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Normal and invertible
composition operators

R.K. Singh and D.K. Gupta

let N denote the set of natural numbers and let ¢ be a

mapping from N into itself. Then the composition transform-
mation C¢ on the weighted 12 space with weights a2n , where
n € N and 0 < a < 1 is defined by C¢1f=f°¢.If C¢ is a

bounded operator, then it is called a composition operator. The

adjoint of the composition operator C¢ is computed, and it is

used to characterise normal, unitary, isometric, and co-isometric
composition operators. Not every invertible ¢ induces an
invertible composition operator, as is shown by examples. At the
end of this note all invertible composition operators are

characterised.

1. Preliminaries
Let N denote the set of non-zero positive integers and let A Dbe

the measure on N defined by A({n}) = An = a® for every n € N , where

0<a<1l. Let Zs denote the space of all complex sequences such that
2 - 2
Z={g|g:N—>C and Y A_|g(n)] <°°}.
a mel

Then Za is a Hilbert space under pointwise addition and scalar
multiplication with the inner product defined by
(-]
(fogdr= Y Anf(n)g(n)

n=1
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If ¢ 1is a mapping from N into itself, we define a composition trans-—

formation (C on Zi into the space of all complex valued functions on WN

¢
by
- 2
C¢f =fo¢ forall fE€ Aa .
If the range of C¢ is in Zi and C¢ is bounded, then we call C¢
a composition operator induced by ¢ . By B[ZS) we mean the Banach

algebra of bounded linear operators on Zz .

In Section 2 of this paper we compute the adjoint of and, using

¢
this, we characterise normal, unitary, and isometric composition operators.

In Section 3 of this paper invertible composition operators are

characterised.
If ¢ 1is a maepping on N into itself such that C¢ € B[Zﬁ] , then
the measure A¢—l is absolutely continuous with respect to A . We denote

the Radon-Nikodym derivative of A¢-l with respect to A by fb . In

the case of 12 there is a ¢ such that ¢ is not the identity map, but
fb = 1 (for example any bijection other than the identity). In the case

of Zz , it is not so, as is proved in the following lemma.
LEMMA 1.1. Let ¢ be a mapping from N into itself and o be the

Radon-Mkodym derivative of the measure A¢'1 with respect to A . Then
fb =1 if and only if ¢ <8 the identity.

Proof. Let ¢ ©be the identity. Then ¢(n) =n for all n € N .

Hence fy(n) = dio™ (n)/d\n = din/ddn = 1 for all n €W .

The converse is proved by induction. We first prove that ¢(1) =1 .

Since fb(n) = dk¢-l(n)/dln =1, we get A¢-l(n) =An for all n €N .

If (1) # 1, let ¢(1) =m where m# 1 . Then 1 € ¢ “(m) . Hence
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\

A, = A¢—l(m) = Am , which is impossible, for A is a decreasing measure.
Thus ¢(1) =1 .

Let us suppose that this result is true for 1, 2, ..., k¥ , that is
$(g) =4 for §=1,2, ..., k; we prove ¢(k+l) =k + 1 . If this is
not so, then ¢(k+l) =m , where m# k + 1 .

CASE I. If m>k + 1, then k + 1 € ¢-l(m) . Therefore

A, +1 < A¢~l(m) = Xm , which is a contradiction, since Am < Ak+

k L
CASE II. If m<k+1, then ¢(m) =m . Thus {m, k+1} € ¢"2(m)

Hence Am + A X¢_1(m) = Am , which is again a contradiction, since

=
k+1
Ak+l # 0 . Therefore ¢(k+l) =k + 1 , and hence the induction process is

complete. Thus the proof of the lemma is finished.

2. Normal and unitary composition operators

For the characterisation of normal composition operators we need a

familiarity with the nature of the adjoint of such operators. The

computation of the adjoint of a composition operator C¢ on the L2 of a

general measure space is very hard. But in the case of Zi , the adjoint

C$ is computable. The following theorem computes the adjoint of C¢ .

THEOREM 2.1. Let ¢ e3112) and C* be defined by

¢ a o

Cpm ==|
()

for all g € Zs and n € N . Then (C¢f, gl =(f, C$g) for all
2
fs g € la .

Proof. Since
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(Gt & = | (0,f) mgimar

=Y j (f © ¢)(m)g(m)dr
n

Fln)g(m)dr

]
=
8
ngﬂ
——
1
’_J

=3y f(n)I g(m)dx

L £ ) ()
n=1

%
(f, C¢g) ,

CJ('

S is the adjoint of C¢ .

On 22 there are plenty of normal composition operators other than

the identity operator, as every invertible composition operator in this is
normal [4]. But strangely enough on Zfl there is no non-trivial normal

composition operator. This is shown in the following theorem.

18 normal if and only if

THEOREM 2.2. Let C, ¢ 3[12] . Then C,

¢
¢ is the identity.
In order to prove this theorem we need the following lemma.

LEMMA 2.3. Let ¢ : N+ N be a one-to-one and onto mapping. Then

o(m) + ¢—l(m) =2n for all m € N implies that ¢ <is the identity.

Proof. Let ¢(1) =n . Then ¢(n) =22 -1 . Let ¢ (1) =m . Now

since ¢(1) + ¢-l(l) =2 , we have n +m = 2 which is possible only when
n=m=21. Thus ¢(1) =1 . Let us suppose that the result is true for
1, 2, ..., k . We prove it for k + 1 . Let ¢(k+l) = n ; then

¢(n) = 2n - (k+1) . Let ¢-l(k+l) =m . Then since

l(7<+l) = 2(k+1) , n+m=2(k+l) . Since n and m sare not

o(k+1) + ¢

less than or equal to k , we conclude ¢(k+1) =k + 1 and
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0"1(k+1) =k + 1 . Hence, by induction, ®(n) =n for all n € N , which
implies that ¢ 1is the identity.

Proof of Theorem 2.2. The sufficiency is obvious. To prove the

necessary part, let (, be normal and em be the sequence defined by

¢

m 2 m 2
Cée ” = HC¢e " for all

e'(p) = Gmp (the Kronecker delta). Then

2 © 2
C*em‘ = 3 An‘lcaem)(n)g . But since
n=1

m €N . Now ¢

[Céem](p) = 1/Ap J em(p)dA and m € ¢‘l(p) for only one value of
¢+~ (p)
p , ve get

m — f m -
[Ca‘)e ]<p) =y | ma =

{m}

|2 2,2 _ .2 -1
Therefore [|C*e “ = kam/lp = Am/xp , where m € ¢ ~(p) . Also

¢

8

m|?,
m)

“c ”’“2—”0}( B=3% alex (ml2=3% rlx
¢ - et {ml} L ne {m}\" - n ¢-1(

n= n

&l

where XE stands for the characteristic function of the set £ . But if

¢ 1is not onto, ¢-l(m) is empty for some m € N , and hence

2
X _, (n) =0 for every n €N, vhich implies that “c¢em" =0 . But
&~ "im)
2
)

b >0 for all m € N , so that

3| # e -

which is a contradiction to the normality of C¢ . Hence C¢ is normal
implies that ¢ is onto. By Corollary 2.3 of Theorem 2.1 of [6], C¢ is
one-to-one. Since C¢ is normal it has dense range. Thus by Corollary

2.6 of Theorem 2.4 of [6]), ¢ is one-to-one. Now since ¢ is one-to-one,

a simple computation shows that
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o <07

By normality of C and left invertibility of ¢ we have

¢

A0~ (m) = A2/ xp(m)

This after further simplication reduces to

o(m) + ¢™X(m) = 2m .

Hence by the above lemma, ¢ is the identity.

COROLLARY 1. Let C¢ € BIZE) . Then C, is an isometry if and only

¢
if ¢ 1is the identity.

Proof. The sufficiency is obvious. To prove the necessary part,

suppose C is an isometry. Then we have, by [2],

¢

=cic, =1I.

M 0“6 =

f J
From this we conclude that

fo(n) =1 for every n € N ,
and hence by Lemma 1.1, ¢ 1is the identity.

(
COROLLARY 2. Let C, ¢ Blli] . Then C, 1is unitary if and only if

¢ ¢

¢ is the identity.

A
iJ . Then C, is a co-igsometry if and

THEOREM 2.4. Let C GB[Z »

¢
only 1f ¢ <is the identity.

Proof. The sufficiency is again obvious. To prove the necessary

part, let C¢ be a co-isometry. Then

c&;e”’“ = "l for all me€ N .

ml|® .2 -1 m,2
But C;e “ = )\m/)\p , wvhere m € ¢ ~(p) and |le || = )xm . Therefore we

have )\m = )‘p , which implies that m = ¢(m) for ell m € N .
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This shows that ¢ is the identity.

3. Invertible composition operators

The invertibility of ¢ is a necessary and sufficient condition for

the invertibility of C¢ on 12 [4, Theorem 2.2]. But this is not true

in the case of as , as is shown in the next example.

EXAMPLE. let ¢ be a mapping from N into itself defined as

n/3 when n =p = where p = 3(pn_1+1] with p =0,
¢ln) =

n+l otherwise.

Then ¢ 1is invertible. But since
2

2 lix _ Il
A L Y

2
I

2
”X{pn/3}” ”X{pn/3}

) ux{pn}n2

- 2
IIX{pn/3}II

o (4/3)p,
= ey, ¢ ’

a
which goes to zero as n goes to infinity, we have that C¢ is not
bounded away from zero, and consequently C¢ is not invertible.
It is clear from the above example that characterization of
invertibility of C¢ in terms of invertibility of ¢ (and vice versa) is

not possible in this case. But the invertibility of ¢ together with an

extra condition characterises the invertibility of C¢ , as is shown in the

following theorem.

{
THEOREM 3.1. et ¢y ¢ Blls) . Then C, is imvertible if and only

if ¢ 1ie invertible and there exists an integer k 2 O such that

https://doi.org/10.1017/50004972700007796 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700007796

52 R.K. Singh and D.K. Gupta

o tn) sk +m for all n€nwN

In order to prove the theorem we need the following lemma.
LEWMA 3.2. Let ¢ : 8 >N bea mapping. Then C, € B[zf] if and

only if there exists an integer M > O such that )\(¢_l(n)) s Ma({n}) for
all nenN .

Proof. Proof of this lemma follows from Theorem 1 of [3].

Proof of Theorem 3.1. Let C¢ be invertible. If ¢ is not one-to-

one, then ¢(n) = ¢(m) for at least two distinect m and »n in N , and
. This shows that C is
¢ ¢
not onto, which is a contradiction. If ¢ 1is not onto, then there exists
a positive integer m such that m ¢ ¢(¥#) . Hence (. X =X =0
¢ {m} q)-l{m}

which shows that ( is not one-to-one. This is again a contradiction.

¢

hence %, = 9, for all g in the range of (C

Further let there exist no integer k = 0 such that ¢—l(n) <k +n for
every n € N . This implies that for each integer p = 0 there exists an

integer np such that

-1
>p o+ =1,2,3, ...
¢ (np] prn, Ip ]

Consider the sequence <X{n }) . Then
p
2
& I
-1
¢~ ()

X 2 ixg, 4lf
{n,} {n)}

e xg I8
¢"{n }

|
Q
Y
v
o
&
S
v
8
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This implies that C¢

invertible. This is a contradiction. Hence there exists an integer k = 0O

is not bounded away from zero and hence it is not

such that ¢'l(n) =k+n.
Conversely, suppose ¢ 1is invertible and there exists an integer

k2 0 such that ¢-l(n) <=k +n for every n € N . Then there exists a
function Y such that

(¢ o 9)(n) = (¥ o ¢)(n)

n ?

and ¢(n) = n -k for every n € N . From this it follows that
W) = A(g(m) = a2

a & (nh)

A

Hence by Lemma 1.1 we conclude that C¢ is bounded. Since

[ is invertible.

¢

This completes the proof of Theorem 3.1.
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