
psychometrika—vol. 84, no. 1, 41–64
March 2019
https://doi.org/10.1007/s11336-018-09656-z

ESTIMATING MULTILEVEL MODELS ON DATA STREAMS

L. Ippel

MAASTRICHT UNIVERSITY

M. C. Kaptein and J. K. Vermunt

TILBURG UNIVERSITY

Social scientists are often faced with data that have a nested structure: pupils are nested within schools,
employees are nested within companies, or repeated measurements are nested within individuals. Nested
data are typically analyzed using multilevel models. However, when data sets are extremely large or when
new data continuously augment the data set, estimating multilevel models can be challenging: the current
algorithms used to fit multilevel models repeatedly revisit all data points and end up consuming much
time and computer memory. This is especially troublesome when predictions are needed in real time
and observations keep streaming in. We address this problem by introducing the Streaming Expectation
MaximizationApproximation (SEMA) algorithm for fittingmultilevelmodels online (or “row-by-row”). In
an extensive simulation study, we demonstrate the performance of SEMA compared to traditional methods
of fitting multilevel models. Next, SEMA is used to analyze an empirical data stream. The accuracy of
SEMA is competitive to current state-of-the-art methods while being orders of magnitude faster.

Keywords: Data streams, expectationmaximization algorithm,multilevelmodels, machine (online) learn-
ing, SEMA, nested data.

1. Introduction

Novel technological advances—such as the widespread use of smartphone applications and
the increased use of experience sampling methods—facilitate monitoring individuals over exten-
sive periods of time (Barrett and Barrett, 2001; Beck, 2015; Buskirk and Andrus, 2012). When
we monitor the behavior of customers on webpages, patients’ compliance with their medical reg-
imen, or students’ performances, we are often interested in the behavior or traits of individuals.
Based on individual-level estimates of traits, we can tailor actions or treatments; for example, we
could recommend certain books tailored to individuals’ preferences as displayed by their brows-
ing behavior (see, for example, Kaptein and Duplisnky, 2013). Such tailoring can only be carried
out in real time when up-to-date predictions at the level of the individual are continuously avail-
able. In this paper, we present a computationally efficient algorithm for generating predictions of
individuals’ traits in situations in which data are continuously collected.

When we continuously monitoring the attitudes and behaviors of individuals, data collection
is effectively never finished: new customers continue to visit websites, patients continue to see
their doctors, and students continue to enter and leave universities. This situation, in which new
data enter continuously, is known as a data stream (Gaber, 2012; Gaber, Zaslavsky, and Krish-
naswamy, 2005). Due to the continuous influx of new observations, data streams quickly result in
(extremely) large data sets—possibly larger than would fit in computer memory. Even when the

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11336-018-
09656-z) contains supplementary material, which is available to authorized users.

Correspondence should be made to L. Ippel, Institute of Data Science, Maastricht University, Maastricht,
The Netherlands. Email: lianne.ippel@maastrichtuniversity.nl

41
© 2019 The Author(s)

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11336-018-09656-z&domain=pdf
http://orcid.org/0000-0001-8314-0305
https://doi.org/10.1007/s11336-018-09656-z
https://doi.org/10.1007/s11336-018-09656-z
https://www.cambridge.org/core

42 PSYCHOMETRIKA

storage of all of these observations is technically feasible, obtaining up-to-date predictions using
all available information is often computationally infeasible: the computational time to reestimate
the necessary model parameters each time the data set is augmented often increases nonlinearly
and quickly becomes unacceptable. In addition, the aforementioned examples all describe situ-
ations in which the collected data have a nested structure. This nesting introduces dependencies
among the observations, and these dependencies in turn violate a key assumption of many statisti-
cal models that assume that observations are (conditionally) independent (Kenny and Judd, 1986).
Nested structures are often dealt with using multilevel models (Goldstein and McDonald, 1988;
Steenbergen and Jones, 2002) which, due to their complexity, only exaggerate the computation-
time problems encountered when dealing with streaming data. Since the likelihood function of
a multilevel model has to be maximized iteratively (using, for example, the expectation maxi-
mization algorithm [EM, Dempster, Laird, and Rubin, 1977)], the computation time increases
exponentially. Thus, when real-time predictions of individuals’ scores are needed during a data
stream, efficient computational methods designed to deal with data streams are needed.

In the literature, several adaptations of the EM algorithm that are computationally more
efficient than the traditional EM algorithm have been proposed. For instance, Neal and Hinton
(1998) provide analytic proof and justifications for a number of possible adaptations to the general
EM algorithm to deal with large and/or growing data sets using batches of data. These adaptations
are further explained and extended in McLachlan and Peel’s Finite Mixture Models book (2000,
ch. 12) and byThiesson,Meek, andHeckerman (2001).Wolfe, Haghighi, andKlein (2008) discuss
how to parallelize the EM algorithm to deal with extremely large, but static, data sets. Finally, for a
number of specific statistical models, computationally efficient versions of the EM algorithm have
recently been proposed (Cappé and Moulines, 2009; Cappé 2011; Ippel, Kaptein, and Vermunt,
2016a; Liu, Almhana, Choulakian, andMcGorman, 2006). The current paper adds to this literature
by presenting a computationally efficient algorithm for the estimation of multilevel models—or
“linear mixed models”—in data streams. While Ippel, Kaptein, and Vermunt, (2016a) already
present an efficient algorithm for simple random intercept models, the current work nontrivially
extends these results—most notably in the ‘E-step’—to allow for an arbitrary number of random
effects and the covariances between these, and the inclusion of additional level 1 effects.

The SEMA (Streaming Expectation Maximization Approximation) algorithm can be catego-
rized as an online learning algorithm. Online learning refers to “computing estimates of model
parameters on-the-fly, without storing the data and by continuously updating the estimates asmore
observations become available” (Cappé, 2011). A simple illustration of online learning can be
provided by inspecting the computation of a simple sample mean. The standard, offline, algorithm
for computing a sample mean using,

1

n

n∑

t=1

xt ,

is inefficient since whenever a new data point enters, we increase n by one, and we redo our
computation by revisiting all our stored data points. As a result, all data have to be available in
computer memory, and the computation time grows each time a new observation is added.

An online algorithm for computing the sample mean solves these issues. When computing
the sample mean online, it is only necessary to store the sufficient statistics, n and x̄ , and update
these when a new data point enters1:

n ← n + 1

x̄ ← x̄ + xt − x̄

n
.

(1)

1See, e.g., Ippel, Kaptein, and Vermunt (2016b).

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

L. IPPEL ET AL. 43

Here, n is the total number of observations, x̄ is the sample mean, and ‘←’ is the assignment
operator, indicating that the left-hand side is replaced by what is on the right-hand side. Note that
we will use this operator throughout the paper.

In the following section, the traditional, offline, estimation of multilevel models using the EM
algorithm is explained in detail.Next,we illustrate the onlinefitting procedure ofmultilevelmodels
using the SEMA algorithmwe propose, and we discuss its computational gains. Subsequently, we
present a simulation study examining the performance of SEMA in terms of estimation accuracy
and prediction error. The simulation study is followed by an empirical example which highlights
the challenges researchers encounter when analyzing data streams in practice. Finally, the results
of both evaluations are discussed, and several directions for future research are highlighted.

Note that, in online supplementary material, additional results are presented. There, we
present the remaining results of the simulation study and the application. Furthermore, in sup-
plementary material, two illustrations are provided: the first illustration shows the effect of poor
starting values on SEMA’s performances, while the second illustration shows the influence of the
sequence in which data points arrive on SEMA’s parameter estimates.

2. Offline Estimation of Multilevel Models

Let individual j have i = 1, . . . , n j observations, and let n = ∑J
j=1 n j be total number of

observations collected from J individuals. The multilevel model can be denoted as:

yi j = x′
i jβ + z′i j b j + εi j ,

b j ∼ MVN (0,�)

εi j ∼ N (0, σ 2), (2)

where yi j is the response i of individual j , xi j is a p × 1 vector of fixed-effect data, zi j is a r × 1
vector of random-effect data, β is a p × 1 vector of fixed-effect coefficients, b j is a r × 1 vector
of random-effect coefficients, � is a r × r matrix with (co)variances of the random effects, εi j
is the error term for each observation, and σ 2 is the variance of the error term. The number of
observations per individual, n j , might differ across individuals. Furthermore, the variance of the
random effects and the error variance are assumed to be independent: ε ⊥ b j .

Often, the maximum likelihood framework is used to estimate the parameters of the above
multilevel model. If the random effects (b j) would have been observed, maximizing the log-
likelihood

�(β,�, σ 2|y, b j) = − n

2
ln σ 2 − 1

2

J∑

j=1

n j∑

i=1

((yi j − x′
i jβ − z′i j b j)

σ

)2

− J

2
ln |�| − 1

2

J∑

j=1

b′
j�

−1b j

(3)

would be relatively straightforward. However, since the random effects are not directly observed
(i.e., these are latent) we are confronted with a missing-data problem. The EM algorithm (Demp-
ster, Laird, and Rubin, 1977) handles this missing-data problem by imputing the missing values
with the expectations of b j ’s given the model parameters β, �, and σ 2 in the E-step, and subse-
quently maximizing the log-likelihood function given these expectations in the M-step.

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

44 PSYCHOMETRIKA

2.1. The Offline E-Step

When themissing b j ’s are imputed, there exist closed-form expressions to compute themodel
parameters. These expressions rely on a number of complete-data sufficient statistics (CDSS),
which are computed as part of the E-step. Each of the model parameters, β,�, and σ 2, has its
own CDSS which we refer to as t1, T2, and t3.

The CDSS for β is defined as follows:

t1(k) =
J∑

j=1

X ′
j Z j b̂ j (k), (4)

where X j is an n j × p matrix, Z j is n j × r matrix, k indexes the current iteration, t1(k) is an
p × 1 vector, and b̂ j (k) is given by:

b̂ j (k) =C−1
j (k)

(
Z′

j y j − Z′
jX j β̂(k−1)

)
. (5)

Here C j (k) quantifies the uncertainty of the imputations of b j ’s, and the subscript k − 1 indicates
that β̂ of the previous iteration is used in the computation.2 C j (k) itself is an r×r matrix given by:

C j (k) = Z′
j Z j + σ̂ 2

(k−1)�̂
−1
(k−1). (6)

The CDSS for the variance of the random effect, T2(k), is given by:

T2(k) =
J∑

j=1

b̂ j (k) b̂
′
j (k) + σ̂ 2

(k−1)

J∑

j=1

C−1
j (k), (7)

where T2(k) is an r×r matrix. In words, T2(k) is the sum of the squared random-effect coefficients
plus the additional uncertainty due to the fact that b j (k) is not observed.

Lastly, the CDSS of the residual variance, σ 2
(k), t3(k) is given by:

t3(k) =
J∑

j=1

u′u + σ̂ 2
(k−1)tr

⎛

⎝
J∑

j=1

C−1
j (k)Z

′
j Z j

⎞

⎠ . (8)

where u = y j − X j β̂(k−1) − Z j b̂ j (k), is the residual.

2.2. The Offline M-Step

In the M-step, the log-likelihood function is maximized, given the CDSS computed in the
E-step. In iteration k, the coefficients of the fixed effects, β, are computed using the normal
equations:

β̂(k) =
⎛

⎝
J∑

j=1

X ′
jX j

⎞

⎠
−1

J∑

j=1

X ′
j y j − t1(k). (9)

2For more details and proof, see Raudenbush and Bryk (2002), Chapter 14.

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

L. IPPEL ET AL. 45

The variance of the random effects (�(k)) is computed by dividing T2(k) by the number of
individuals:

�̂(k) = T2(k)

J
. (10)

Lastly, the residual variance (σ 2
(k)) is given by:

σ̂ 2
(k) = t3(k)

n
(11)

3. Online Estimation of Multilevel Models

Here, we introduce the Streaming Expectation Maximization Approximation (SEMA) algo-
rithm. At the end of this section, the full algorithm (see Algorithm 1) is described.

3.1. The Online E-step

Previously, we used subscript k to indicate the iterations of the EM algorithm. In this section,
we drop this subscript to emphasize that unlike the EM algorithm, the SEMA algorithm only
updates the CDSS using a single data point, without revisiting previous data points. Note that the
term data point refers to a vector which includes an identifier for an individual, the covariates
with fixed effects and random effects, and the observation of the dependent variable. When a data
point enters, the SEMA algorithm performs an E-step only for the individual that belongs to the
data point that recently entered. After the E-step for this individual, all three model parameters
are updated in the M-step. Due to this updating scheme, SEMA updates the parameter estimates
when a new data point enters, instead of fitting the model anew.

Two aspects of Eq. 4 (t1) are challenging in the context of a data stream. First, the CDSS for
β̂ consists of a summation over J individuals. If the (weighted) contribution of a new data point
would simply be added, then this would result in including the data from the same individual
repeatedly. Second, to compute t1 we need b̂ j which depends on the model parameters. Because
themodel parameters are updated each time a newdata point enters, obtaining the exact same result
using either the online or offline computation of this CDSS would imply that all contributions
to t1 need to be recomputed for each data point. This is not feasible. Therefore, we resort to an
approximate solution. Note that this approximation improves as the number of observations per
individual grows.

The solution we chose is as follows: when a new data point enters, the contribution of the
individual belonging to this data point is subtracted from t1 to account for the fact that this
individual has already contributed to t1. Next, b̂ j of this individual is recomputed, such that the
new contribution to t1 of this individual can be added. Because the online implementation of the
CDSS is not exactly the same as the offline CDSS, we refer to the online computed CDSS of
the fixed effects as t̃1. The contribution to t̃1 resulting from a single individual can be computed
using:

t̃1(t) ← t̃1(t−1) − t1 jt (t−1) + t1 jt (t) , (12)

where t1 jt (t−1) represents the previous contribution of individual jt , which is the individual asso-
ciated with the most recent data point.

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

46 PSYCHOMETRIKA

For the CDSS, we use subscript t to indicate that the CDSS is obtained by subtracting the
previous contribution of individual jt after which the new contribution is added. The computation
of t1 j is given by

t1 j = X ′
j Z j b̂ j , (13)

where the X ′
j Z j matrix can be updated online:

X ′
j Z j ← X ′

j Z j + xi j z′i j . (14)

Here, X ′
j Z j is only updated for the individual associated with the most recent data point, and xi j

and z′i j are the new values of fixed effects and random covariates of this individual. Unlike Eq. 12,
Eq. 14 is exact. Using Eq. 14, none of the data points themselves (xi j and zi j) need to be stored
since only the results of the matrix multiplication are stored. When new data present themselves,
the outer product of xi j z′i j is merely added to the current result.

The coefficients of the random effects (Eq. 5: b̂ j = C−1
j (Z′

j y j − Z′
jX j β̂)) can similarly be

approximated online. We first detail how C j (Eq. 6) is computed online. The computation of C j

uses a matrix product Z′
j Z j . When new data enter, this matrix product can be updated online as

follows:

Z′
j Z j ← Z′

j Z j + zi j z′i j , (15)

which is similar to Eq. 14. The Z′
j Z j matrix needs to be stored per individual. The online

computation of C j is given by:

C j = Z′
j Z j + σ̂ 2�̂

−1
. (16)

Using the online formulation of C j , the next step to compute b̂ j is given by:

z j y j ← z j y j + zi j yi j , (17)

where z j y j is an r × 1 vector. Note that the matrix multiplication Z′
jX j (see Eq. 5) is equal to

the transpose of the matrix X ′
j Z j in Eq. 14. The online computation of b̂ j is:

b̂ j = C−1
j (z j y j − (X ′Z j)

′β̂) (18)

Similar to the computation of t̃1, T̃2 is also a summation over individuals (Eq. 7: T2 =∑J
j=1 b̂ j b̂

′
j + σ̂ 2 ∑J

j=1 C
−1
j). Therefore, a similar update regime is used for this CDSS:

T̃2(t) ← T̃2(t−1) − T2 jt (t−1) + T2 jt (t), (19)

where

T2 j = b̂ j b̂
′
j + σ̂ 2C−1

j . (20)

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

L. IPPEL ET AL. 47

In order to update T̃2 online, the previous contribution of this individual is again subtracted before
the new contribution is computed and added.

Finally, the online computation of t3 is presented (Eq. 8). The computation of t3 is unlike the
previous two CDSS, a summation over n data points. Therefore, we first rewrite the contribution
of each single data point, as a contribution of an individual to the t̃3:

t3 j = y′
j y j + β̂

′
X ′

jX j β̂ + b̂
′
j Z

′
j Z j b̂ j − 2y′

jX j β̂ − 2y′
j Z j b̂ j

+ 2β̂
′
X ′

j Z j b̂ j + σ̂ 2tr(C−1
j)

(21)

where y′
j y j is computed as the sum of the squared observations of the dependent variable:

∑n j
i=1 y

2
i j , and where the computation of X ′

jX j is similar to that of Z′
j Z j . Using Eq. 21, t̃3

can be updated similarly to the other CDSS:

t̃3(t) ← t̃3(t−1) − t3 jt (t−1) + t3 jt (t), (22)

Equation 21 is a reformulation of the estimation of t̃3(t), compared to what was presented in Ippel,
Kaptein, and Vermunt (2016a). In the 2016 paper, t̃3(t) is computed using averages as summary
statistics. That implementation, however, cannot be used when one chooses to model level 1
effects (fixed effects and random slopes). Using the current implementation, level 1 effects can be
included in the model. The online implementation of the E-step presented here makes it possible
to drop the historical data points and only store summaries of the data points (see for exact details
Algorithm 1 below).

3.2. The Online M-Step

The online implementation of theM-step of both the variance of the random effects, �̂ = T̃2
J ,

and the residual variance, σ̂ 2 = t̃3
n , is the same as the offline implementation discussed above. This,

however, does not hold for the online computation of β̂ = (
∑J

j=1 X
′
jX j

)−1 ∑J
j=1 X

′
j y j − t̃1,

which we detail in this section.
The first element of Eq. 9 is the

∑J
j=1 X

′
jX j matrix. This matrix can be updated online using

the same update regime as already presented in Eq. 14:

X ′X ← X ′X + xi j x′
i j . (23)

However, in order to subsequently compute β̂, the inverse of X ′X is needed. Computing the
inverse of a matrix can be a costly procedure if the number of covariates is large. A solution is
to directly update the inverted matrix using the Sherman–Morrison formula (Escobar and Moser,
1993; Plackett, 1950; Sherman and Morrison, 1950):

(X ′X)−1 ← (X ′X)−1 − (X ′X)−1xi j x′
i j (X

′X)−1

1 + x′
i j (X

′X)−1xi j
. (24)

Using this formulation, X ′X only has to be inverted once, after which the inverted matrix is
directly updated with the new data. In practice, this means that one has to wait until enough data
have entered, such that X ′X is invertible.

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

48 PSYCHOMETRIKA

The second part of Eq. 9 is the multiplication of the covariates with the dependent variable.
This can be updated online as follows:

xy ← xy + xi j yi j , (25)

where xy is a p × 1 vector. Inserting the online computed components of Eq. 9 into the equation
results in the computation of β̂:

β̂ = (X ′X)−1(xy − t̃1) (26)

We present an overview of the SEMA algorithm, assuming that X ′X is already inverted,
in Algorithm 1. The first line indicates which elements the algorithm uses, where θ denotes the
elements which are available at the global level, whereas θ j contains all the elements which are
stored for each individual. Only θ j for the individual that belongs to the most recent data point is
used in the update step; the remaining θ j ’s do not have to be available in memory. The standard
EM algorithm would use all data, from each individual, to fit the model. Thus, while the memory
usage of the EM algorithm grows as a function of n, SEMA’s memory usage only grows with J .
An implementation of the SEMA algorithm in [R] (R core Team, 2018) can be found at https://
github.com/L-Ippel/SEMA.

Algorithm 1
SEMA: Notation and equations can be found in the second and third sections of this paper.

1: input: xi j , zi j , yi j , θ, θ j

2: θ = n, J, J, (X ′X)−1, xy, β̂, t̃1, �̂, T̃2, σ̂
2, t̃3

3: θ j = n j , y
2
j , b j , Z

′
j Z j , X ′

j Z j ,C j , X ′
j X j , x j y j , z j y j , t1 j , T2 j , t3 j

4: for t in data stream do
5: if jt is unknown then
6: J ← {J, jt } � J is vector with identifiers
7: J ← J + 1 � J is the length of vector J
8: create new record for jt
9: end if

� update global parameters
10: n ← n + 1
11: (X ′X)−1, xy (Eq. 24 and 25)

� update individual parameters
12: n j ← n j + 1

13: y2j ← y2j + y2i j
14: X ′

j X j (Eq. 23), x j y j (Eq. 25), Z′
j Z j (Eq. 15), X ′

j Z j (Eq. 14), z j y j (Eq. 17)
� E-step

15: compute C j , b j (Eq. 16 and 18)
16: compute t1 j , T2 j , t3 j (Eq. 13, 20, and 21,)

17: update t̃1, T̃2, t̃3 (Eq. 12, 19, and 22)
� M-step

18: compute model parameters β̂, �̂, σ̂ 2 (Eq. 26, 10, and 11)
19: return β̂, �̂, σ̂ 2

20: end for

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://github.com/L-Ippel/SEMA
https://github.com/L-Ippel/SEMA
https://www.cambridge.org/core

L. IPPEL ET AL. 49

4. Computational Complexity

We have motivated the SEMA algorithm described above by focusing on its computational
gains. While below we strengthen this argument by presenting the running times of both EM
and SEMA in our simulation studies, we first focus theoretically on the computational gains
attained by SEMA. Evaluating the exact computational complexity of the EM algorithm is not
straightforward. First, the complexity is dependent on the stopping criterion of the algorithm
(maximum number of iterations versus some convergence rule); second, the implementation
(using the formulations which are sums over data points versus sums over individuals) influences
the computational complexity. Third, the context in which the complexity is evaluated matters:
the number of individuals in the data compared to the number of observations within individuals
influences the number of computations needed. Finally, it makes a large difference whether all
the observations are assumed to be already available in memory or whether new observations
streaming in. Because of these difficulties, we do not provide exact bounds, but rather we provide
an intuition regarding the computational gains of switching from an offline (EM) algorithm to an
online (SEMA) algorithm.

To illustrate the computational gains of SEMA, let us revisit the computation of a simple sam-
ple mean—as discussed in the introduction—either offline or online. Using an offline procedure,
each time a new data point enters, the entire procedure needs to be redone: we need to recount
the number of data points and we need to recompute a sum over all the data points. Ignoring the
details of the exact computation, this process thus executes one set of computations for n = 1,
two sets of computations for n = 2, etc. Hence, the number of computations involved scales by

1 + 2 + 3 + · · · + n = 1

2
n(n + 1),

= O(n2).

as a function of n. It is well known that when data keep entering at a rapid pace even rather simple
computations become infeasible when the number of computations scales quadratically with n
(ch. 3, Cormen, Leiserson, Rivest and Stein, 2009). Using an online algorithm instead, the mean
can be directly updated as shown in Eq. 1. The computational complexity of this online algorithm
to compute the sample mean is equal to

1 + 1 + 1 + · · · + 1 = n,

= O(n),

and is thus linear in n.
In Fig. 1, the differences in computational complexity between the offline and online compu-

tations of the sample mean are illustrated. For the EM algorithm versus the SEMA algorithm, this
difference is magnified. While SEMA is still O(n), the offline EM algorithm repeatedly revisits
all the data to reestimate the multilevel model and thus the number of computations grows even
faster than O(n2). This is illustrated most easily by comparing specific parts of the EM and the
SEMA algorithm; we highlight two differences that directly influence the computation times:

1. The computation of (X′X)−1: while the EM algorithm recomputes theX′Xmatrix each
time a new data point arrives and subsequently and computes the inverse of this matrix,
the SEMA algorithm directly updates the inverted matrix. Inverting the matrix can be
especially costly when there are a large number of covariates. Thus, SEMA beats EM
by both not revisiting historical data, and not requiring repeated matrix inversions.

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

50 PSYCHOMETRIKA

Figure 1.
Computational complexity of online versus offline algorithms to compute the sample mean.

2. The computation of the CDSS: using the traditional formulation of the EM algorithm, all
contributions to the CDSS for all individuals are reestimated when new data enter, and
this process is repeated multiple times; it is repeated for as many iterations as necessary
to allow the EM algorithm to converge. On the other hand, the SEMA algorithm only
recomputes the contributions to these CDSS for one single individual, and does so only
once.

Note that some of these improvements do come at a cost: because CDSS contributions associ-
ated with individuals that do not reoccur in the data stream are not updated, their estimates become
outdated. Especially when individuals do not return repeatedly, these outdated contributions could
bias the resulting estimates. Regular updates—or “sweeps”—through the individual-level esti-
mates that recompute the CDSS contributions for all individuals at given intervals could decrease
this bias. This idea is already introduced in Ippel, Kaptein, and Vermunt (2016a) and referred to
as “SEMA Update”.

5. Simulation Study

5.1. Design

Our simulation study is directly inspired by the application presented in Kooreman and
Scherpenzeel (2014). In this study, the authors use a random intercept model with level 1 and
level 2 predictors to analyze their longitudinal data regarding fluctuations in people’s weight (for
more details, see “SEMA in action” below). By carefully extending the model used by Kooreman
and Scherpenzeel (2014), we examine the influence of two important factors on the performance
of SEMA.

First, we examine the changes in the number of random effects. Varying the number of
random effects influences the reliability of the random coefficients, because the information of
the data is spread out over more latent variables. Accordingly, the settings with more random
effects are expected to be more difficult for SEMA to fit the multilevel model, i.e., SEMA will
need to process more data before the parameter estimates are close to the ML values. Second,
we examine variations in the associations between the random effects; this factor is also well
known to affect the performance of the EM algorithm. Increasing the strength of the associations
between the random effects, i.e., introducing collinearity, makes it more difficult to estimate the
coefficients.

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

L. IPPEL ET AL. 51

In our simulations, we examine a total of 4 conditions. Inspired by the application presented
in Kooreman and Scherpenzeel (2014), all four conditions consider 15 fixed effects: 5 continuous
and one categorical variablewith 4 categories (i.e., 3 dummyvariables) at level 1, and 3 continuous
variables and 2 categorical variables, one consisting of 2 categories (to represent gender) and one
variable with 3 categories (education level) at level 2. Next, the four conditions are as follows:

• Condition A: a simple random intercept model (a model containing a single variance
component),

• Conditions B, C, and D: a random intercepts and slopes model with weak (B), medium
(C), and strong (D) associations between these random effects. Note that in these three
conditions we have a total of 5 variance components, one for intercept and four “slopes”
for four of the five level 1 fixed effects.

Inspired by the application, the (true) parameter values used to generate the data are:

• Fixed effects: 100.0, 0.1, 0.5, 0.9, 1.3, 1.7, 2.1, 2.5, 2.9, 3.3, 3.7, 4.1, 4.5, 4.9, and 5.3;
• Variance random effects: 50 (of intercept = 100.0; condition A), 0.2, 0.6, 1.8, and 5.0 (of,

respectively, 0.1, 0.5, 0.9, and 1.3; conditions B–D);
• Correlations between the random effects: 0 (conditionB), .15 (conditionC) or .5 (condition

D);
• Residual variance: 5.0 (all conditions);

The generated data streams consist of n = 50,000 observations, and the number of individ-
uals was equal to 1000. The data were generated as follows: first the level-2 observations were
generated, both fixed-effect data and the random-effect coefficients including the (co)variances.
The coefficients of the random effects as well as the level-2 data were drawn from multivariate
normal distributions. Then, using these 1000 individuals, 50,000 samples were drawn at random,
resulting in a data stream where the observations from each individual are spread out over the
entire data stream. In expectation, each individual has n j = 50 observations. Note that additional
studies are presented in online supplementary material.

5.2. Procedure

At the start of the analysis of the data stream, we used a training set of n = 2000. While the
EM and SEMA algorithms require some data to ensure that the X′X is invertible, this training set
is mainly used to ensure that the start values are chosen well. When these start values are far from
the ML values, the EM algorithm requires many iterations to converge. For the SEMA algorithm,
this issue is even more pronounced as the CDSS are only updated one individual at a time. Since
this study is not concerned with how many iterations the EM algorithm requires to converge, the
start values for the EM algorithm are those values the data were generated with. The EM algorithm
was run until convergence with a maximum of 800 iterations, where convergence is defined by
parameter values changing less than 0.0001 from one iteration to the next. The obtained values
were subsequently used as start values for the SEMA algorithm.

Besides the SEMAalgorithm as introduced in this paper, we also implemented SEMAUpdate
(SU, Ippel, Kaptein, and Vermunt 2016a). In this algorithm, at set times, the estimates for each of
the J individuals are updated by performing a “sweep” through all the currently stored estimates.
In our study, we set the additional update regime to every n = 1000 data points. This update is
useful in situations where individuals do not return often (or drop out), since the update allows
their outdated contributions to be revised. Note that this update only uses the statistics which are
aggregated at the individual level, and it therefore does not revisit older data points.

We compare these two implementations of the SEMA algorithm with two implementations
of the EM algorithm. The first implementation uses all data. To keep the simulation study within
an acceptable running time, the EM algorithm was set to update the parameter estimates in

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

52 PSYCHOMETRIKA

(incremental) batches of n = 1000 data points. The maximum number of iterations was set
to 20, and the start values were those estimates obtained in the previous batch. At the end of
the stream, the EM algorithm was run until convergence. The second EM implementation was
inspired by an approach commonly used in data streams: a sliding window (Gaber, Zaslavsky,
and Krishnaswamy, 2005). A sliding window is an efficient tool to make sure that the analyses
will not take increasingly more time or computer memory by fixing the amount of data taken
into account. Whenever new data enter the data set, the oldest data are forgotten. Thus, the data
under consideration, i.e., the “Window”, only consist of the m most recent data points. In our
study, the sliding window EM implementation (SWEM) used a window of m = 10,000 data
points. Similar to the EM implementation, the SWEM implementation was set to update only
every 1000 data points. During the simulation study, we monitored two aspects of the estimation
procedures. First, wemonitored the accuracy of the parameter estimates of SEMAcompared to the
EM implementations. Second, we examined the prediction accuracy of the different procedures
(where for new individuals the first prediction was generated by setting the random effects (b j)
equal to zero). All conditions were replicated 1000 times.

5.3. Results

In Table 1, the estimated fixed effects and their standard errors across conditions are presented.
The results are shown at two points during the stream, n = 25,000 and n = 50,000. Only
two coefficients are presented, though the remaining coefficients have similar results, see online
supplementary material. The results of SEMA are very similar to the results of the EM algorithm,
although the variance over the simulation runs is larger for SEMA compared to EM and SEMA
Update (SU): the additional updates of SU result in smaller variances. The standard errors are very
similar: they deviatewith (less than) .002 acrossmethods. The results of SWEMvary slightlymore
than the EM due to the fact that this method only uses the n = 10,000 most recent data points.
In Table 2, the estimates of random effects are presented at two points during the data stream.
All methods show a slight underestimation of the random intercept which can be expected from
ML estimates, though all methods do retrieve the data-generating values of the random slopes,
which are smaller in value. The estimates of the random intercept vary more than the estimates
of the random slopes, independent of the estimation method. Most likely, this is a result of the
ML framework and not of the estimation methods. To improve these results, the restricted ML
(REML) framework could be used. In the REML framework, corrected variance terms are used
for the estimation, controlling for the loss of the degrees of freedom for the estimation of the
coefficients of the fixed effects (Harville, 1977).

Table 3 contains the mean absolute error (MAE), the root-mean-squared error (RMSE), and
the 95% empirical confidence interval at the end of the data stream for the fixed effects, the
variance of the random effects, and the residual variance. The presented results in this table are
from the same fixed effects and random effects presented in Tables 1 and 2. The data-generating
values of the presented parameters are β = 100 and .1; φ2 = 50 and .2; and σ 2 = 5. The residual
variance and the mean absolute prediction error are also presented in Figs. 2 and 3. While EM
generally slightly outperforms SEMA, in terms of MAE and RMSE, the confidence intervals are
very similar and the differences are small.

Lastly, in Table 4, we present the mean absolute error and root-mean-squared error with 95%
empirical confidence intervals over all n predictions. The method with the lowest mean absolute
error and root-mean-squared error is SEMA Update (SU), followed by SEMA; however, all four
methods are very similar.

In Figs. 2 and 3, the four panels present the different conditions. In each panel, error bars
depict the 95% empirical confidence interval. The first cluster of bars belongs to n = 25,000 and
the second cluster to the end of the data stream. Except for SWEM, the lengths of these bars are

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

L. IPPEL ET AL. 53

T
a
b
l
e
1.

A
ve
ra
ge

re
su
lts

of
th
e
es
tim

at
es

of
tw
o
of

th
e
15

fix
ed

ef
fe
ct
s
ov
er

10
00

si
m
ul
at
io
n
ru
ns
.

C
on

di
tio

n
n ×

10
00

SE
M
A

SU
E
M

SW
E
M

β̂
s2

se
a

β̂
s2

se
a

β̂
s2

se
a

β̂
s2

se
a

rv
=
1

25
10

0.
00
2

0.
23
9

0.
01
5

10
0.
00
3

0.
23
2

0.
01
5

10
0.
00
7

0.
20
4

0.
01
4

10
0.
00
7

0.
20
4

0.
01
4

50
10
0.
00
1

0.
22
7

0.
01
5

10
0.
00
2

0.
21
6

0.
01
5

10
0.
00
5

0.
19
8

0.
01
4

10
0.
00
7

0.
19
6

0.
01
4

25
0.
09
8

0.
00
1

0.
00
1

0.
09
8

0.
00
1

0.
00
1

0.
09
8

0.
00
1

0.
00
1

0.
09
8

0.
00
1

0.
00
1

50
0.
10
0

0.
00
0

0.
00
0

0.
10
0

0.
00
0

0.
00
0

0.
10
0

0.
00
0

0.
00
0

0.
10
0

0.
00
1

0.
00
1

rv
=
5,
co
r
=
0

25
99

.9
94

0.
26
2

0.
01
6

99
.9
93

0.
25
2

0.
01
6

99
.9
91

0.
21
0

0.
01
4

99
.9
91

0.
21
0

0.
01
4

50
99

.9
92

0.
24
2

0.
01
6

99
.9
91

0.
22
6

0.
01
5

99
.9
86

0.
19
9

0.
01
4

99
.9
86

0.
20
2

0.
01
4

25
0.
09
9

0.
00
1

0.
00
1

0.
09
9

0.
00
1

0.
00
1

0.
09
9

0.
00
1

0.
00
1

0.
09
9

0.
00
1

0.
00
1

50
0.
10
0

0.
00
0

0.
00
1

0.
10
0

0.
00
0

0.
00
1

0.
10
0

0.
00
0

0.
00
1

0.
10
1

0.
00
1

0.
00
1

rv
=
5,
co
r
=
.1
5

25
99

.9
71

0.
23
9

0.
01
6

99
.9
72

0.
23
0

0.
01
5

99
.9
72

0.
19
4

0.
01
4

99
.9
72

0.
19
4

0.
01
4

50
99

.9
70

0.
22
2

0.
01
5

99
.9
70

0.
20
7

0.
01
4

99
.9
70

0.
18
5

0.
01
4

99
.9
72

0.
18
6

0.
01
4

25
0.
10
1

0.
00
1

0.
00
1

0.
10
1

0.
00
1

0.
00
1

0.
10
1

0.
00
1

0.
00
1

0.
10
1

0.
00
1

0.
00
1

50
0.
10
1

0.
00
0

0.
00
1

0.
10
1

0.
00
0

0.
00
1

0.
10
1

0.
00
0

0.
00
1

0.
10
0

0.
00
1

0.
00
1

rv
=
5,
co
r
=
.5

25
99

.9
97

0.
21
2

0.
01
5

99
.9
97

0.
19
9

0.
01
4

99
.9
99

0.
15
6

0.
01
2

99
.9
99

0.
15
6

0.
01
2

50
99

.9
97

0.
18
7

0.
01
4

99
.9
97

0.
16
7

0.
01
3

99
.9
92

0.
14
1

0.
01
2

99
.9
99

0.
14
9

0.
01
2

25
0.
10
2

0.
00
1

0.
00
1

0.
10
2

0.
00
1

0.
00
1

0.
10
1

0.
00
1

0.
00
1

0.
10
1

0.
00
1

0.
00
1

50
0.
10
0

0.
00
0

0.
00
1

0.
10
0

0.
00
0

0.
00
1

0.
10
0

0.
00
0

0.
00
1

0.
09
9

0.
00
1

0.
00
1

D
at
a-
ge
ne
ra
tin

g
va
lu
es

w
er
e:

β
=

10
0
an
d

β
=

.1
.

a s
e
=

√
1

S−
1

∑
s(

β̂
s−

β
)2

√ S
,w

he
re

S
is
th
e
to
ta
ln

um
be
r
of

si
m
ul
at
io
n
ru
ns
.

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

54 PSYCHOMETRIKA

T
a
b
l
e
2.

A
ve
ra
ge

re
su
lts

of
th
e
es
tim

at
es

of
th
e
va
ri
an
ce

of
on

e
(c
on

di
tio

n
A
)
or

tw
o
(c
on

di
tio

ns
B
–D

)
of

th
e
5
ra
nd

om
ef
fe
ct
s
ov
er

10
00

si
m
ul
at
io
n
ru
ns
.

C
on

di
tio

n
n ×

10
00

SE
M
A

SU
E
M

SW
E
M

φ̂
2

s2
se
a

φ̂
2

s2
se
a

φ̂
2

s2
se
a

φ̂
2

s2
se
a

rv
=
1

25
49

.7
56

5.
30
5

0.
07
3

49
.7
44

5.
30
2

0.
07
3

49
.7
02

5.
28
5

0.
07
3

49
.7
02

5.
28
5

0.
07
3

50
49

.7
30

5.
15
7

0.
07
2

49
.7
12

5.
15
2

0.
07
2

49
.6
87

5.
13
9

0.
07
2

49
.6
90

5.
20
9

0.
07
3

rv
=
5,
co
r
=
0

25
49

.6
31

5.
06
8

0.
07
2

49
.6
22

5.
06
7

0.
07
2

49
.5
68

5.
05
4

0.
07
2

49
.5
68

5.
05
4

0.
07
2

50
49

.6
26

4.
94
4

0.
07
1

49
.6
03

4.
94
2

0.
07
1

49
.5
69

4.
93
2

0.
07
2

49
.5
69

5.
11
7

0.
07
3

25
0.
22
0

0.
00
7

0.
03
1

0.
20
2

0.
00
4

0.
03
2

0.
19
4

0.
00
2

0.
03
2

0.
19
4

0.
00
2

0.
03
2

50
0.
19
9

0.
00
0

0.
03
2

0.
19
9

0.
00
0

0.
03
2

0.
19
9

0.
00
0

0.
03
2

0.
19
9

0.
00
2

0.
03
2

rv
=
5,
co
r
=
.1
5

25
49

.7
03

4.
77
6

0.
07
0

49
.6
93

4.
77
3

0.
07
0

49
.6
44

4.
76
5

0.
07
0

49
.6
44

4.
76
5

0.
07
0

50
49

.7
15

4.
62
3

0.
06
9

49
.6
93

4.
62
2

0.
06
9

49
.6
69

4.
62
1

0.
06
9

49
.6
56

4.
72
4

0.
07
0

25
0.
22
8

0.
00
7

0.
03
1

0.
20
9

0.
00
4

0.
03
1

0.
19
4

0.
00
2

0.
03
2

0.
19
4

0.
00
2

0.
03
2

50
0.
20
1

0.
00
0

0.
03
2

0.
20
1

0.
00
0

0.
03
2

0.
20
1

0.
00
0

0.
03
2

0.
20
0

0.
00
2

0.
03
2

rv
=
5,
co
r
=
.5

25
49

.7
38

5.
53
8

0.
07
5

49
.7
30

5.
53
1

0.
07
5

49
.7
22

5.
52
3

0.
07
5

49
.7
22

5.
52
3

0.
07
5

50
49

.7
40

5.
32
8

0.
07
3

49
.7
29

5.
32
3

0.
07
3

49
.7
55

5.
33
4

0.
07
3

49
.7
33

5.
44
7

0.
07
4

25
0.
23
4

0.
00
6

0.
03
1

0.
21
9

0.
00
4

0.
03
1

0.
19
7

0.
00
1

0.
03
2

0.
19
7

0.
00
1

0.
03
2

50
0.
20
0

0.
00
0

0.
03
2

0.
20
0

0.
00
0

0.
03
2

0.
20
0

0.
00
0

0.
03
2

0.
20
0

0.
00
1

0.
03
2

D
at
a-
ge
ne
ra
tin

g
va
lu
es

w
er
e:

φ
2

=
50

an
d

φ
2

=
0.
2.

a s
e
=

√
1

S−
1

∑
s(

φ̂
2 s
−φ

2
)2

√ S
,w

he
re

S
is
th
e
to
ta
ln

um
be
r
of

si
m
ul
at
io
n
ru
ns
.

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

L. IPPEL ET AL. 55

Table 3.
Overview of results at the end of the data stream: mean absolute error (MAE), root-mean-squared error (RMSE), and the
empirical 95% confidence interval.

Condition SEMA SU

MAE RMSE C Ilow C Iup MAE RMSE C Ilow C Iup

β

rv = 1 0.375 0.476 99.057 100.931 0.366 0.464 99.067 100.931
0.008 0.010 0.080 0.120 0.008 0.010 0.080 0.120

rv = 5, cor = 0 0.393 0.492 99.041 101.016 0.380 0.475 99.075 100.954
0.014 0.018 0.064 0.136 0.014 0.018 0.064 0.136

rv = 5, cor = .15 0.377 0.472 99.073 100.883 0.362 0.455 99.105 100.856
0.014 0.018 0.067 0.135 0.014 0.018 0.067 0.135

rv = 5, cor = .5 0.345 0.432 99.183 100.858 0.325 0.409 99.223 100.815
0.015 0.018 0.062 0.134 0.014 0.018 0.063 0.133

φ

rv = 1 1.802 2.286 45.293 54.279 1.803 2.287 45.278 54.270
rv = 5, cor = 0 1.800 2.254 45.745 54.065 1.803 2.257 45.722 54.048

0.011 0.014 0.173 0.227 0.011 0.014 0.173 0.227
rv = 5, cor = .15 1.768 2.168 45.660 53.883 1.771 2.171 45.635 53.849

0.012 0.015 0.173 0.229 0.012 0.015 0.174 0.229
rv = 5, cor = .5 1.851 2.322 45.406 54.469 1.852 2.322 45.413 54.451

0.011 0.014 0.174 0.229 0.011 0.014 0.174 0.229
σ 2

rv = 1 0.025 0.031 4.941 5.064 0.025 0.031 4.941 5.064
rv = 5, cor = 0 0.027 0.034 4.934 5.064 0.027 0.034 4.934 5.065
rv = 5, cor = .15 0.027 0.034 4.936 5.070 0.027 0.034 4.935 5.070
rv = 5, cor = .5 0.027 0.034 4.931 5.066 0.027 0.034 4.931 5.066

Condition EM SWEM

MAE RMSE C Ilow C Iup MAE RMSE C Ilow C Iup

β

rv = 1 0.350 0.445 99.124 100.880 0.347 0.443 99.109 100.877
0.008 0.010 0.080 0.120 0.020 0.025 0.052 0.146

rv = 5, cor = 0 0.355 0.447 99.160 100.908 0.357 0.449 99.158 100.928
0.014 0.018 0.065 0.136 0.026 0.033 0.036 0.162

rv = 5, cor = .15 0.341 0.431 99.133 100.852 0.344 0.431 99.139 100.838
0.014 0.018 0.067 0.136 0.025 0.032 0.042 0.162

rv = 5, cor = .5 0.298 0.375 99.24 100.744 0.308 0.386 99.238 100.725
0.014 0.018 0.063 0.134 0.025 0.031 0.035 0.161

φ

rv = 1 1.804 2.287 45.276 54.253 1.822 2.302 45.267 54.377
rv = 5, cor = 0 1.807 2.261 45.675 54.024 1.830 2.302 45.480 54.163

0.011 0.014 0.173 0.227 0.032 0.040 0.129 0.280
rv = 5, cor = .15 1.774 2.174 45.615 53.819 1.790 2.200 45.479 53.724

0.012 0.015 0.174 0.228 0.031 0.039 0.134 0.284
rv = 5, cor = .5 1.853 2.321 45.466 54.471 1.874 2.348 45.305 54.451

0.011 0.014 0.174 0.229 0.026 0.033 0.142 0.270
σ 2

rv = 1 0.025 0.031 4.941 5.064 0.060 0.075 4.849 5.134
rv = 5, cor = 0 0.027 0.034 4.934 5.065 0.076 0.095 4.820 5.185
rv = 5, cor = .15 0.027 0.034 4.935 5.070 0.076 0.096 4.826 5.203
rv = 5, cor = .5 0.027 0.034 4.931 5.065 0.073 0.091 4.818 5.183

Data-generating values: β = 100 and .1; φ2 = 50 and .2; σ 2 = 5.0.

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

56 PSYCHOMETRIKA

4.
8

4.
9

5.
0

5.
1

5.
2

data stream

pa
ra

m
et

er
 v

al
ue

0 10000 20000 30000 40000 50000

●
● ●

●

● ●● ●● ●

RV = 1

4.
8

4.
9

5.
0

5.
1

5.
2

data stream

pa
ra

m
et

er
 v

al
ue

0 10000 20000 30000 40000 50000

●
●

●

●

● ●● ●● ●

RV = 5, cor = 0

4.
8

4.
9

5.
0

5.
1

5.
2

data stream

pa
ra

m
et

er
 v

al
ue

0 10000 20000 30000 40000 50000

●
●

●

●

● ●● ●● ●

RV = 5, cor = .15

4.
8

4.
9

5.
0

5.
1

5.
2

data stream

pa
ra

m
et

er
 v

al
ue

0 10000 20000 30000 40000 50000

●

●

●

●

● ●
● ●● ●

RV = 5, cor = .5

Condition C

Condition A Condition B

Condition D(d)(c)

(a) (b)

Figure 2.
Estimated residual variance, the true value is 5. The error bars indicate the 95% empirical interval of the 1000 simulation
runs. The ‘×’ is EM, triangle is SEMA Update, open circle is SEMA, and closed circle is Sliding Window EM.

highly comparable for both the average residual variance (Fig. 2), as the moving average, absolute
prediction error (Fig. 3). The moving average absolute prediction error was computed as follows:
the window consists of 1000 data points and moves with 100 data points at the time.

The result obtained in this simulation study, combinedwith the simulation studies presented in
supplementary material, clearly demonstrates the competitive performance of SEMA compared
to EM. These studies show that the obtained estimates are similar and have similar variance.
However, it has to be noted that—as expected based on our theoretical analysis of the computation
complexity—the difference in computation time between SEMA and EM is large. Focusing just
on condition A, we find that on average the simulation runs took 147.6 s per run for SEMA
(including the training set of 2000 data points), while they took 1255.8 s for traditional EM.
This is true despite the fact that SEMA provides updated estimates for each individual data point
during the data stream, while our implementation of EM only updates its estimates once every
1000 data points.

6. SEMA in Action: Predicting Weight Fluctuations

In this section, the SEMA algorithm is applied to an actual data stream originating from an
experiment done by Kooreman and Scherpenzeel (2014). Using this application, we illustrate the
practical issues that occur when analyzing data streams: we need to choose appropriate starting
values, decide on an update regime of full SEMA updates, and deal with possible changes in the
data-generating process that occur over time. In particular, the latter issue is instructive in this

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

L. IPPEL ET AL. 57

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

data stream

M
ea

n
ab

so
lu

te
 e

rr
or

0 10000 20000 30000 40000 50000

●

● ●

●

● ●● ●
● ●

RV = 1

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

data stream

M
ea

n
ab

so
lu

te
 e

rr
or

0 10000 20000 30000 40000 50000

●

●

●

●

● ●● ●

●
●

RV = 5, cor = 0

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

data stream

M
ea

n
ab

so
lu

te
 e

rr
or

0 10000 20000 30000 40000 50000

●

●

●

●

● ●● ●

●
●

RV = 5, cor = 0

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

data stream

M
ea

n
ab

so
lu

te
 e

rr
or

0 10000 20000 30000 40000 50000

●

●

●

●

● ●● ●

●
●

RV = 5, cor = 0

Condition C

Condition A Condition B

Condition D(d)(c)

(a) (b)

Figure 3.
Estimated residual variance, the true value is 5. The error bars indicate the 95% empirical interval of the 1000 simulation
runs. The ‘×’ is EM, triangle is SEMA Update, open circle is SEMA, and closed circle is Sliding Window EM.

study; about 300 participants were added to the study after approximately two years of running
the study. The application also highlights how the specification of random effects that depend on
the time in the stream itself (e.g., days of the week, months, etc.) needs to be considered critically
as, for the models to converge, we need observations at each possible level.

The study by Kooreman and Scherpenzeel (2014) concerned the fluctuations in individuals’
weight—over repeated measurements—in a longitudinal study using respondents from the Lon-
gitudinal Internet Studies for Social Sciences (LISS) panel. Among the respondents of the LISS
panel, about 1000 smart scales were handed out. These smart weighting scales were equipped
with an Internet connection. Respondents were instructed to use the scale barefoot, such that it
could measure, among other variables, weight, percentage of muscle tissue, and percentage of
fat tissue. The smart scale sent the data to a central server, where the data were combined with
respondents’ survey data. The smart scales were handed out in the beginning of 2011, and the
data collection continued until February 2014. While the data set contains the data from roughly 3
years, the authors used the data of 2011 only. We, however, analyze the full available data stream.

Since the data include time stamps, we were able to replay the data stream from 2011 till
February 2014. Thus, in this evaluation of SEMA, the data of Kooreman and Scherpenzeel (n =
78,021, J = 883) were combined with the data of the remaining years. The first experimental
factor of interest was the (instructed) frequency of the scale usage: every day, every week, or
not specified. The second factor was the feedback respondents received: their weight and the
norm what they should weigh, their weight and their goal weight, or only their weight. Both
experimental factors were crossed, resulting in nine conditions of interest. Before running SEMA
on the data stream we removed a number outliers (0.1% of the data), for which weight fluctuated

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

58 PSYCHOMETRIKA

Table 4.
Average mean absolute error (MAE) and average root-mean-squared error (RMSE) of the 1000 simulation runs.

Condition Error SEMA SU EM SWEM

Mean C Ilow C Iup Mean C Ilow C Iup Mean C Ilow C Iup Mean C Ilow C Iup

rv = 1 MAE 1.860 1.847 1.872 1.860 1.847 1.872 1.870 1.857 1.883 1.919 1.906 1.933
RMSE 2.349 2.333 2.365 2.349 2.333 2.365 2.372 2.352 2.392 2.432 2.411 2.453

rv = 5, cor = 0 MAE 2.058 2.043 2.072 2.057 2.042 2.072 2.075 2.060 2.090 2.273 2.254 2.292
RMSE 2.631 2.610 2.651 2.630 2.610 2.650 2.665 2.642 2.689 2.912 2.883 2.940

rv = 5, cor = .15 MAE 2.055 2.041 2.069 2.054 2.040 2.068 2.072 2.057 2.086 2.267 2.250 2.285
RMSE 2.628 2.608 2.649 2.627 2.607 2.647 2.662 2.638 2.684 2.906 2.881 2.931

rv = 5, cor = .5 MAE 2.031 2.017 2.045 2.030 2.016 2.045 2.046 2.032 2.061 2.216 2.199 2.234
RMSE 2.594 2.574 2.615 2.593 2.573 2.613 2.627 2.603 2.652 2.839 2.813 2.866

Average MAE = 1
1000 (

∑n
i=1 |ŷi−yi |

n), n = 48000: the length of the data stream, without the training set.

Average RMSE = 1
1000 (

√∑n
i=1(ŷi−yi)2

n).

Table 5.
Fitted model to the smart-scale data stream.

Variables Fixed Random Number of categories Reference

Intercept � �
Day of the week � � 7 Friday
Gender � 2 Male
Year of birth � – 1970 (centered)
Length � – 174cm (centered)
Feedback � 3 Only weight
Frequency � 3 Not specified
Time of measurement � 4 Morning

The dependent variable is weight.

with more than 5 kg within a day for a single respondent. The remaining data set consisted of
n = 288, 521 observations from a total of J = 1269 respondents. In Table 5, we present an
overview of the model fitted to the data stream by indicating the variables included as fixed or
random, as well as the number of levels (or categories) of each of the variables.

Since the authors of the original paper focused on the “effect of Monday,” which implies that
on average individuals were 0.2 kg heavier onMondays than on Fridays, we similarly focus on the
estimation of this “Monday” effect. In this application, we used the same methods as presented
in the simulation study. To ensure that we have good starting values, we used the first 2 months
of data (n = 6894, J = 472) as a training set.3 Another practical decision is when to update the
offline EM algorithm. For this study, we chose to rerun the EM algorithm every Sunday night,
using a maximum of 1000 iterations. The sliding window implementation EM used a window
of 12,000 data points, which is approximately equal to 2 months of data. SWEM and SEMA
Update performed an additional update every night, where SWEM was allowed a maximum of
100 iterations and SU was allowed 2 EM cycles, since the model is rather large and the data rather
noisy. In January 2013, new participants were added to the study, a large new group of about 300
new participants. To deal with this sudden—but known—change in the data-generating process,

3Due to logistic reasons, not all smart scales were handed out at that moment.

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

L. IPPEL ET AL. 59

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

data stream

es
tim

at
ed

 p
ar

am
et

er

0 5000 10000 15000 20000 25000

●

● ●
● ● ●

●

●
●

●

●

●

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

data stream x1000

es
tim

at
ed

 p
ar

am
et

er

0 50 100 150 200 250

●

● ● ● ● ●
● ● ●

●
● ●

Estimated fixed effect of Monday(a)

Estimated standard deviation of Monday effect(b)

Figure 4.
The estimated Monday effect and its standard deviation. The ‘×’ is EM, triangle is SEMA Update, open circle is SEMA,
and closed circle is Sliding Window EM, the most right ‘×’ is EM using all data and 2000 iterations.

0
1

2
3

4

data stream x1000

M
ea

n
ab

so
lu

te
 e

rr
or

0 50 100 150 200 250

Figure 5.
Mean absolute error (MAE), a moving average of 1000 data points, shifting with 500 data points at a time.

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

60 PSYCHOMETRIKA

we retrain the model using all data observed so far including the newly recruited participants
(which is at n = 163,000). In order to do so, the EM algorithm was run until convergence with a
maximum of 2000 iterations and after which the parameter estimates of EM algorithm were used
as input for the other methods.

In Fig. 4, the estimates of the fixed effect of Monday are compared to Friday (a), the standard
deviation of the effect of Monday (b). In Fig. 5, the moving average absolute prediction error is
illustrated. Please find all remaining parameter estimates again in supplementary material online.
The open circles indicate the SEMA algorithm, the triangles SEMA update, the ‘×’ is EM and
the black solid circle is Sliding Window EM.While all methods seem to illustrate a rather similar
fluctuation of the Monday effect over time, the sliding window EM (SWEM) implementation
fluctuates more than the other methods since it only uses about 2 months of the most recent data
points. Finally, in Fig. 5, themoving average absolute prediction error of all four fitting procedures
is presented. The window consists of 1000 data points, and the window shifts 100 points at a time.
The high outlier from both the EM and SWEM is due to the fact that in that point in the data
stream new participants were included in the stream. SWEM somewhat outperforms the other
methods, most likely because in fact the data-generating mechanism changes over time, a change
the other methods are insensitive to.

To conclude, based on our results, there seems to be some evidence in favor of a “Monday
effect.” However, this result should be interpreted with care for several reasons. First, while
three out of the four estimation methods replicate the findings reported on by Kooreman and
Scherpenzeel (2014), SWEM shows a sharp decrease in effect size toward the end of the stream.
Hence, the estimated effect seems variable over time. Second, it has to be noted that the estimated
variance of the Monday effect is very large compared to its average effect. This implies that
while there is some evidence in favor of a “Monday effect” on average, the variance of the effect
between participants is large, and thus, the average effect is a poor description of the underlying
true mechanism. Hence, we would conclude that while an average effect of Monday exists in the
data analyzed by Kooreman and Scherpenzeel (2014), the effect seems unstable and very variable
between participants. Note that the differences between the EM, SEMA, and SU estimates are
negligible, and SEMA thus seems well suited to analyze the current data stream.

7. Discussion

In this paper, we developed an extension of the StreamingExpectationMaximizationApprox-
imation (SEMA) algorithm of which a rudimentary version was supplied in Ippel, Kaptein, and
Vermunt (2016a). In its original conception, SEMAwas able to estimate simple multilevel models
that contained only level-2 fixed effects and a single random intercept. The extension we discuss
in the paper enables researchers to fit much more flexible multilevel models that include fixed
effects at level-1 (e.g., repeated measurements), level-2 (e.g., individual characteristics), and mul-
tiple random intercepts and random slopes. This extension is not trivial: compared to the initial
specification by Ippel, Kaptein, and Vermunt (2016a), the E-step of SEMA algorithm has been
totally revised to deal with the covariances resulting from the larger number random effects. This
change directly influences the specification of the CDSS and their update rules. In this paper, we
have shown that—due to its online estimation method—SEMA is computationally more efficient
than traditional fitting procedures. We have demonstrated in two extensive simulations and one
application that this computational efficiency comes at very modest costs: the estimates resulting
from SEMA are very close to the current state of the art.

Commonly used methods to fit multilevel models (e.g., EM algorithm or Newton–Raphson)
repeatedly pass over the data set to estimate the model parameters. When new data enter, these
procedures are repeated to update the model parameters including the new data. Especially when

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

L. IPPEL ET AL. 61

the number of random effects is large, many passes over the data are required to obtain stable
estimates of the model parameters. In such cases, these traditional fitting procedures quickly
become infeasible for large data sets or continuous data streams. SEMA, on the other hand,
only uses each data point only once, after which it can be discarded. SEMA thus estimates the
model parameters in a computationally less complex manner than the common procedures since
it does not have to revisit the same data repeatedly. Therefore, SEMA can be used to analyze data
streams while accounting for the nested structure that is often observed in data streams. SEMA
also effectively deals with the problems of storing extremely large data sets: the information
from each individual data point is aggregated to the level of individuals and hence more easily
stored. Our algorithm enables researchers to use multilevel models for prediction purposes in real
time. In a simulation study, we showed that even when the number of observations per individual
is small and the number of parameters is large, parameter estimates were estimated accurately.
Furthermore, we showed that the predictive performance of SEMAwas competitive to traditional
fitting procedures.

Alongside the development of SEMA,many relatedmethods are currently being developed to
analyze data streams. For instance, variational inference, expectation propagation, and sequential
MCMC (sMCMC) sampling are actively explored (Bayesian) methods to deal with large data
sets. Variational methods speed up posterior computations by replacing the (global) posterior,
which often has an unknown distributional form, by a distribution with a known distributional
form (Broderick, Boyd, Wibisono, Wilson, and Jordan, 2013; Kabisa (Tchumtchoua), Dunson,
and Morris, 2016). (Stochastic) Expectation propagation similarly approximates the posterior;
however, it does so locally (Li, Hernández-Lobato, and Turner, 2015). SMCMC provides an
appealing extension to MCMC methods because the generated MCMC draws are updated as
opposed to sampled anew when additional data enter (Yang and Dunson, 2013). The SEMA
approach presented in this paper, which involves updating the likelihood during a data stream,
could prove relevant to these fields of research by providing a computationally attractive method
of updating the likelihood.

While the current extension of SEMA algorithm allows for fitting multilevel models with
fixed and random effects in data streams, extensions are possible and need further development.
First, the SEMA algorithm builds on the EM algorithm to fit a linear multilevel model. However,
the EM algorithm is also used to fit nonlinear models whose likelihood is a member of the
exponential family. Using the strong link with the EM algorithm, SEMA can potentially also be
used to fit a range of alternative models which deal with multilevel data. Examples include the
negative binomial which is a combination of the beta distribution with a Poisson distribution, or
beta binomial function which is a combination of, respectively, a beta and a binomial distribution.
These extensions are yet to be developed.

Second, SEMA, and its current [R] implementation, could be extended further by implement-
ing efficient parallelization. For truly massive data sets, in which the number of participants J is
extremely large, one might encounter a situation in which the storage—and subsequent update—
of all θ j ’s on a single machine is infeasible. In these cases, we can store subsets of the θ j ’s on
different machines—each of which can efficiently be retrieved using hashing. Next, we can use the
current θ , and the respective θ j to compute an update of θ j ; as θ will change slowly in a massive
data stream, we can choose to batch update θ occasionally, while we update the respective θ j ’s
each in parallel on different machines as the data points arrive.

Third, in Kooreman and Scherpenzeel (2014)—our empirical example—the authors actually
used a multilevel model with more fixed effects than the model we used in this paper. The original
model also containedfixed effects for the calendarmonths. Fitting thismodel requires observations
in (almost) each month, such that the X ′X matrix becomes invertible (i.e., at least semi-positive
definite). Consequently, using SEMAas it is formulated in this paper, amodel including the effects
of months cannot be fitted to the data before the data stream has run for almost a year. Further

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

62 PSYCHOMETRIKA

research should focus on extending the model during the data stream, such that these effects can
be included dynamically once enough data have been collected.

7.1. Fluctuations Over Time

In addition to modeling the repeated measurements of the same individuals using a linear
multilevel model, there is a broad range of more complex models that could potentially deal with
dependencies between observations. Cappé (2011), for instance, studied an online EM algorithm
to fit hiddenMarkovModels. In such amodel, the influence of the previous observation is included
in the current estimationmodel. Also, when observations are equally spaced, models such as state-
space models (Arulampalam, Maskell, Gordon, and Clapp, 2002) or autoregressive models [e.g.,
AR(1)] can be used as well to model fluctuations over time. Extending SEMA to cover these cases
provides a promising direction for future work.

Furthermore, the current version of SEMA assumes that the true data-generating process is
stationary and that, over the course of the data stream, we converge to the “correct” parameter
estimates. However, when monitoring individuals over time, it is likely that the data-generating
process itself changes over time, also known as concept drift (Widmer and Kubat, 1996). Sliding
window approaches, in which only the most recent data points are included in the analysis, are
often used in such cases: we examined SWEM as an example. In this case, the chosen window
size is inherently somewhat arbitrary, and appropriate window sizes will depend on the problem
at hand. In general, a larger window stabilizes the estimates with the risk of being less sensitive
to concept drift, while a smaller window allows for the quick detection of concept drift with the
risk of obtaining extremely high variance estimates.

Note that when using a sliding window approach one still reestimates the model parameters
each time the window slides, albeit using only the data within the window. SEMA provides an
alternative: a fixed learn rate could be used to limit the influence of the older data when dealing
with data streams. In Eq. 1, it is easily seen that the “learn rate” for computing an online sample
mean is 1

n . Thus, as the stream becomes longer (and n grows larger) the learn rate decreases and the

computedmean stabilizes. If, instead, wewould alter the update rule of x̄ to read x̄ ← x̄+ xt−x̄
min(n,α)

for some fixed value of α of say 10,000, we effectively create a smooth moving window in the
sense that older data points are smoothly discarded—though without revisiting older data points.
This can, with some effort, similarly be implemented in SEMA. For instance, for the estimation
of the fixed effects the influence of the existing (X′X)−1 could be decreased such that the new
data points get more weight. Introducing such a ‘smooth sliding window’, where previous data
gradually receive less weight, provides a way of dealing with changing (true) parameter values.

7.2. Missing Data

In a data stream, in addition to not observing all p covariates for each data point, often not
all covariates enter at the same time. Some information might be missing or might be observed
later, e.g., learning the gender of a respondent after already receiving a number of data points.
Missingness is a research area on its own (Donders, van der Heijden, Stijnen, and Moons, 2006;
van der Palm, van der Ark, and Vermunt, 2016), but the types of missingness generated in data
streams raise new research questions. For example, related to the issue of item nonresponse, is
the issue of unit nonresponse due to attrition. If a subgroup of respondents, e.g., the less affluent
respondents, drop out of the study, the parameter estimates of the model could become biased.
As SEMA only updates the CDSS contributions when an individual returns her contributions will
become outdated if she does not return. While we do not explicitly study solutions to attrition in
data streams, additional runs over the individuals (is implemented in “SEMA Update”) could be
used to update all contributions to the CDSS. Alternatively, one could also choose to update the
contributions of those who do not return within a given period of time (which is related to the

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core

L. IPPEL ET AL. 63

partial EM algorithm, see, Neal and Hinton, 1998; Thiesson, Meek, and Heckerman, 2001). Note
that both types of missingness, unit and item, are issues to be dealt with in future research on data
streams.

7.3. Closing Remarks

Continuous data collection is slowly becoming pervasive in the social sciences: popular
data collection methods such as experience sampling and novel sensing technologies provide
continuous data streams of human behavior. Often these data have a nested structure: observations
are nested within individuals and the dependencies introduced by this nesting should be accounted
for in the analysis. In this paper, we presented the SEMA algorithm, a computationally efficient
algorithm to analyze data that contain a nested structure and arrive in a continuous fashion.
Hence, multilevel models with numerous fixed and random effects can now be fit to continuous
data streams (or extremely large static data sets), in a computationally efficient fashion.

Acknowledgments

We would like to express our thanks to Prof. Peter Kooreman for sharing their data. We
thank Daniel Ivan Pineda for his feedback on the writing process and Alexander Malic for his
contributions to the simulation studies. Lastly, we want to thank the anonymous reviewers for
their constructive feedback, which increased the quality of this paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

References

Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-
Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–188. https://doi.org/10.1109/78.
978374.

Barrett, L. F., & Barrett Daniel, J. (2001). An introduction to computerized experience sampling in psychology. Social
Science Computer Review, 19(2), 175–185.

Beck, E. N. (2015). The invisible digital identity assemblages in digital networks. Computers and Composition, 35,
125–140.

Broderick, T., Boyd, N., Wibisono, A., Wilson, A. C., & Jordan, M. (2013). Streaming variational Bayes. In Neural
information processing systems (pp. 1727–1735).

Buskirk, T., & Andrus, C. (2012). Smart surveys for smart phones: Exploring various approaches for conducting online
mobile surveys via smartphones. Survey Practice, 5(1), 1–11.

Cappé, O. (2011). Online EM algorithms for hidden Markov models. Journal of the Computational and Graphical
Statistics, 20(3), 1–20.

Cappé, O., & Moulines, E. (2009). Online expectation-maximization algorithm for latent data models. Journal of the
Royal Statistics Society: Series B (Statistical Methodology), 71(3), 593–613.

Cormen, T., Leiserson, C., Rivest, R., & Stein, C. (2009). Introduction to algorithms (3rd ed.). London, Cambridge, MA:
The MIT Press.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society Series B (Methodological), 39(1), 1–38.

Donders, A. R. T., van der Heijden, G. J., Stijnen, T., &Moons, K. G. (2006). Review: A gentle introduction to imputation
of missing values. Journal of Clinical Epidemiology, 59(10), 1087–1091. https://doi.org/10.1016/j.jclinepi.2006.01.
014.

Escobar, L. A., & Moser, E. B. (1993). A note on the updating of regression estimates. The American Statistician, 47(3),
18–26.

Gaber, M. M. (2012). Advances in data stream mining. WIREs Data Mining and Knowledge Discovery, 2(1), 79–85.

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/78.978374
https://doi.org/10.1109/78.978374
https://doi.org/10.1016/j.jclinepi.2006.01.014
https://doi.org/10.1016/j.jclinepi.2006.01.014
https://www.cambridge.org/core

64 PSYCHOMETRIKA

Gaber, M. M., Zaslavsky, A., & Krishnaswamy, S. (2005). Mining data streams: A review. SIGMOD, 34(2), 18–26.
Goldstein, H., & McDonald, R. P. (1988). A general model for the analysis of multilevel data. Psychometrika, 53(4),

455–467.
Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and related problems. Journal

of the American Statistical Association, 72(358), 320–340.
Ippel, L., Kaptein, M. C., & Vermunt, J. K. (2016a). Estimating random-intercept models on data streams. Computational

Statistics and Data Analysis, 104, 169–182.
Ippel, L., Kaptein, M. C., &Vermunt, J. K. (2016b). Dealing with data streams: An online, row-by-row estimation tutorial.

Methodology, 12, 124–138.
Kabisa (Tchumtchoua), S., Dunson, D. B., & Morris, J. S. (2016). Online variational bayes inference for high-

dimensional correlated data. Journal of Computational and Graphical Statistics, 25(2), 426–444. https://doi.org/
10.1080/10618600.2014.998336.

Kaptein, M., & Duplinsky, S. (2013). Combining multiple influence strategies to increase consumer compliance. Inter-
national Journal of Internet Marketing and Advertising, 8(1), 32–53.

Kenny, D. A., & Judd, C. M. (1986). Consequences of violating the independence assumption in analysis of variance.
Psychological Bulletin, 99(3), 422–431.

Kooreman, P., & Scherpenzeel, A. (2014). High frequency body mass measurement, feedback and health behaviors.
Economics and Human Biology, 14, 141–153.

Li, Y., Hernández-Lobato, J. M., & Turner, R. E. (2015). Stochastic expectation propagation. In Advances in neural
information processing systems (Vol. 28, pp. 2323–2331).

Liu, Z., Almhana, J., Choulakian, V., & McGorman, R. (2006). Online EM algorithm for mixture with application to
internet traffic modeling. Computational Statistics Data Analysis, 50(4), 1052–1071. https://doi.org/10.1016/j.csda.
2004.11.002.

McLachlan, G., & Peel, D. (2000). Finite mixture models. New York: Wiley.
Neal, R. M., & Hinton, G. E. (1998). A view of the EM algorithm that justifies incremental, sparse, and other variants.

In Jordan, M. I. (Ed.), Learning in graphical models. NATO ASI Series (Series D: Behavioural and Social Sciences),
(Vol. 89, pp. 355–368). Dordrecht: Springer

Plackett, R. (1950). Some theorems in least squares. Biometrika, 37, 149–157.
R Core Team. (2018). R: A language and environment for statistical computing [computer software manual]. Vienna,

Austria: R Core Team. Retrieved April 26, 2018 from https://wwww.RR-project.org/
Raudenbush, S. W., & Bryk, A. S. (2002). Chapter 14: Estimation theory. In Hierarchical linear models: Applications

and data analysis methods, 2nd edn. Thousand Oaks, CA: Sage Publications.
Sherman, J., & Morrison, W. J. (1950). Adjustment of an inverse matrix corresponding to a change in one element of a

given matrix. The Annals of Mathematical Statistics, 21(1), 124–127.
Steenbergen, M. R., & Jones, B. S. (2002). Modeling multilevel data structures. American Journal of Political Science,

46(1), 218–237.
Thiesson, B., Meek, C., & Heckerman, D. (2001). Accelerating EM for large databases. Machine Learning, 45(3), 279–

299. https://doi.org/10.1023/A:1017986506241.
van der Palm,D.W., van derArk, L. A., &Vermunt, J. K. (2016). A comparison of incomplete-datamethods for categorical

data. Statistical Methods in Medical Research, 25(2), 754–774. https://doi.org/10.1177/0962280212465502.
Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts.Machine Learning, 23(1),

69–101.
Wolfe, J., Haghighi, A., & Klein, D. (2008). Fully distributed EM for very large data sets. In Proceedings of the 25th inter-

national conference on Machine learning—ICML ’08 (pp. 1184–1191). https://doi.org/10.1145/1390156.1390305.
Yang, Y., & Dunson, D. B. (2013). Sequential Markov Chain Monte Carlo. ArXiv e-prints.

Manuscript Received: 11 APR 2017
Published Online Date: 22 JAN 2019

Downloaded from https://www.cambridge.org/core. 11 Jan 2025 at 10:31:55, subject to the Cambridge Core terms of use.

https://doi.org/10.1080/10618600.2014.998336
https://doi.org/10.1080/10618600.2014.998336
https://doi.org/10.1016/j.csda.2004.11.002
https://doi.org/10.1016/j.csda.2004.11.002
https://wwww.RR-project.org/
https://doi.org/10.1023/A:1017986506241
https://doi.org/10.1177/0962280212465502
https://doi.org/10.1145/1390156.1390305
https://www.cambridge.org/core

	Estimating Multilevel Models on Data Streams
	Abstract
	1 Introduction
	2 Offline Estimation of Multilevel Models
	2.1 The Offline E-Step
	2.2 The Offline M-Step

	3 Online Estimation of Multilevel Models
	3.1 The Online E-step
	3.2 The Online M-Step

	4 Computational Complexity
	5 Simulation Study
	5.1 Design
	5.2 Procedure
	5.3 Results

	6 SEMA in Action: Predicting Weight Fluctuations
	7 Discussion
	7.1 Fluctuations Over Time
	7.2 Missing Data
	7.3 Closing Remarks

	Acknowledgments
	References

