [16]. Since the R; only contains finitely many prime ideals of bounded norm,
the reductions modulo Q; then have order going to infinity, that is, the X; have volume going to infinity
and hence are distinct.

Then 7; defines an isometry of X; with order p. Since A, is torsion-free, no complex reflection in I’
is in A;. It was also already noted that no complex reflection can have a reduction conjugate into

Fi= (@) =2/pZ

inside I'/A;. Thus I'; = p;/'(F;) < I" contains no complex reflections. Then F; acts on X; with isolated
fixed points by Lemma 2.2, so the proof of the lemma is complete. O

3.1. Odd primes

For the case of p an odd prime, we will construct a lattice I', < SU(2, 1) of simplest type containing a reg-
ular elliptic element of order p. Consider a p™ root of unity ¢,, set E = Q(¢,), let k be its maximal totally
real subfield, and consider the identity embedding of k sending a generator ¢, + ;p" to 2 cos (21 /p).
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Then k has degree d = ”%] over QQ, and it is a classical fact that the various real embeddings of k
embed R, as a lattice in R?. In particular, there is an element 8 € R, so that 8 < 0 under the identity
embedding of k and v(8) > 0 for all other embeddings v of k. Thus the hermitian form Hy given by
|z11* + |z2|* + Blzs|* defines an arithmetic lattice of simplest type.

Lemma 3.3. The lattice SU(H,, R) defined in this section contains a regular elliptic of order p.

Proof. Under the embedding from Equation (2), the group G(p, p, 2) also preserves the hermitian
form Hpg, and thus, S(p, p, 2) defines a subgroup of SU(Hj, Ry) containing a regular elliptic of order p
by Corollary 2.8. O

Proof of Theorem 3.1 for p odd. If p > 3,thensetI" = SU(H,, R). This contains aregular elliptic ele-
ment of order p by Lemma 3.3, and is cocompact since k # Q. By Lemma 3.2, this proves Theorem 3.1.
When p = 3, the lattice is not cocompact, so an adjustment is necessary. Replacing ¢; with &, one still
finds S(3, 3, 2) inside SU(H,, Rg), which is now cocompact since k # Q, so the theorem again follows.

O

32.P=2

To handle this case, we will make use of an example from [4] (see Theorem 1.2 therein with p = 3).
This example is discussed in [5] in more detail, where it is the group denoted by S(a 4, 3). Henceforth,
we will denote this group by I', and note that I is cocompact. A presentation for I is:

T =(Ri, Ro, Ry, J | R}, (R\)', P, JR\ ™" = Ro, JR2J ™ = Ry, RUR-Ri Ry = RoR RoRy ).

See [5, Table 5.1] and note that, as stated after Table 5.1, the last two relations there can be omitted.
Although not visible in the presentation given above, the element R, R, has order 12 (again, see [5, Tb.
5.1]), and so in particular there is an element in I" of order 2.

As shown in [4, Theorem 1.1], I is arithmetic of simplest type with:

k=Q(/21) E=QW=3,v/=7)

The fact that T" is simplest type can be deduced from [4, § 6], and also follows from [14, Theorem
1.4] using the existence of a complex reflection in I'. As discussed in [4, § 6.1], I' can be conjugated
to preserve a Hermitian form H whose entries are algebraic integers in the field E such that matrices
representing R, and J also have entries in E. From the descriptions of R, and J given in [5, p. 7] we see
these matrices have determinant 1, and so from the presentation for I' we deduce that, since R, and R;
are conjugates of R, they also have determinant 1. Thus we can assume that I' < SU(H, R;).

Then [5, § 4.3.2 & Appx.] classifies the finite subgroups of I', which are the complex reflection
groups denoted G, and Gs in the standard Shephard—Todd notation. Consulting [8, Appx. D], all complex
reflections in these groups have order 3. Thus, any element of order 2 in I" is a reflection through a point.
Applying the exact same argument as in Lemma 3.2 now produces manifolds X; with a Z/2Z action
having a nonempty set of isolated fixed points. This completes the case p = 2, and thus completes the
proof of Theorem 3.1.

4. Examples

This section catalogs some examples for small odd primes.

4.1. Fake projective planes

Cartwright and Steger’s completion of the classification of fake projective planes showed that they are
all of division algebra type. They have Euler characteristic 3, which implies by Chern—-Gauss—Bonnet
that they are minimal-volume manifolds. Thus, any automorphism has fixed points, and they are isolated
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by Lemma 2.9 and Lemma 2.2. The automorphism groups of fake projective planes are also classified,
and one sees actions of Z/pZ for p =3,7 [7].

4.2. The Cartwright—Steger surface

The Cartwright—Steger surface [2] is a minimal-volume compact complex hyperbolic 2-manifold, and
it admits an action of Z/3Z (e.g., see [15, § 5]). One can check directly that all torsion elements are
reflections through points and regular elliptics, so the action has isolated fixed points. In contrast with
fake projective planes, this example is arithmetic of simplest type. Moreover, one can show that some
of the 3-torsion associated with isolated fixed points of the Z/3Z action are reflections through points.
Thus, this example is of a slightly different kind than those produced using the methods of this paper.

4.3. An example for p =5

For the pair £E=Q(¢5) and k= Q(\/g), one of the famous lattices I's,, constructed by Deligne and
Mostow [3] ends up being PU(h, R;) for the appropriate k. If ps is the prime dividing 5 and I'(ps) is the
congruence subgroup of Iy, of level ps, then all torsion subgroups of I'(ps) are isomorphic to (Z/57Z)*
generated by complex reflections. See [1, Prop. 3.12] and the surrounding discussion.

Note that each (Z/57Z)*, while generated by complex reflections, contains regular elliptic elements of
order 5. The congruence subgroup I'(p3) of level p: is torsion-free, and thus admits an isometric action
of Z /57 with nonempty set of isolated fixed points by Lemma 2.3 and the same argument as the proof of
Lemma 3.3. One can show using known formulas for Euler characteristics of Deligne—-Mostow orbifolds
that HZ./ T'(p?) has Euler characteristic 1875 (cf. Question 5.1 below).

5. Final comments

As mentioned in the introduction, it would be interesting to understand the singular complex hyper-
bolic surfaces of small volume. With Lemma 2.2 in mind, we say that X = HZ./ I is a singular complex
hyperbolic surface if all torsion in I' is reflections through points and regular elliptics. For each prime
p, Theorem 1.1 produces closed singular complex hyperbolic surfaces for which each singular point is a
cyclic quotient singularity of order p. We expect that the methods of this paper can also produce similar
examples with p replaced with any natural number n > 1.

Question 5.1. Fix a prime p.

(1) What is the smallest volume closed singular complex hyperbolic surface for which all singular
points have order p?

(2) What is the smallest volume closed complex hyperbolic manifold admitting an action of Z./pZ
with isolated fixed points?

Remark 5.2. Fake projective planes and the Cartwright—Steger surface answer Question 5.1(2) for
p=3andp=7. See § 4.

For large p, the methods of this paper fail for noncompact arithmetic lattices, that is, the Picard
modular groups. Indeed, these are contained in SL;(R,), where R, is the ring of integers of Q(v/—d).
Independent of d, these groups can only have torsion of uniformly bounded order. Indeed, by Cayley—
Hamilton their eigenvalues are roots of unity with bounded degree over Q.

Moving to nonarithmetic lattices, there are only finitely many commensurability classes known.
Moreover, there is a universal bound for the torsion orders in any commensurability class since com-
mensurability classes of nonarithmetic lattices have a unique maximal element for inclusion [10, p. 4].
Thus, the following question seems extremely difficult, since it would require constructing infinitely
many new commensurability classes of nonarithmetic lattices.
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Question 5.3. For each prime p, is there a noncompact finite-volume complex hyperbolic 2-manifold
Y, admitting an action of Z/pZ with only isolated fixed points?

Lastly, the difficulty in the case p =2 lies in the fact that we cannot distinguish between a complex
reflection of order 2 and a reflection through a point with order 2 in congruence quotients. Recall that
a group I' is conjugacy separable if for all nonconjugate pairs of elements o, v € I, there is a finite
quotient F' of I" where the images of o and t are not conjugate. Further, " is conjugacy separable on
torsion if distinct conjugacy classes of torsion elements remain nonconjugate in some finite quotient. A
positive answer to the following question would easily give many more examples satisfying the conclu-
sion of Theorem 1.1, give a robust approach to constructing examples for Z/dZ with d not prime, not
to mention the higher-dimensional analogs of the questions studied in this paper.

Question 5.4. Are complex hyperbolic lattices conjugacy separable? Are they conjugacy separable on
torsion?

Many fundamental groups of real hyperbolic manifolds, and in fact the broad class of virtually
compact special hyperbolic groups, are known to be conjugacy separable [12]. However, we do not
know a single complex hyperbolic lattice (other than the Fuchsian groups in SU(1, 1), of course) that is
conjugacy separable.
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