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Normal and invertible
composition operators

R.K. Singh and D.K. Gupta

Let N denote the set of natural numbers and let <() be a

mapping from N into itself. Then the composition transform-

mation C, on the weighted I space with weights a , where

n (. N and 0 < a < 1 is defined by CJ = / ° 4> • If C. is a

bounded operator, then it is called a composition operator. The

adjoint of the composition operator C, is computed, and it is

used to characterise normal, unitary, isometric, and co-isometric

composition operators. Not every invertible (f induces an

invertible composition operator, as is shown by examples. At the

end of this note all invertible composition operators are

characterised.

1. Prelimi naries

Let N denote the set of non-zero positive integers and l e t X be

the measure on N defined by \({n}) = X = a for every n € N , where

o
0 < a < 1 . Let I denote the space of a l l complex sequences such that

l2
a = \g | g : N * C and £ XjgM \2 < 4 .

* n=X '

2
Then 1 is a Hilbert space under pointwise addition and scalar

multiplication with the inner product defined by

n=l
Received ll» October 1977.
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46 R . K . S i n g h and D . K . G u p t a

If <j> is a mapping from N into i t s e l f , we define a composition t rans-
2

formation C, on I into the space of all complex valued functions on N
© a

C,f = / o (J) for a l l f (. I .

2
If the range of C. i s in I and C, i s bounded, then we ca l l C,m a m a

a composition operator induced by ((> . By f k we mean the Banach

2
algebra of bounded l inear operators on I

In Section 2 of t h i s paper we compute the adjoint of C. and, using

t h i s , we characterise normal, unitary, and isometric composition operators.

In Section 3 of t h i s paper invert ible composition operators are

characterised.

( 2]If <J> i s a mapping on N into i t s e l f such that C. 6 B \l \ , then

the measure A<J> i s absolutely continuous with respect to X . We denote

the Radon-Nikodym derivative of A<j> with respect to X by f . In

2
the case of Z there i s a <j> such that <f> is not the identi ty map, but

f= 1 (for example any bijection other than the iden t i ty ) . In the case

2
of Z- , i t i s not so, as i s proved in the following lemma.

LEMMA 1.1. Let § be a mapping from N into itself and fQ be the

Radon-Nikodym derivative of the measure \§~ with respect to \ . Then

f' = 1 if and only if <f> is the identity.

Proof. Let <\> be the ident i ty . Then <(>(«) = n for a l l n € N .

Hence fQ(n) = d\<fX(n)/d\n = d\n/dXn = 1 for a l l n € N .

The converse is proved by induction. We f i r s t prove that <|>(l) = 1 .

Since /Q(w) = dX<))"1(n)/dXn = 1 , we get X(fi"1(n) = Xn for a l l n € N .

I f <f>(l) * 1 , l e t <t>(l) = m where m # 1 . Then 1 € ^(m) . Hence
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A 5 A<J>~ (m) = A , which i s impossible, for A is a decreasing measure.

Thus <|>(l) = 1 .

Let us suppose that th is resul t i s true for 1, 2, . . . , k , that i s

<f>(j) = 6 for j = 1, 2, . . . , fc ; we prove <J>(fc+l) = fc + 1 . If th i s i s

not so, then <fr(k+l) - m , where m t k + 1 .

CASE I . I f m > k + 1 , then k + 1 € (()"1(m) . Therefore

A. +1 £ A(j)~ (m) = A , which is a contradiction, since A < A, .
K. 171 TTi / C T J .

CASE II. If m < k + 1 , then <}>(m) = m . Thus {m, Zc+l} c (j>~1(m) .

Hence A + A, ., S A(j>~ (m) = A , which is again a contradiction, since

A. ^ 0 . Therefore <f>(?c+l) = k + 1 , and hence the induction process is

complete. Thus the proof of the lemma is finished.

2. Normal and unitary composition operators

For the characterisation of normal composition operators we need a

familiarity with the nature of the adjoint of such operators. The

2
computation of the adjoint of a composition operator C, on the L of a

2
general measure space is very hard. But in the case of I , the adjoint

C* is computable. The following theorem computes the adjoint of C. .

THEOREM 2.1. Let C^ € B U ^ and C* be defined by

gdX

for all g € l^ and n i N . Then <CJ, g) = <f, C*g> for all

Proof. Since
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<C f, g> = f [C f)(m)gWd\
V If] V

= £}
M = l J , - l

= I f fMg(
n=l },-l, >

<(> ( n )

= I f(«) f gMdX
n=l } ±-1, ^

(n)

Md\

Ci is the adjoint of C. .

2
On Z there are plenty of normal composition operators other than

the identity operator, as every invertible composition operator in this is

normal [4]. But strangely enough on I there is no non-trivial normal

composition operator. This is shown in the following theorem.

THEOREM 2.2. Let C. € S H . Then C is normal if and only if

(j) is the identity.

In order to prove this theorem we need the following lemma.

LEMMA 2 .3 . Let $ : N •*• N be a one-to-one and onto mapping. Then

4>(m) + <f~ (m) = 2m for all m (. N implies that (J) i s the identity.

Proof. Let <f>(l) = n . Then <)>(«) = 2n - 1 . Let (()~1(l) = m . Now

since <j>(l) + <J>~ (l) = 2 , we have n + m = 2 which is possible only when
n = m = 1 . Thus <(>(l) = 1 . Let us suppose that the result is true for
1, 2, . . . , k . We prove i t for k + 1 . Let (|)(&+l) = n ; then

4>{n) = 2n - (fe+l) . Let <(f (fc+l) = m . Then since

) + <()~1(fe+l) = 2(fc+l) , n + m = 2(fe+l) . Since « and m are not

less than or equal to k , we conclude <$>(k+l) = k + 1 and
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<t>~ (k+l) = k + 1 . Hence, by induction, <f>(n) = n for all n € N , which

implies that (f> is the identity.

Proof of Theorem 2.2. The sufficiency is obvious. To prove the

necessary part, let C. be normal and e be the sequence defined by

e (p) = 6 (the Kronecker delta). Thenmp

. Now

Cie'W = \CJ'

But since

for all

\C*e (p) = lM_ e (p)dX and m € <j>~ (p) for only one value of

p , we get

1/X I em(m)d\ = X /A .
P J{m}

 m P

Therefore cXe 2,,2

' where

where Xp stands for the character is t ic function of the set E . But if

<)> is not onto, <(> (m) is empty for some m € N , and hence

II m 2

X (w) = 0 for every n € // , which impl ies t h a t C.e = 0 . But

\C*e > 0 for all m € N , so that

which is a contradiction to the normality of C. . Hence C. is normal

implies that <t> is onto. By Corollary 2.3 of Theorem 2.1 of [6], C. is

one-to-one. Since C, is normal it has dense range. Thus by Corollary

2.6 of Theorem 2.U of [6], ty is one-to-one. Now since <t> is one-to-one,

a simple computation shows that
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By normality of C, and l e f t inver t ib i l i ty of $ we have

This after further simplication reduces to

(|>(m) + (j>~ (w) = 2m .

Hence by the above lemma, (j> is the ident i ty .

( 2\
COROLLARY 1. Let C, € B\l . Tftew C. i s an isometry if and only

if $ is the identity.

Proof. The sufficiency i s obvious. To prove the necessary par t ,

suppose C, i s an isometry. Then we have, by [ 2 ] ,

From this we conclude that

/" («) = 1 for every n € N ,

and hence by Lemma 1.1, <J> i s the ident i ty .

COROLLARY 2. Let C. € S i r . Then C. is unitary if and only if

<J> is the identity.

( 21
THEOREM 2.4. Let C, € flU I . Then C. is a oo-isometpy if and

only if ((> is the identity.

Proof. The sufficiency is again obvious. To prove the necessary

part, let C, be a co-isometry. Then

H e i | = l|e7"" for a11 m € N •
But ||c*em|| = X2/X , where m € <T1(p) and ||em||2 = X . Therefore we

have X = X , which implies that m = <J>(m) for a l l m (. N .m p
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This shows that <j> is the identity.

3. Invertible composition operators

The inver t ib i l i ty of <(> i s a necessary and sufficient condition for
2

the inver t ib i l i ty of C, on 1 [ 4 , Theorem 2 .2 ] . But th is i s not true

2
in the case of I , as i s shown in the next example.

EXAMPLE. Let <f> be a mapping from N into i t s e l f defined as

{ n/3 when n = p where p = 3\p -]+l) with p = 0 ,

n

n+1 otherwise.

Then <j> is inver t ible . But since

l!*r

(U/3)pn

a *""» = a

which goes to zero as n goes to infinity, we have that C, is not

bounded away from zero, and consequently C. is not invertible.

It is clear from the above example that characterization of

invertibility of C. in terms of invertibility of <}> (and vice versa) is

not possible in this case. But the invertibility of (j> together with an

extra condition characterises the invertibility of C, , as is shown in the

following theorem.

r 9i

THEOREM 3 .1 . Let C,^B\l\ . Then C. is invertible if and only

if <f> ie invertible and there exists an integer k 5 0 such that
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<j>~ (n) 5 k + n for all n € N .

In order to prove the theorem we need the following lemma.

I 2̂
LEMMA 3 .2 . Let 9 : N •*• N be a mapping. Then C. ( S p if and

only if there exists an integer M > 0 auah that X(<j>~ (n)) 1 M\({n}) for

all n i N .

Proof. Proof of th i s lemma follows from Theorem 1 of [ 3 ] .

Proof of Theorem 3.1 . Let C, be inver t ib le . If <f> is not one-to-
9

one, then <$>(n) = 4>(m) for at least two distinct m and n in N , and

hence a = a for all q in the range of C. . This shows that C, is
W ' 777 T y

not onto, which is a contradiction. If 9 is not onto, then there exists

a positive integer m such that m i <J>(/iO . Hence C,Xr •> = X , = 0
<p \777 J A " * 1 / 1

which shows that C, is not one-to-one. This is again a contradiction.

Further let there exist no integer k > 0 such that <j>~ (n) 5 k + n for

every n (. N . This implies that for each integer p > 0 there exists an

integer n such that
P

<t>~1(nJ > p + n [p = 1, 2, 3, ...] .

Consider the sequence <Xi i> . Then

2n
a P

2n
a P

0 as p
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This implies that C, i s not bounded away from zero and hence i t is not

inver t ib le . This i s a contradiction. Hence there exists an integer k =: 0

such that <(i (n) 2 k + n .

Conversely, suppose <j> is invertible and there exists an integer

D such that <J>~ (n

function \j) such that

k > 0 such that <J>~ (n) £ k + n for every n € N . Then there exists a

(<j> o \l>)(n) = (\f) o <J>)(n) = n ,

and <\>(n) > n - k for every n € tf . From this i t follows that

Hence by Lemma 1.1 we conclude that C, i s bounded. Since

C, i s inver t ib le .

This completes the proof of Theorem 3 .1 .
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