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A high-speed tandem hydrofoil cascade
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This paper gives, in the limit of infinite Froude number, a closed-form, analytical
solution for steady, two-dimensional, irrotational, infinite-depth, free-surface, attached
flow over a submerged tandem cascade of hydrofoils for arbitrary angle of attack, depth of
submergence and interfoil separation. The multiply connected flow domain is conformally
mapped to a concentric annulus in an auxiliary plane. The complex flow potential and its
derivative, the complex velocity, are obtained in the auxiliary plane by considering their
form at known special points in the flow and the required conformal mapping is determined
by explicit integration, allowing accurate evaluation of various flow quantities including
the lift on each foil. The circulation around the foils causes the foil array to act as a row
of point vortices, or a shear layer, and so, for positive angles of attack, the flow speed at
the free surface can substantially exceed the speed at depth, with the speeds simply related
through the lift coefficient. Decreasing the interfoil separation decreases the disturbance
to the free surface and greatly increases the lift per hydrofoil, thus allowing for the
shallower operation of a hydrofoil array than of an isolated foil for a given lift requirement.
Further, the flow over a hydrofoil array approaches its infinite depth form significantly
more rapidly than that over an isolated foil. In contrast to the infinite-submergence case
where a through-array flow can be imposed, in the finite submergence case, periodicity
and the presence of the free surface mean that there is no net flow between the foils.

Key words: waves/free-surface flows

1. Introduction

The hydrodynamic forces on hydrofoils are determined primarily by flow separation (if
present), the Froude number of the flow and the submergence of the array (Acosta 1973).
Most investigations (Faltinsen 2005; Molland & Turnock 2022) consider single hydrofoils
or short tandem arrays. There appear to be few, if any, analytical descriptions of the
flow past near-surface hydrofoil cascades. The earliest relevant theoretical work is that
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modelling turbine blades as a periodic array of flat plates (Joukovskii 1890; König 1922;
Kawada 1930) at a prescribed angle of attack in an unbounded fluid. The purpose of the
present paper is to extend these analyses, following Marshall & Johnson (2023, MJ23
herein), to include the effect of proximity to a free surface. Progress is made by restricting
attention to flows at infinite Froude number thus obtaining the flow fields and forces in
closed form, and allowing discussion of the effect of arbitrary array submergence and
foil separation. It will be shown that the disturbance to the free surface decreases as the
interfoil separation decreases leading to substantially higher lift per hydrofoil. Further, the
flow over a hydrofoil array approaches its infinite submergence form significantly more
rapidly the smaller the interfoil separation.

Section 2 formulates the problem. Section 3 obtains the solution using a method related
to that of Michell (1890) and Joukovskii (1890). The multiply connected flow domain,
in the complex z-plane, is conformally mapped, by a mapping to be determined, to a
concentric annulus in an auxiliary complex ζ -plane. The complex flow potential w(z)
and its derivative w′(z) are obtained in terms of ζ by considering their form at known
points in the flow, as in Chaplygin’s method of special points (Gurevitch 1965, § 5). The
required conformal mapping is then determined here by explicit integration. Semenov
& Wu (2020) use this method to obtain an integral equation formulation for isolated
submerged obstacles. Crowdy & Green (2011), Crowdy, Llewellyn Smith & Freilich (2013)
and subsequent co-workers use a related method to discuss hollow vortices. Section 4
shows that in this limit, due to the absence of surface waves and separation, the drag
on the foils vanishes and obtains the lift as a function of the angle of attack, depth of
submergence and foil separation. Section 5 describes surface profiles, flow patterns and
force predictions. A reader who is mainly interested in the properties of the flow solutions
obtained could initially omit the analytical details of §§ 2–4 and begin at § 5. Section 6
summarises the minimum numerical computation required to obtain the lift coefficient
and reproduce the examples presented in § 5 and then briefly discusses the results.

2. Problem formulation

We consider the steady, planar, free-surface, attached flow of a fluid of infinite depth past
a periodic row of submerged hydrofoils, which we model as flat plates – i.e. straight line
segments, or, slits – of finite length. We assume the fluid to be inviscid and incompressible,
and the flow to be irrotational. We also assume an infinite Froude number, i.e. we ignore the
effect of gravity on the free surface, and ignore surface tension, whose effect is negligible
on typical hydrofoil scales. We consider the flow domain to lie in a complex z-plane, where
z = x + iy. We denote this domain by D. It is a periodic domain. An example is sketched in
figure 1. We denote the free surface of D by ∂D0. The shape of ∂D0 is unknown a priori but
will be determined as part of our solution. We denote the period of the row of hydrofoils
(and hence of D) – i.e. the interfoil separation – by λ (∈ R, > 0). We denote the angle of the
hydrofoils to the positive x-direction measured at their leading endpoints (or, edges) by α,
so −α gives their angle of attack. We consider α over the range (−π/2,π/2). The case of
a row of horizontal hydrofoils – i.e. α = 0 – is trivial (the foils do not disturb the flow past
them), and thus we henceforth ignore it, although we will retrieve it later as a limiting case
of our results – see § D.1. We will also not consider rows of strictly vertical hydrofoils, i.e.
α = ±π/2; this is because our analysis relies on the foils having trailing endpoints, where
we will be imposing the Kutta condition. However, we will present limits of our results
for which α → ±π/2 – see § D.2. For the example sketched in figure 1, −π/2 < α < 0,
so the angle of attack is positive. Without loss of generality, we normalise the hydrofoils
to be of unit length. Furthermore, we fix the leading endpoint of one of the hydrofoils to
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D

z1(= 0)

z2(= eiα)

z3

α

∂D1

∂D0

Oncoming flow

λ

zc

yc(= Im{zc})

Figure 1. Sketch of a section of the flow domain D for a free-surface flow of a fluid of infinite depth past a
periodic row of submerged hydrofoils in a complex z-plane (z = x + iy). ∂D0 denotes the free surface (in blue).
The hydrofoils (red) are modelled as slits of unit length. λ denotes the period of the row of hydrofoils (and hence
of D). α denotes the angle of the foils to the positive x-direction measured at their leading endpoints, so −α
gives their angle of attack. (For the case sketched, −π/2 < α < 0.) ∂D1 denotes one of the foils whose leading
and trailing endpoints lie at z1 = 0 and z2 = eiα , respectively. z3 denotes a stagnation point on the leading face
of ∂D1. zc denotes a local extremum of ∂D0 (a peak when −π/2 < α < 0; a trough when 0 < α < π/2) and
yc denotes its imaginary part which we define to be the leading-edge submergence of the foils. D extends to
infinity horizontally in both directions and vertically downwards.

be at the origin. We denote this foil by ∂D1 and its leading endpoint by z1. We denote the
trailing endpoint of ∂D1 by z2, so z2 = eiα .

We represent the velocity field of the flow by the vector (u(x, y), v(x, y)). We assume
that as y → −∞, the flow is uniform and in the positive x-direction, i.e. to leading order,

(u(x, y), v(x, y)) ∼ (U∞, 0) as y → −∞ (2.1)

for some real constant U∞ > 0. We can define a complex potential, w(z) = φ(x, y)+
iψ(x, y), for the flow, where φ(x, y) and ψ(x, y) are the associated velocity potential and
streamfunction, respectively. Here, w(z) possesses the following properties. It is analytic
in the interior of D and w′(z) = u(x, y)− iv(x, y) gives the complex velocity, where here
and throughout this paper, we use ′ with respect to a function of a single variable to denote
the function’s derivative. It follows from (2.1) that, to leading order,

w(z) ∼ U∞z as y → −∞. (2.2)

One may also deduce that for z ∈ D,

w(z + λ) = w(z)+ ϕλ (2.3)

for some (real) constant ϕλ. Next, since ∂D0 and ∂D1 are both streamlines of the flow,
Im{w(z)} must be constant along them, i.e.

Im{w(z)} = ψj for z ∈ ∂Dj, j = 0, 1, (2.4)

for some constants ψ0 and ψ1. For the same reason, one may deduce that

Im{eiαw′(z)} = 0 for z ∈ ∂D1. (2.5)

Furthermore, it follows from Bernoulli’s equation and our assumption of an infinite Froude
number and zero surface tension that

|w′(z)| = U0 for z ∈ ∂D0, (2.6)

for some constant U0. Here, U0 will tend to U∞ as λ tends to infinity, i.e. in the limit of
flow past just a single hydrofoil (as considered by MJ23). In addition, one may deduce that
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for z local to the leading endpoint, z1 (= 0), of ∂D1, to leading order,

w′(z) ∼ Az−1/2 (2.7)

for some constant A. Thus, the velocity field is singular at z1. To ensure that the velocity
field is bounded at the trailing endpoint, z2, of ∂D1, we impose the Kutta condition there,
thus assuming a certain circulation Γ , say, around each of the hydrofoils, so∮

C
dw(z) = Γ, (2.8)

where C is a simple closed contour that contains ∂D1 (but none of the other foils) in
its interior and itself lies entirely in the interior of D, and we integrate around C in the
anticlockwise direction. Finally, one may also deduce that there must be a single stagnation
point of the flow on the leading face of each foil. We assume these to be the only stagnation
points of the flow. We denote the stagnation point on ∂D1 by z3. More specifically, one may
deduce that for z local to z3, to leading order,

w′(z) ∼ B(z − z3) (2.9)

for some constant B.

3. A conformal parametrisation

We will seek D as the image of a domain Dζ in a complex ζ -plane, under a conformal
map z(ζ ). More specifically, we take Dζ to be the concentric annulus that is bounded by
the circles C0 and C1 that are centred on the origin and of radius 1 and q, respectively, for
some q with 0 < q < 1. An example is sketched in figure 2. We let ζ∞ = −iβ for some
real β with q < β < 1. We assume that for ζ local to ζ∞, to leading order,

z(ζ ) ∼ iλ
2π

log(ζ + iβ). (3.1)

So z(ζ ) maps ζ∞ to the point at infinity; more specifically, as ζ → ζ∞, so Im{z(ζ )} →
−∞ while Re{z(ζ )} remains bounded. The map z(ζ ) will be multivalued in Dζ . In
particular, z(ζ ) will increase by λ as ζ completes a single circuit of C0 in the clockwise
direction. As one may deduce from the form that we are going to construct for z(ζ ) (see
(3.37)), a single-valued branch of it may be obtained by the introduction of a branch cut
along a simple line segment that joins ζ∞ to a point on C0. Each such branch maps this
‘cut’ Dζ onto a different period cell of D. However, we will not need to specify such a cut –
or, indeed, the precise boundaries of any period cell of D – for our subsequent analysis. We
assume that ∂D0 is the image under z(ζ ) of C0, while ∂D1 – and all the other hydrofoils –
are the images of C1. Finally, for j = 1, 2, 3, we denote the pre-image of zj by ζj, which lies
on C1. In general, we will need to solve for ζj, j = 1, 2, 3 with the real values of q, arg{ζ1},
arg{ζ2}, β and a constant determining z(0) becoming the unknowns in the problem, to be
solved for in terms of λ, α and U∞ as described in § 3.5.

One may deduce (on purely geometrical grounds) that z′(ζ ) has simple zeros at both
ζ = ζ1 and ζ2. For the example shown in figure 2, ζ3 lies on the section of C1 that is
traversed in passing from ζ1 to ζ2 in the anticlockwise direction (which is the case for a
row of hydrofoils with a positive angle of attack). However, our subsequent analysis makes
no assumption on the ordering of ζ1, ζ2 and ζ3 around C1.
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Dζ

ζ1

ζ∞ = −iβ

ζ3
ζ2

0

1

q

C0

C1

Figure 2. Sketch of the pre-image domain, Dζ , for our conformal parametrisation of the flow domain D as in
figure 1. D is the image of Dζ under a conformal map, z(ζ ).

Now, in terms of ζ , we have

w(z) = W(ζ ), w′(z) = Ω(ζ), (3.2a,b)

for some functions W, the complex potential in Dζ , and Ω , the complex velocity mapped
to Dζ . We will construct formulae (in terms of ζ ) for W(ζ ) and Ω(ζ), and then make use
of the fact that (Joukovskii 1890; Michell 1890)

z′(ζ ) = dW/dζ
dw/dz

= W ′(ζ )
Ω(ζ )

, (3.3)

to construct a formula for z(ζ ). A similar construction is used to obtain the hollow
vortex solutions of Crowdy & Green (2011) and Crowdy et al. (2013) although there,
the integration of the analogue of the right-hand side of (3.3) is performed numerically,
in contrast to the analytical result for z(ζ ) that we derive below – see (3.37) – and that
obtained by MJ23. The construction that we use here and our results are natural extensions
of those of MJ23. Indeed, one can retrieve the results of MJ23 by taking the limit of our
results as λ→ ∞ with β → 1, as we describe in more detail later.

3.1. Some special functions
We will perform our construction in terms of certain special functions, labelled here as
P and K. We define these and state their relevant properties in this section. We refer the
reader to MJ23 and Crowdy (2020) for further discussion of these functions.

To begin, we define the transformation θn(ζ ) = q2nζ for all n ∈ Z (note that θ0(ζ ) = ζ

is the identity transformation), and the setΘ = {θn(ζ ) | n ∈ Z}. Next, we introduce D−1
ζ to

denote the reflection of Dζ in C0, where by reflection in C0, we mean the transformation
ζ �→ 1/ζ̄ . Here, D−1

ζ is the annular domain bounded by the circles C0 and C−1, where the
latter denotes the reflection of C1 in C0 and is centred on the origin and of radius 1/q (see
figure 3). We define F to be the region that consists of the union of Dζ and D−1

ζ where we
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Dζ

Dζ–1C0

C–1

C1

0

ζ2–ζ2

ζ2
–1–ζ2

–1

–iβ

–iq2/β

–iq2β

ζ1

ζ1
–1

q–1

q3

–i/β

Figure 3. The annuli appearing in the analysis. D−1
ζ (light grey) is the reflection of the pre-image domain Dζ

(turquoise) of figure 2 in the unit circle C0 (dotted blue). The union of Dζ and D−1
ζ forms the fundamental

region F of (3.4) for the group Θ . The union of F̄ and the reflection of F (dark grey) in the circle C1 (dotted
red) forms the fundamental region F̂ of (3.10) for the group Θ̂ . The complex velocity W ′(ζ ) has simple poles
(blue crosses) at ζ = −iβ,−i/β,−iq2β and −iq2/β, and simple zeros (blue circles) at ζ = ζ2, −ζ2, 1/ζ2 and
−1/ζ2. (−ζ2 = ζ3 – see (3.25).) The mapped complex velocity Ω(ζ) has simple poles (red crosses) at ζ = ζ1
and −1/ζ2 (coinciding with a zero of W ′(ζ )), and simple zeros (red discs) at ζ = 1/ζ1 and −ζ2 (also coinciding
with a zero of W ′(ζ )).

use the ‘overline’ notation with respect to a domain to denote the domain’s closure, i.e.

F = {ζ : q ≤ |ζ | < q−1}, (3.4)

so F does not contain C−1. The images of F under all elements of Θ are mutually disjoint
and cover the whole of the ζ -plane, except for the origin and the point at infinity. Here, Θ
is an example of a Schottky group (Ford 1972; Crowdy 2020). Additionally, F is referred to
as a fundamental region ofΘ . (The fundamental region of a Schottky group is not unique.)

Now, the function P(ζ, q) is defined for all complex ζ and (real) q with 0 < q < 1, by

P(ζ, q) = (1 − ζ )

∞∏
n=1

(1 − q2nζ )(1 − q2nζ−1). (3.5)

Here, P(ζ, q) is, up to a normalisation, the Schottky–Klein prime function associated with
Θ . One can check that P(ζ, q) is analytic everywhere in F, and is non-zero in F except for
a simple zero at ζ = 1. Furthermore, one can deduce directly from (3.5) that

P(q2ζ, q) = −ζ−1P(ζ, q), P(ζ−1, q) = −ζ−1P(ζ, q). (3.6a,b)

Relation (3.6a) can be used to continue P(ζ, q) to points ζ outside of F. In particular, one
can deduce from (3.6a) and the properties of P(ζ, q) for ζ ∈ F noted above that P(ζ, q) is
analytic everywhere in the ζ -plane except for essential singularities at the origin and the
point at infinity, and that it has simple zeros at ζ = q2n for all n ∈ Z. Of course, one could
also deduce these properties directly from (3.5).
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Next, the function K(ζ, q) is defined by

K(ζ, q) = ζ
d

dζ
log P(ζ, q). (3.7)

It follows from (3.5) that

K(ζ, q) = 1
ζ − 1

+ 1 +
∞∑

n=1

q2n
(

1
ζ − q2n − 1

ζ−1 − q2n

)
. (3.8)

One can check that K(ζ, q) is analytic everywhere in F except for a simple pole at ζ = 1
with residue 1. Also, it follows from (3.6a,b) that

K(q2ζ, q) = K(ζ, q)− 1, K(ζ−1, q) = 1 − K(ζ, q). (3.9a,b)

In addition to the above, we will also make use of the functions P(ζ, q2) and K(ζ, q2).
Of course, with 0 < q < 1, we also have 0 < q2 < 1, and so P(ζ, q2) is defined by (3.5)
simply with q replaced by q2. P(ζ, q2) is (up to a normalisation) the Schottky–Klein prime
function associated with Θ̂ = {θ2n(ζ ) | n ∈ Z}, which is a subgroup of Θ and itself a
Schottky group (Vasconcelos, Marshall & Crowdy 2015). A fundamental region of Θ̂ is

F̂ = {ζ : q3 < |ζ | ≤ q−1}, (3.10)

i.e. the region that consists of the union of F̄ and the reflection of F in the circle C1, where
reflection in C1 is given by ζ �→ q2/ζ̄ (see figure 3).

It follows directly from (3.5) that

P(ζ, q) = P(ζ, q2)P(q2ζ, q2), (3.11)

and hence from (3.7) that

K(ζ, q) = K(ζ, q2)+ K(q2ζ, q2). (3.12)

3.2. Constructing the complex potential W(ζ ) = w(z)
The construction of W(ζ ) is straightforward as it is simply the complex potential for flow
in the annulus Dζ driven by a point vortex at −iβ and having circulation Γ around C1,
with stagnation points at ζ2 and ζ3, as we now demonstrate.

It follows from the properties of w(z) and z(ζ ) noted above that W(ζ ) must be analytic
for all ζ ∈ Dζ except that (as follows from (2.2) and (3.1)) for ζ local to −iβ, to leading
order,

W(ζ ) ∼ iλU∞
2π

log(ζ + iβ), (3.13)

i.e. W(ζ ) must have a point vortex singularity at ζ = −iβ. Also, it follows from (2.4) that

Im{W(ζ )} = ψj for ζ ∈ Cj, j = 0, 1. (3.14)

Furthermore, it follows from (2.8) that∮
Cζ

dW(ζ ) = Γ, (3.15)

where Cζ is a simple closed contour that contains C1 but not ζ = −iβ in its interior, and
itself lies entirely in the interior of Dζ , and we integrate around Cζ in the anticlockwise
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direction. Recall that Γ is still to be determined. Furthermore, it follows from (2.3) and
(3.1) that ∮

C∞
ζ

dW(ζ ) = −ϕλ, (3.16)

where C∞
ζ is a simple closed contour that contains ζ = −iβ in its interior, and itself lies

entirely in the interior of Dζ , and we integrate around C∞
ζ in the anticlockwise direction.

The required point vortex solution can be expressed as a ratio of elliptic functions but
for later analysis, it is convenient to use the equivalent prime function form

W(ζ ) = iλU∞
2π

log
(

P(iζ/β, q)
P(iβζ, q)

)
− iΓ

2π
log ζ. (3.17)

One can verify that W(ζ ) as given by (3.17) possesses the properties stated above as
follows. First, it follows from the properties of P(ζ, q) that W(ζ ), as given by (3.17), is
analytic for all ζ ∈ Dζ except for a logarithmic singularity at ζ = −iβ of the form required
by (3.13). It is also evident that this form for W(ζ ) satisfies (3.15) and (3.16) (the latter with
ϕλ = λU∞). Finally, to check the boundary conditions (3.14), it is helpful to first note that∣∣∣∣P(iζ/β, q)

P(iβζ, q)

∣∣∣∣
2

= P(iζ/β, q)P(−i/(βζ ), q)
P(iβζ, q)P(−iβ/ζ, q)

= 1
β2 for ζ ∈ C0, (3.18)

where the first equality follows from the fact that for ζ ∈ C0, ζ̄ = 1/ζ , and the second
follows from (3.6b). Similarly,∣∣∣∣P(iζ/β, q)

P(iβζ, q)

∣∣∣∣
2

= P(iζ/β, q)P(−iq2/(βζ ), q)
P(iβζ, q)P(−iq2β/ζ, q)

= 1 for ζ ∈ C1, (3.19)

where now the first equality follows from the fact that for ζ ∈ C1, ζ̄ = q2/ζ , and the
second follows by using both of (3.6a,b). Then, one may deduce that (3.14) holds (with
ψ0 = −(λU∞/(2π)) lnβ and ψ1 = −(Γ/(2π)) ln q). This completes our verification of
(3.17). Similar arguments to those used below for Ω(ζ) show that W(ζ ) is unique.

Finally, we determine Γ . Differentiating (3.17) gives

W ′(ζ ) = iλU∞
2πζ

(K(iζ/β, q)− K(iβζ, q))− iΓ
2πζ

. (3.20)

Now, to impose the Kutta condition at the trailing endpoint z2, we must choose Γ such
that W ′(ζ2) = 0, giving

Γ = λU∞(K(iζ2/β, q)− K(iβζ2, q)). (3.21)

(It follows from (3.22) that the quantity on the right-hand side of (3.21) is real.) Figure 4(a)
shows contours of W(ζ ) – i.e. flow streamlines – in Dζ as given by (3.17) for a typical
solution. The flow field is symmetric about the Im ζ axis, reflecting the symmetry of the
boundaries and the vortex.

3.2.1. Properties of W ′(ζ ), the complex velocity in Dζ
We now note some properties of W ′(ζ ) that will be useful later. First, W ′(−ζ2) = 0. This
follows from (3.20) using the fact that W ′(ζ2) = 0 and

K(−iζ2/β, q)− K(−iβζ2, q) = K(iζ2/β, q)− K(iβζ2, q), (3.22)

where the latter follows by using the fact that ζ2 = q2ζ2 and both of (3.9a,b). We
henceforth assume that −ζ2 /= ζ2, or equivalently, that ζ2 /=±iq (although in § D.2, we
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ζ1 ζ1

ζ2 ζ2–ζ2 –ζ2

–iβ–iβ

(b)(a)

Figure 4. The solution components for a typical solution (figure 5(c) below). (a) Contours of Im{W(ζ )} as
given by (3.17), giving the flow streamlines in the pre-image domain Dζ with a point vortex at ζ = −iβ (which
corresponds to the point at infinity in D), stagnation points symmetrically at ζ = ζ2 (the trailing edges in D)
and −ζ2 (on the leading faces in D), and tangential flow along C0 (the free surface of D) and C1 (the foils).
(b) Isotachs, contours of |Ω(ζ)| as given by (3.29), the flow speed mapped to the pre-image domain Dζ , with
infinite speed at ζ1 (the leading edges in D), a single stagnation point at ζ = −ζ2 and constant speed along C0,
with no stagnation point at ζ = ζ2 where the speed is finite.

will consider the limit of our results as ζ2 → ±iq whilst ζ1 → ∓iq). We now claim that
the zeros of W ′(ζ ) at ζ = ζ2 and −ζ2 are the only zeros of W ′(ζ ) in F, and are simple
zeros. To demonstrate this, note that it follows from (3.20) and (3.9a) that

W ′(q2ζ ) = 1
q2 W ′(ζ ). (3.23)

Thus,
d log W ′(q2ζ ) = d log W ′(ζ ). (3.24)

It then follows from (3.24) and an application of the Argument Principle (Ahlfors 1979,
§ 5.2) that W ′(ζ ) has the same number of poles as zeros in F, where these are both counted
according to their multiplicities. (ζ2 and −ζ2 lie on the boundary of F, but by standard
arguments, one can adapt the Argument Principle to take account of this.) However, it
follows from (3.20) and the properties of K(ζ, q) that W ′(ζ ) has simple poles at ζ = −iβ
and −i/β, and no other singularities in F. Thus, as claimed, the zeros of W ′(ζ ) at ζ = ζ2

and −ζ2 must be the only zeros of W ′(ζ ) in F, and must be simple zeros. It also then
follows that

ζ3 = −ζ2. (3.25)

(One could also deduce (3.25) from the symmetry of this flow in Dζ .)
Finally, one may also deduce that W ′(ζ ) is analytic for all ζ ∈ F̂ except for simple poles

at ζ = −iβ,−i/β,−iq2β and −iq2/β, and that the only zeros of W ′(ζ ) in F̂ are simple
zeros at ζ = ζ2,−ζ2, 1/ζ2 and −1/ζ2 – see figure 3. (W ′(ζ ) also has zeros at ζ = q2ζ2

and −q2ζ2, but both of these points have modulus q3 and so are not contained in F̂.)

3.3. Constructing the mapped complex velocity Ω(ζ) = w′(z)
It follows from the properties of w′(z) and z(ζ ) stated above that Ω(ζ) must be analytic
for all ζ ∈ Dζ except for a simple pole at ζ = ζ1 (as follows from (2.7) and the fact that
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z′(ζ ) has a simple zero at ζ1). Furthermore,Ω(ζ) must be non-zero for all ζ in the closure
of Dζ except for a simple zero at ζ = −ζ2 (as follows from (2.9), recalling (3.25)). We
henceforth assume that ζ1 /=−ζ2 (although in § D.1, we will consider the limit of our
results as ζ1 → −ζ2). Note that Ω(ζ) is non-zero at ζ = ζ2 – i.e. w′(z) is non-zero at the
trailing endpoint, z2, of the hydrofoil – because W ′(ζ ) and z′(ζ ) both have simple zeros at
ζ = ζ2 (and Ω(ζ) = W ′(ζ )/z′(ζ )). In addition, it follows from (2.5) and (2.6) that

|Ω(ζ)| = U0 for ζ ∈ C0, Im{eiαΩ(ζ )} = 0 for ζ ∈ C1, (3.26a,b)

and from (2.2) that
Ω(−iβ) = U∞. (3.27)

These are also properties of the mapped complex velocity – also labelled asΩ(ζ) – that is
constructed by MJ23, with the exception that the equivalent of (3.26a) and (3.27) in MJ23
((3.28a) and (3.29) of the latter) have the same constant (labelled U) on their right-hand
sides, and the equivalent of (3.27) holds at ζ = −i rather than −iβ. Then, by using exactly
the same arguments as those used in MJ23, one may deduce that Ω(ζ) is analytic for all
ζ ∈ F̂ except for simple poles at ζ = ζ1 and −1/ζ2. Furthermore, the only zeros of Ω(ζ)
in F̂ are simple zeros at ζ = −ζ2 and 1/ζ1. In addition, one can show that

Ω(q4ζ ) = Ω(ζ), (3.28)

from which one may deduce that Ω(ζ) is automorphic with respect to the group Θ̂ . The
property (3.28), together with the properties of Ω(ζ) for ζ in the fundamental region F̂
of Θ̂ that are stated above, along with the normalisation (3.27), are enough to identify
Ω(ζ) uniquely. One can check this by using arguments that are stated in MJ23 (see the
paragraph that follows (3.34) of the latter). We thus seek to construct a function with these
properties. One can check from the properties of P(ζ, q) that this function is given by

Ω(ζ) = μ
P(−ζ/ζ2, q2)P(ζ1ζ, q2)

P(ζ/ζ1, q2)P(−ζ2ζ, q2)
, (3.29)

where

μ = U∞
P(−iβ/ζ1, q2)P(iβζ2, q2)

P(iβ/ζ2, q2)P(−iβζ1, q2)
(3.30)

is a constant. We highlight the fact that the second argument of the P functions that appear
in (3.29) (and (3.30)) is q2, not q. We also point out that it was convenient for MJ23 to
construct theirΩ(ζ) as a sum (see (3.35) of the latter), rather than as a ratio of products of
P functions similar to that in (3.29). This was due to the fact that subsequent analysis
performed in MJ23 relied on differentiating this Ω(ζ) (see appendix A of the latter).
However, we will not need to perform any such differentiation here (see our Appendix
B; essentially, the reason for this is that our complex potential W(ζ ) has just a logarithmic
singularity at ζ∞, whereas the complex potential in MJ23 – also labelled as W(ζ ) – has a
simple pole at the corresponding point.) Therefore, it is more convenient for us to instead
construct our Ω(ζ) as in (3.29).

Finally, by substituting the form forΩ(ζ) that is given by (3.29) into (3.26a) and making
use of (3.6a), one can show that

U0 = |μ| = U∞
∣∣∣∣P(−iβ/ζ1, q2)P(iβζ2, q2)

P(iβ/ζ2, q2)P(−iβζ1, q2)

∣∣∣∣ . (3.31)

Figure 4(b) shows contours of the flow speed |Ω(ζ)| – i.e. isotachs – in Dζ as given by
(3.29) for a typical solution. Appendix A demonstrates that the symmetry visible about
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the line arg ζ = θs = (arg ζ1 + arg ζ3)/2 (and the corresponding symmetry in figure 4(b)
of MJ23) is a consequence of the symmetry relation

Ω(ζ)Ω(exp(2iθs)ζ̄ ) = U2
0 . (3.32)

This symmetry also follows from manipulation of expression (3.29).

3.4. Completing the solution: constructing the mapping z(ζ )
We now introduce the function

H(ζ ) = ζ z′(ζ ). (3.33)

Here, H(ζ ) may be determined as follows. First, it follows from (3.3) that

H(ζ ) = ζ
W ′(ζ )
Ω(ζ )

. (3.34)

Then, it follows from (3.23) and (3.28) that

H(q4ζ ) = H(ζ ). (3.35)

Hence, H(ζ ) is automorphic with respect to Θ̂ . Furthermore, one can check from the
properties of W ′(ζ ) andΩ(ζ) identified in §§ 3.2 and 3.3 that H(ζ ) is analytic everywhere
in F̂ except for simple poles at ζ = −iβ,−i/β,−iq2β,−iq2/β and 1/ζ1. These properties
of H(ζ ), along with its residues at the aforementioned poles, identify H(ζ ) uniquely, up
to an additive constant. This follows by arguments similar to those used by MJ23 (see the
paragraph that follows (3.41) of the latter). It then follows from the properties of K(ζ, q)
that we can write

H(ζ ) = β1K(ζ1ζ, q2)+ β2K(iζ/β, q2)+ β3K(iβζ, q2)

+ β4K(iq2ζ/β, q2)+ β5K(iq2βζ, q2)+ β0 (3.36)

for some unique constants β0, . . . , β5. We determine these constants in Appendix B.
Evidently, it follows from (3.33) that dividing the right-hand side of (3.36) by ζ provides

an expression for z′(ζ ). Recalling (3.7), it is straightforward to integrate this expression to
find

z(ζ ) = β1 log P(ζ1ζ, q2)+ β2 log P(iζ/β, q2)+ β3 log P(iβζ, q2)

+ β4 log P(iq2ζ/β, q2)+ β5 log P(iq2βζ, q2)+ c, (3.37)

where c is an additional constant. One might expect to see the term β0 log ζ on the
right-hand side of (3.37). However, we can omit this for the following reason. Our map
z(ζ ) must satisfy the single-valuedness constraint∮

Cζ
dz(ζ ) = 0, (3.38)

where Cζ is as in (3.15) and we integrate around it in the anticlockwise direction. Again,
by following arguments similar to those used by MJ23 – in particular, by considering the
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representation for P(ζ, q) that is stated by (3.44) of the latter – one can show that with z(ζ )
as given by (3.37), (3.38) is automatically satisfied, so we must have

β0 = 0. (3.39)

Condition (3.39) places a constraint on our mapping parameters, as we discuss further in
the next section. Similarly, one can also show that provided (3.39) holds, z(ζ ) as given by
(3.37) with β2 given by (B1), automatically satisfies∮

C0

dz(ζ ) = λ, (3.40)

where we integrate around C0 in the clockwise direction, as required.

3.5. Specifying parameter values
We are free to specify the values of λ, α and U∞. Here, U0 is then given by (3.31). Then,
our parametrisation depends on the following parameters: q, arg{ζ1}, arg{ζ2}, β and c. We
fix these as follows. Trivially, for any values of q, arg{ζ1}, arg{ζ2} and β, it follows from
(3.37) that we can fix z1 = 0 by taking

c = −(β1 log P(q2, q2)+ β2 log P(iζ1/β, q2)+ β3 log P(iβζ1, q2)

+ β4 log P(iq2ζ1/β, q2)+ β5 log P(iq2βζ1, q2)). (3.41)

We then fix |z2| = 1 by setting
|z(ζ2)| = 1, (3.42)

where z(ζ ) is given by (3.37) but now with c as in (3.41). Next, to fix arg{z2} = α, one
could use the condition that one obtains simply by setting ζ = ζ2 on the right-hand side of
(3.37) (with c as in (3.41)) and then requiring that the argument of this equals α. However,
a simpler condition is given by

ζ2P(iβ/ζ1, q2)P(iβ/ζ2, q2)P(−iβζ1, q2)P(−iβζ2, q2)

ζ1P(−iβ/ζ1, q2)P(−iβ/ζ2, q2)P(iβζ1, q2)P(iβζ2, q2)
= −e2iα. (3.43)

This is obtained by substituting the form for Ω(ζ) that is given by (3.29) into (B2b) and
making use of the first equality in (3.31) and (3.6a) and also recalling (3.30).

We must also satisfy the single-valuedness condition (3.39) with β0 as given by (B7);
using (3.9b), one can show that this is equivalent to

Re

{
e−iα

(
K(iζ1/β, q2)−

(
U∞
U0

)2

K(iβζ1, q2)

)}
= 0. (3.44)

Finally, we fix the depth of the hydrofoils below the free surface ∂D0 in a manner similar
to MJ23. We assume the existence of a single peak (i.e. a local maximum) and a single
trough (i.e. a local minimum) of ∂D0 in each period cell of D. The y-coordinate of either
of these extrema provides a convenient measure of the depth of the foils (we have already
fixed the y-coordinate of the leading endpoints of the foils to be 0, and their length to be
1 and angle of attack to be −α). For no other reason than to make it easier to compare
the results to be presented here with those of MJ23, we choose zc to denote such a peak
when α < 0 and a trough when α > 0, and in either case, fix the value of yc = Im{zc} (see
figure 1). (For free-surface flow over a single hydrofoil as considered by MJ23, the free

989 A12-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

49
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.497


A high-speed tandem hydrofoil cascade

surface exhibits just a single local extremum, which is a peak when α < 0 and a trough
when α > 0, and it is the y-coordinate of this point that is fixed there.) This places the
following additional condition on our mapping parameters. Of course, zc = z(ζc) for some
ζc on C0, i.e.

Im{z(ζc)} = yc. (3.45)

Additionally, one may identify ζc by first noting that for small ε > 0, z(eiεζc) = zc + (iε −
(ε2/2))ζcz′(ζc)− ((εζc)

2/2)z′′(ζc)+ O(ε3). Hence, recalling (3.33), one may deduce (by
considering the O(ε) terms in this expansion) that

Re{H(ζc)} = 0, (3.46)

and (by considering the O(ε2) terms and making use of (3.46))

Im{ζcH′(ζc)}
{
> 0 if zc is a peak,
< 0 if zc is a trough.

(3.47)

In (3.46), H(ζ ) is as in (3.36) but now with β0 set to zero (as stated by (3.39)). It follows
from (3.36) that

ζH′(ζ ) = β1L(ζ1ζ, q2)+ β2L(iζ/β, q2)+ β3L(iβζ, q2)

+ β4L(iq2ζ/β, q2)+ β5L(iq2βζ, q2), (3.48)

where the function L(ζ, q) is defined by

L(ζ, q) = ζ
d

dζ
K(ζ, q). (3.49)

It follows from (3.8) that

L(ζ, q) = −1
(ζ − 1)2

− 1
ζ − 1

− ζ

∞∑
n=1

q2n
(

1
(ζ − q2n)2

+ 1
(1 − q2nζ )2

)
. (3.50)

Then, in summary, (3.42)–(3.47) provide conditions which determine the four real
parameters q, arg{ζ1}, arg{ζ2} and β as well as arg{ζc}.

We point out that it is evident from (B1), (B4a–c), (B6), (B7) and (3.31) that β0, . . . , β5
are independent of U∞. Recalling also (3.36) and (3.37), it follows that (3.42)–(3.47) and
hence solutions of them for q, arg{ζ1}, arg{ζ2}, β and arg{ζc} are also independent of U∞.
Then, one may deduce from (3.37) and (3.17) (along with (3.21)) that for a given α and
λ, the shape of the free surface and the streamlines of the flow are independent of U∞.
However, it is evident from (4.8) that U∞ affects the force on each hydrofoil, albeit only
as a multiplicative factor (of U2∞; recall again (3.31)).

In Appendix D, we describe how the above parametrisation simplifies in certain limiting
cases, namely, for rows of horizontal or near-vertical hydrofoils, as well as rows of foils
at an infinite depth. One retrieves the limiting case of a single hydrofoil as considered by
MJ23, by taking λ→ ∞ with β → 1, or more specifically, with β = 1 − ε where ε ∼
O(1/λ). For example, in this limit, one can show that the two logarithmic (point vortex)
singularities of W(ζ ) (as given by (3.17)) at ζ = −iβ and −i/β, which are of equal but
opposite strengths, combine to give a single, simple pole with a finite, real residue (equal to
λεU∞/π) at ζ = −i (i.e. a dipole of the flow there), as possessed by the complex potential
that is constructed by MJ23 (see (3.16) of the latter). We omit further details here.
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4. The force on each hydrofoil

We denote the (vector) force that is exerted by the fluid on each hydrofoil by F , and
the components of this force in the x- and y-directions by Fx and Fy, respectively. From
Blasius’s theorem, we have

Fx − iFy = iρ
2

∮
C
(w′(z))2 dz, (4.1)

where C is as in (2.8) and we integrate around it in the anticlockwise direction, and ρ is
the density of the fluid. Using (3.3), we can write (4.1) in terms of ζ as

Fx − iFy = iρ
2

∮
Cζ

W ′(ζ )Ω(ζ ) dζ, (4.2)

where Cζ is as in (3.15) and we integrate around it in the anticlockwise direction. We can
in fact compute the integral in (4.2) analytically, as follows.

First, let us introduce the function

η(ζ ) = ζW ′(ζ )Ω(ζ ). (4.3)

One may determine η(ζ ) by following an approach similar to that which we used to
determine the function H(ζ ) in § 3.4. First, it follows from (3.23) and (3.28) that

η(q4ζ ) = η(ζ ), (4.4)

so η(ζ ) is automorphic with respect to Θ̂ . Next, one can check from the properties of
W ′(ζ ) and Ω(ζ) that η(ζ ) is analytic everywhere in F̂ except for simple poles at ζ = ζ1,
−iβ, −i/β, −iq2β and −iq2/β. It then follows that we can write

η(ζ ) = γ1K(ζ/ζ1, q2)+ γ2K(iζ/β, q2)+ γ3K(iβζ, q2)

+ γ4K(iq2ζ/β, q2)+ γ5K(iq2βζ, q2)+ γ0 (4.5)

for some unique constants γ0, . . . , γ5. Before attempting to determine these, note that,
evidently, we can write (4.2) as

Fx − iFy = iρ
2

∮
Cζ

η(ζ )

ζ
dζ. (4.6)

However then, by arguments similar to those that we used to check (3.38) (in particular,
see text between (3.38) and (3.39)), one can compute the integral that appears in (4.6) –
with η(ζ ) given by (4.5) – analytically; one finds simply that∮

Cζ

η(ζ )

ζ
dζ = 2πi(γ0 + γ1). (4.7)

Thus, to determine F , it remains only to determine the sum γ0 + γ1. We do so in
Appendix C – see in particular (C3). It then follows from (4.6), (4.7) and (C3) that F
has only a vertical component (i.e. Fx = 0), given by

Fy = ρλ

2
(U2

0 − U2
∞). (4.8)

The lift coefficient, CL, for a two-dimensional lifting surface is defined as the force (per
unit width in the spanwise direction) in the direction perpendicular to the oncoming flow
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at infinity, scaled on 1
2ρU2∞�, where � is the length of the chord of the lifting surface. Here

our normalisation gives � = 1 and so

CL = 2Fy

ρU2∞
= λ

((
U0

U∞

)2

− 1

)
= λ

(∣∣∣∣P(−iβ/ζ1, q2)P(iβζ2, q2)

P(iβ/ζ2, q2)P(−iβζ1, q2)

∣∣∣∣
2

− 1

)
, (4.9)

where the second equality follows from (4.8) and the third from (3.31). Section 5 discusses
the behaviour of CL as a function of λ.

5. Flow properties

We have evaluated the solution obtained above using our parametrisation for a periodic row
of hydrofoils of unit length with period λ, angle of attack −α, leading-edge submergence
yc and the leading edge of one of the foils at the origin. It is sufficient for a valid solution
to fix three of arg{ζ1}, arg{ζ2}, q and β, and then solve the single equation (3.44) with α
defined by (3.43) for the fourth. To obtain a normalised solution, however, we fixed λ, α
and yc, set U∞ and ρ to unity, and then solved the five real nonlinear algebraic equations
(3.42)–(3.46) (subject also to (3.47)) simultaneously for the five real numbers arg{ζ1},
arg{ζ2}, q, β and arg{ζc} using a multi-dimensional Newton-type iterative method.

All computations were carried out in MATLAB. The functions P(ζ, q), K(ζ, q) and
L(ζ, q) were evaluated as finite truncations of the infinite product in (3.5), and the infinite
series in (3.8) and (3.50), respectively. For the largest values of q used (of the order of
0.95), 150 terms gave 16 decimal-place (d.p) accuracy, while for the smallest values of
q, three terms were sufficient. The computations were so rapid that no optimisation was
necessary and all computations were performed with 200 terms. The routine fsolve was
used for the Newton-type root finding. Once the parameters for a given array of hydrofoils
are determined, the value of any quantity follows simply by evaluating an explicit formula.
Results can thus be obtained and plotted at machine precision.

Figure 5(a–c) shows free surface profiles and sub-surface streamlines for flows past
periodic rows of hydrofoils at a positive angle of attack of −α = π/4 and with
leading-edge submergence yc = 0.3 for various periods λ. A similar plot for flow past
a single foil – i.e. the limiting case of λ→ ∞ – at the same angle of attack and with
the same leading-edge submergence is shown in figure 6(b) of MJ23. Figure 5(d) shows
the free-surface profile and sub-surface streamlines for flow past a periodic row of foils
at a negative angle of attack of −α = −π/3. A similar plot for flow past a single foil is
shown in figure 6(c) of MJ23. As examples of the corresponding values of the mapping
parameters, those that we found for the solution that is shown in figure 5(b) are q = 0.1834
(to 4 d.p. – we report other values to the same accuracy except where indicated otherwise),
β = 0.2783, arg{ζ1} = 2.8504, arg{ζ2} = 5.0227 and arg{ζc} = 2.2096. For this solution,
λ = 2. It appears that as λ increases (for a fixed yc), q and β increase; for the solution that
is shown in figure 5(a) – for which λ = 1 – we found q = 0.0571 and β = 0.0603, while
for that in figure 5(c) – for which λ = 8 – we found q = 0.2666 and β = 0.8199.

Two distinctive features appear in figure 5. First, periodicity requires the value of the
streamfunction to be the same on each foil and so there is no net flow between the plates:
the separating streamline on a given plate meets the succeeding plate at the stagnation
point on its leading face. This is a consequence of the presence of the free surface: in
infinite submergence flow, a through-array velocity can be imposed (König 1922; Kawada
1930). Second, the surface speed, U0, can differ substantially from the speed at depth,
U∞. The circulation around each foil means that the foils act as a row of negative (when
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Figure 5. Free-surface profiles (blue) and sub-surface streamlines (turquoise) for flow past a periodic row of
hydrofoils (red) for various periods λ, angles of attack −α and leading-edge submergences yc: (a) −α = π/4,
yc = 0.3, λ = 1; (b) −α, yc as per panel (a), λ = 2; (c) −α, yc as per panel (a), λ = 4; (d) −α = −π/3,
yc = 1.2, λ = 3. For each of panels (a–d), the absolute value of the difference between the values of the
associated streamfunction on adjacent streamlines is the same for all pairs of adjacent streamlines. Lengths
here and in subsequent figures are normalised on the length of the foils.

the angle of attack is positive) point vortices, or shear layer, causing U0 to exceed U∞.
Similarly, for negative angle of attack, the foil circulation means U0 < U∞. The circulation
is related to the lift and we have, from (4.9),

U2
0 = (1 + CL/λ)U2

∞. (5.1)

The behaviour of the ratio U0/U∞ as a function of submergence yc thus follows from
figure 8. For angle of attack π/4, the ratio increases monotonically and rapidly with yc,
achieving its infinite submergence value for yc of order unity. For angle of attack −π/3, the
ratio is approximately constant as a function of yc. It appears (from these plots and others
not included here) that for a fixed angle of attack −α (whether positive or negative) and
submergence yc, the disturbance to the free surface decreases as the interfoil separation λ
decreases. This is supported by figure 6 which shows the surface disturbance amplitude,
a, i.e. the vertical height between a peak and a trough (i.e. Im(zp − zt) of Appendix A) as
a function of λ. The amplitude is infinite for a single plate (λ
 1) but decreases rapidly
and monotonically as λ decreases falling to less than 5 % of the chord length once the foils
are separated by less than a chord length.

Figure 7(a,b) shows more free-surface profiles for flows past rows of hydrofoils with
−α = π/4 and λ = 2, and −α = −π/3 and λ = 3, respectively, for different values of yc.
The shapes of these profiles are consistent with those for flows past a single foil, as shown
in figure 5 of MJ23. In particular, for any λ > 0, it appears that for a positive angle of
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Figure 6. The surface disturbance amplitude, a, i.e. the vertical height between a peak and a trough, as a
function of λ for various leading-edge submergences yc and angles of attack: (a) −α = π/4; (b) −α = −π/3.
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Figure 7. Free-surface profiles for flow past a periodic row of hydrofoils at various leading-edge submergences,
yc: (a) angle of attack −α = π/4, period λ = 2, yc = 0.01, 0.05 and 0.1, 0.2, 0.3, . . . , 1; (b) −α = −π/3,
λ = 3, yc = 0.33 and 0.8, 1.0, 1.2, . . . , 2.

attack, solutions exist for all yc > 0 and in the limit as yc → 0, the free surface ‘shrinks’
onto the foils, while for a negative angle of attack, solutions exist for all yc greater than
some lower bound at which the free surface develops cusps (at zc and at all other troughs
along it; for the solutions shown in figure 7(b), this lower bound is just less than 0.33).
As for the mapping parameters, it is shown in Appendix D.3.1 that for any angle of attack
(whether positive or negative), yc → ∞ as q → 0 with β ∼ O(q). However, it appears
that q → 1 as yc decreases. In particular, for the solution with λ = 2, −α = π/4 and
just yc = 2 (not shown in figure 7a), we found q = 0.000567 and β = 0.000837 (to 6
d.p.), while for the solution shown in figure 7(a) with yc = 1, we found q = 0.0135 and
β = 0.0201, and for that with yc = 0.01, we found q = 0.9399 and β = 0.9984.

Figure 8(a,b) shows graphs of the lift coefficient CL as a function of the leading-edge
submergence yc for various periods λ and angles of attack −α = π/4 and −α = π/3,
respectively. We computed these by evaluating the expression on the far right-hand side of
(4.9). The shapes of these graphs are consistent with similar plots for flows past a single
foil shown in figure 7 of MJ23. It appears that for a positive angle of attack, CL is a positive,
monotonic increasing function of yc that tends to 0 as yc → 0. (The smallest value of yc
for which we have plotted values of CL in figure 8(a) is yc = 0.01.) For both positive and
negative angles of attack, CL tends to a limiting value as yc → ∞. A formula for this limit
of CL for flow past a row of foils at an infinite submergence (as a function of α and λ)
is derived in Appendix D.3 – see (D8); values of it are indicated by the dashed lines in
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Figure 8. The lift coefficient CL as a function of the leading-edge submergence yc for various periods λ and
angles of attack −α: (a) −α = π/4; (b) −α = −π/3. The dashed lines indicate the limiting values for CL as
yc → ∞, given by (D8).

figure 8. It appears from figure 8 that CL approaches this limiting infinite submergence
value more rapidly (i.e. for smaller yc) for smaller λ. In Appendix D.3.1, we show that as
λ→ 0, this limiting value of CL (and the limit of U0) tends to infinity for a positive angle
of attack and 0 for a negative angle of attack.

To prevent separation and reduce drag, hydrofoils are most likely to be operated at small
angles of attack. The relevant physical quantity then becomes the rate of change of CL
at zero angle of attack, shown in figure 9(a) as a function of submergence yc for various
periods, λ (as one would expect, CL = 0 at zero angle of attack – see Appendix D.1). The
rapid approach with increasing depths to the infinite submergence value for shorter array
periods is evident, in particular, at the period of λ = 2, where the infinite submergence
value is almost achieved by a submergence of yc = 0.5. Figure 9(b) shows graphs of the
moment M of each hydrofoil about its midpoint, as a function of yc, for an angle of attack
of −α = π/4 and various λ. From Blasius’s theorem and (3.3) (and recalling that the
midpoint of the foil whose leading edge is at the origin is eiα/2), we have

M = −ρ
2

Re
{∮

C

(
z − eiα

2

)
(w′(z))2 dz

}
= −ρ

2
Re

{∮
Cζ

(
z(ζ )− eiα

2

)
W ′(ζ )Ω(ζ ) dζ

}
,

(5.2)
where C and Cζ are as in (2.8) and (3.15), respectively, and we integrate around both
of them in the anticlockwise direction, and ρ is the density of the fluid (which we set
to 1). Unlike the integral in (4.2) for the force on each foil, we have been unable to
evaluate that (with respect to ζ ) in (5.2) for M analytically, and have instead computed it
numerically (using the MATLAB routine integral). In the limit as yc → ∞, we computed
M using (D10). Again, the rapid approach to the infinite submergence value for shorter
array periods is evident.

6. Discussion

We have presented an explicit solution for infinite-depth, irrotational, two-dimensional,
free-surface, attached flow over a tandem array of inclined flat plates in the limit of
infinite Froude number. The flow patterns are described by three quantities, the angle
of attack, −α, the depth of submergence, yc, and the horizontal period, λ, of the array,
with the solution parameters determined as the simultaneous roots of five real nonlinear

989 A12-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

49
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.497


A high-speed tandem hydrofoil cascade

0 0.5 1.0 1.5

yc

3

4

5

6

7

8

9

d
C

L/
d

(–
α

)|
α

=
0

λ = 2
λ = 4
λ = 8

0.5 1.0 1.5

yc

–2.5

–2.0

–1.5

–1.0

–0.5

0

0.5

M

(b)(a)

Figure 9. (a) The rate of change of the lift coefficient CL with respect to the angle of attack −α at α = 0, as
a function of the leading edge submergence yc for various periods λ. The dashed lines indicate the limiting
values as yc → ∞, obtained from (D8). (b) The moment M as a function of yc for −α = π/4 and various λ.
The dashed lines indicate the limiting values as yc → ∞.

algebraic equations arising from the flow normalisation. This explicit form allows accurate
evaluation of various flow quantities.

The minimum computation required to obtain the lift coefficient CL and reproduce
the examples presented in § 5 consists of choosing α, yc and λ, and then solving
simultaneously the five equations (3.42)–(3.46) (subject also to (3.47)) for the five real
numbers arg{ζ1}, arg{ζ2}, q, β and arg{ζc}, implementing the functions P(ζ, q), K(ζ, q)
and L(ζ, q) using the expressions (3.5), (3.8) and (3.50). The value of CL is then given by
(4.9).

The solutions have two distinct features that do not appear to have been remarked
upon elsewhere: unlike the infinite-submergence case where a through-array flow can be
imposed, in the finite submergence case here, periodicity and the presence of the free
surface mean that there is no net flow between the plates – the separating streamline
on a given plate meets the succeeding plate at the stagnation point on its leading face;
and the surface speed, U0, can differ substantially from the speed at depth, U∞, with the
circulation around each foil causing the foils to act as a row of point vortices, or a shear
layer, so the speeds are related to the lift coefficient through (5.1), i.e.

U2
0 = (1 + CL/λ)U2

∞. (6.1)

The most significant approximation here is the assumption of infinite Froude number,
Fr. The results of Semenov & Wu (2020) for flow past an isolated cylinder at Fr = 5
show that surface waves are absent at sufficiently large submergence and for sufficiently
small submergence. This is supported by the comparison in MJ23 of the lift coefficient
CL for an isolated plate and those of Semenov & Wu (2020) for Fr ≥ 5. The general
similarity across all submergences suggests that at these Froude numbers, the presence of
surface waves has little effect on lift on isolated obstacles, though, of course, introducing
drag. Figure 5 shows that for a given submergence, the free surface disturbance decreases
rapidly with decreasing array period λ. Figures 8 and 9 bear this out, showing that with
decreasing λ, the lift coefficient and force moment approach their infinite submergence
values significantly more rapidly. The explicit results here may thus be of relevance at
smaller Froude numbers and over a wider range of submergences than those for isolated
foils.

The Kutta condition for smoothly detaching flow introduces circulation into the flow.
For an isolated obstacle at infinite Froude number, this causes the free surface to diverge
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logarithmically upwards or downwards, depending on the sign of the circulation, at large
distances (Semenov & Wu 2020, MJ23). The finite separation of foils in the periodic
tandem array here means that the vertical extent of any dip or bump in the surface is
bounded and the surface cannot diverge vertically to infinity. Such a divergence would still
occur in infinite depth flow for a finite tandem array. The extension of this method to finite
depth is straightforward although the most direct method increases the connectivity of the
pre-image domain and thus requires higher-connectivity prime functions which are less
trivial numerically. This analysis will be presented elsewhere.

The solution presented here is valid for arbitrary angles of attack and submergences
but is unlikely to be observed at large angles of attack when flows are likely to display
separation, cavitation or ventilation and three-dimensional and viscous effects as described
in review articles and texts including, for example, Acosta (1973), Faltinsen (2005) and
Molland & Turnock (2022), yet the solution does reinforce observations that tandem
hydrofoils offer significant lift advantages and shows that free-surface disturbance by an
array decreases rapidly with decreasing foil separation.
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Appendix A. The symmetry of figure 4(b)

Introduce (Kirchhoff 1869; Planck 1884),

Q(ζ ) = log(U0/Ω) = log(U0/s)+ iγ, Ω(ζ ) = U0 exp(−Q), (A1a,b)

where s = |Ω| and γ = − argΩ are the magnitude and direction (relative to the positive
x-axis) of the velocity in the z-plane. Then Q is holomorphic in the annulus q < |ζ | < 1
with boundary conditions

Re{Q} = 0 on |ζ | = 1, (A2)

since s = U there, and on |ζ | = q,

Im{Q} = f (ζ ), (A3)

where, since the velocity is at angle α or α + π there for positive angle of attack (α < 0),

f (ζ ) =
{
α + π for arg ζ between arg ζ1 and arg ζ3,

α otherwise.
(A4)

For negative angle of attack (α > 0),

f (ζ ) =
{
α − π for arg ζ between arg ζ1 and arg ζ2,

α otherwise.
(A5)

For positive angle of attack, as in figure 4(b), (A4) shows that Im{Q} is even on |ζ | = q
about the point where arg ζ = (arg ζ1 + arg ζ3)/2 = θs (say). Hence, Re{Q} on |ζ | = q is
odd about this point. Thus, regarded as a solution in the annulus of Laplace’s equation
subject to a boundary condition with this symmetry and to (A2), Re{Q} is odd about the
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line L given by arg ζ = θs and its extension arg ζ = θs ± π. It follows that Im{Q} is even
about L. Let ζa and ζb be two points in the annulus located symmetrically about L, so
ζb = exp(2iθs)ζ̄a and Q(ζa) = −Q(ζb). Then

Ω(ζa)Ω(ζb) = U2
0 exp[−Q(ζa)− Q(ζb)] = U2

0 . (A6)

The modulus of (A6) gives |Ω(ζa)||Ω(ζb)| = U2
0. This is the symmetry visible in

figure 4(b) and also figure 4(b) of MJ23 (where U0 = U∞ = U). In particular, along
the straight line arg ζ = θs, θs ± π, |Ω(ζ)| = U0, the free-surface velocity. Also, the pole
at ζ1 and zero at ζ3 combine so that |Ω(ζ1)||Ω(ζ3)| = U2

0. The argument of (A6) gives
argΩ(ζb) = − argΩ(ζa). One consequence of this is that the preimage point, ζp, of the
peak, the highest point on the free surface, zp, and the preimage point, ζt, of the trough,
the lowest point on the free surface, zt, can be expressed in terms of ζ1 and ζ2 by noting
that in each wavelength, the velocity on the surface is horizontal only at at zp and zt, and
so ζp and ζt are symmetric about L, giving arg ζp + arg ζt = arg ζ1 − arg ζ2 + π.

The same discussion applied to (A5) shows that for negative angles of attack, the same
relations hold with however the line L becoming the line arg ζ = (arg ζ1 + arg ζ2)/2 and
its extension, so ζb = exp[i(arg ζ1 + arg ζ2)]ζ̄a.

Appendix B. Determining β0, . . . , β5

First, recalling (3.20) and (3.27), as well as (3.8), one finds by comparing the residues of
the right-hand sides of (3.34) and (3.36) at ζ = −iβ that

β2 = iλ
2π
. (B1)

Equation (B1) is to be expected, given our assumption of (3.1).
Next, by using both of (3.26a,b) (see MJ23 for further details – cf. (3.30) and (3.32) of

the latter), one can show that

Ω(ζ) = U2
0

Ω̄(1/ζ )
, Ω(q2ζ ) = U2

0e−2iα

Ω(ζ )
, (B2a,b)

where we define Ω̄(ζ ) = Ω(ζ̄ ). It follows from (3.27) and (B2a,b) that

Ω(−i/β) = U2
0

U∞
, Ω(−iq2β) = U2

0e−2iα

U∞
, Ω(−iq2/β) = U∞e−2iα. (B3a–c)

Then, using (3.20) and (3.8) now with (B3a–c), one finds by comparing the residues of the
right-hand sides of (3.34) and (3.36) at ζ = −i/β,−iq2β and −iq2/β, respectively, that

β3 = − iλ
2π

(
U∞
U0

)2

, β4 = iλ
2π

(
U∞ eiα

U0

)2

, β5 = − iλ e2iα

2π
. (B4a–c)

Next, for H(ζ ) as given by (3.36) to satisfy (3.35), it follows from (3.9a) that

β1 = −(β2 + β3 + β4 + β5), (B5)

and hence from (B1) and (B4a–c) that

β1 = iλ
2π
(e2iα − 1)

(
1 −

(
U∞
U0

)2
)
. (B6)
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Finally, it follows from (3.34) and the properties of W ′(ζ ) and Ω(ζ) that H(ζ ) has a
(simple) zero at ζ = ζ1. Then, setting ζ = ζ1 in (3.36) and using the fact that K(q2, q2) =
0 (which one can deduce by using both equations in (3.9a,b)) as well as (B1) and (B4a–c),
it follows that

β0 = − iλ
2π

(
K(iζ1/β, q2)−

(
U∞
U0

)2

K(iβζ1, q2)

+
(

U∞ eiα

U0

)2

K(iq2ζ1/β, q2)− e2iαK(iq2βζ1, q2)

)
. (B7)

Appendix C. Determining the sum γ0 + γ1

First, we note that it follows from (4.3) and the properties of W ′(ζ ) and Ω(ζ) that η(ζ )
has a (simple) zero at ζ = 1/ζ1. Then, setting ζ = 1/ζ1 in (4.5), and using the fact that
K(1/q2, q2) = 1 (which follows from the fact that K(q2, q2) = 0 – see just after (B6) –
and (3.9a)) and recalling that 1/ζ1 = ζ1/q2 as well as (3.9a), it follows that

γ0 + γ1 + γ2 + γ3 + γ2K(iq2ζ1/β, q2)+ γ3K(iq2βζ1, q2)+ γ4K(iζ1/β, q2)

+ γ5K(iβζ1, q2) = 0. (C1)

Next, one can determine the constants γ2, . . . γ5 in a similar manner to how we determined
the constants β2, . . . β5 in Appendix B, i.e. by comparing the residues of the right-hand
sides of (4.3) and (4.5) at ζ = −iβ, −i/β, −iβ/q2 and ζ = −i/(q2β); one finds that

γ2 = iλU2∞
2π

, γ3 = − iλU2
0

2π
, γ4 = iλ

2π
(U0 e−iα)2, γ5 = − iλ

2π
(U∞ e−iα)2.

(C2a–d)
Then, substituting for γ2, . . . , γ5 in (C1) with (C2a–d), and also recalling (B7) and the
requirement (3.39), one finds that

γ0 + γ1 = iλ
2π
(U2

0 − U2
∞). (C3)

Appendix D. Limiting cases

D.1. Horizontal hydrofoils
We have thus far assumed that ζ1 /=−ζ2 (see the first paragraph of § 3.3). However, let us
now consider the limit of our results as ζ1 → −ζ2. In this limit, it follows from (3.29) and
(3.30) thatΩ(ζ) = U∞ for all ζ , and hence that w′(z) = U∞ for all z, and so the hydrofoils
must be horizontal. Indeed, in this limit, it follows from (3.43) that e2iα = 1. Furthermore,
by also using the fact that now U0 = U∞, one can show that (B1), (B4a–c) and (B6) now
give β1 = 0 and β2 = −β3 = β4 = −β5 = iλ/(2π), and hence (by also using (3.11)) that
our expression (3.37) for z(ζ ) now reduces to

z(ζ ) = iλ
2π

log
(

P(iζ/β, q)
P(iβζ, q)

)
+ c. (D1)

By using the properties of P(ζ, q), one can show that z(ζ ) as given by (D1) maps C1 onto a
periodic row of horizontal, finite-length straight slits with period λ. (In particular, one can
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Figure 10. Free-surface profiles (blue) and sub-surface streamlines (turquoise) for flow past a periodic row
of near-vertical hydrofoils (red) with period λ = 4, angles of attack −α and leading-edge submergences yc:
(a) −α = (π/2)− 0.01, yc = 0.3; (b) −α = −(π/2)+ 0.01, yc = 1.3.

show that these slits are horizontal by considering z(ζ ) and using the fact that ζ̄ = q2/ζ for
ζ ∈ C1.) Similarly, one can also check that it maps C0 onto a horizontal line that extends
to infinity in both directions – this is the free surface in this case. We also mention that, in
this case, it follows from (B7) (by using (3.12)) that

β0 = − iλ
2π
(K(iζ1/β, q)− K(iβζ1, q)). (D2)

Then, by comparing the form on the right-hand side of (D2) with that of z′(ζ1) that follows
from (D1) (recalling (3.7)), and recalling that z′(ζ1) = 0, one can show that β0 = 0 and
thus the single-valuedness condition (3.39) is now satisfied automatically. Similarly, by
using the fact that z′(ζ2) = 0, one can show that the circulation, Γ , around each hydrofoil,
as given by (3.21), is also zero in this case. Furthermore, it follows from (4.8) (and the fact
that now U0 = U∞) that, in this case, the fluid exerts no force on the hydrofoils.

D.2. Near-vertical hydrofoils
We have also thus far assumed that −ζ2 /= ζ2, or equivalently, that ζ2 /=±iq (see just
after (3.22)). However, let us now consider the limit of our results as ζ2 → ±iq whilst
ζ1 → ∓iq. In both of these limits, it follows from (3.43) that e2iα → −1, and so α → π/2
or −π/2, i.e. the hydrofoils are approaching vertical. As explained in §2, we will not
consider rows of strictly vertical hydrofoils, so we refrain from providing further details
of this limiting case here other than to mention the following. As one might expect, our
solutions for rows of near-vertical foils as α → π/2 are qualitatively very different from
those as α → −π/2, as illustrated by figure 10. Also, it is evident from (3.25) that in
this limit, ζ3 → ζ2 and hence z3 → z2, i.e. the stagnation points of the flow approach the
trailing endpoints of the hydrofoils. Finally, we mention that for the solution illustrated in
figure 10(a), we found arg{ζ1} = 1.5851, arg{ζ2} = −1.5642, while for that in figure 10(b),
arg{ζ1} = −1.5762, arg{ζ2} = 1.5538.

D.3. Hydrofoils at infinite submergence
We now consider the limit of our results as q → 0 with β ∼ O(q) (so q/β ∼ O(1)). First,
it is convenient to introduce a new parametrising variable defined by ξ = q/ζ . The image
of Dζ in the ξ -plane is also a concentric annulus Dξ , say, that is bounded by circles that
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are centred on the origin and of radius 1 and q, but now, under the map z(q/ξ) = ẑ(ξ), say,
it is the outer boundary circle of Dξ that maps onto the hydrofoils in the z-plane, while the
inner boundary circle maps onto the free surface. Also, the image of ζ∞ in the ξ -plane is
the point ξ∞ = iq/β, while for j = 1, 2, the image of ζj is the point ξj = q/ζj; so, under
ẑ(ξ), ξ∞ and ξj map onto the point at infinity and zj in the z-plane, respectively. We point
out that q < Im{ξ∞} < 1 (recall that q < β < 1).

In the limit as q → 0 with β ∼ O(q), evidently Dξ reduces to the unit disc while ξ∞
remains of order 1. Furthermore, consider the form for ẑ(ξ) that follows from (3.37)
with ζ = q/ξ and also c as given by (3.41); noting that for ξ ∈ Dξ , we have q <
|ξ | < 1 and hence q2 < |qζ1/ξ |, |qβ/ξ | < q and 1 < |q/(βξ)| < 1/q, one may deduce
from (3.5) that in this limit, P(qζ1/ξ, q2), P(iqβ/ξ, q2) and P(iq3/(βξ), q2) all tend to
1, while P(iq/(βξ), q2) → (1 − (iq/β)ξ−1) = (1 − ξ∞ξ−1) and P(iq3β/ξ, q2) → (1 +
ξ∞ξ), and hence that this form for ẑ(ξ) reduces to

ẑ(ξ) = iλ
2π

(
log

(
ξ1

ξ

(
ξ − ξ∞
ξ1 − ξ∞

))
− e2iα log

(
ξ − ξ∞

−1

ξ1 − ξ∞
−1

))
. (D3)

It is evident that ẑ(ξ) as given by (D3) has branch points at ξ = 0, ξ∞, ξ∞
−1 and infinity.

Furthermore, one may deduce that this limiting form for ẑ(ξ) maps the unit ξ -circle onto
a periodic row of hydrofoils (modelled by finite-length slits) with period λ, an angle of
attack of either −α or −α + π (as follows by considering ẑ(ξ) and using the fact that
ξ̄ = 1/ξ when |ξ | = 1) and z1 = 0, and maps the interior of the unit ξ -disc onto the whole
of the region exterior to these hydrofoils. Thus, the hydrofoils in this limiting case are at
an infinite depth. Their angle of attack will be fixed at −α (rather than −α + π) provided
one correctly identifies ξ1 and ξ2. These are now functions of ξ∞ and are given by the two
roots of a quadratic equation that arises from setting ẑ′(ξ) (as given by the derivative of
the right-hand side of (D3)) equal to 0; these roots are

ξ± = 1
2

(
ξ∞(1 + e−2iα)±

√
ξ2∞(1 + e−2iα)2 + 4e−2iα

)
. (D4)

One may distinguish which of ξ± is ξ1 and which is ξ2 by noting that for small ε > 0, we
have ẑ(eiεξj) = ẑ(ξj)− ((εξj)

2/2)ẑ′′(ξj)+ O(ε3) for j = 1, 2, so we should have (modulo
2π)

arg{ξ2
j ẑ′′(ξj)} =

{
α + π for j = 1,
α for j = 2.

(D5)

However, first we determine ξ∞. We do so as the solution of the equation

λ

2π

∣∣∣∣∣log
(
ξ+
ξ−

(
ξ− − ξ∞
ξ+ − ξ∞

))
− e2iα log

(
ξ− − ξ∞

−1

ξ+ − ξ∞
−1

)∣∣∣∣∣ = 1, (D6)

with ξ± replaced as per (D4). Evidently, (D6) is equivalent to the equation |ẑ(ξ2)| = 1
which fixes |z2| = 1, and defines the same equation for ξ∞ if ξ+ and ξ− are swapped.
We solved (D6) for ξ∞ numerically (using fsolve in MATLAB). We then computed ξ±
using (D4), and then determined which of these was ξ1 and which was ξ2 by evaluating
arg{ξ2±ẑ′′(ξ±)} and using (D5). This completes the determination of our parametrisation
in this limiting case. We point out that one can also show that the limiting forms of the
conditions (3.43) and (3.44) are satisfied automatically in this case.
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Now, also in this limit, by using arguments similar to those that lead to (D3), one can
show that (3.31) reduces to

U0 = U∞
∣∣∣∣ξ∞ − ξ1

ξ∞ − ξ2

∣∣∣∣ , (D7)

and hence that (4.9) reduces to

CL = λ
(∣∣∣∣ξ∞ − ξ1

ξ∞ − ξ2

∣∣∣∣
2

− 1

)
. (D8)

Similarly, one can show that the form for Ω̂(ξ) = Ω(q/ξ) that follows from (3.29) reduces
to

Ω̂(ξ) = U∞
(
ξ∞ − ξ1

ξ∞ + ξ2

)(
ξ + ξ2

ξ − ξ1

)
. (D9)

Then, one can compute the moment M in this limit from

M = −ρ
2

Re

{∮
Cξ

(
ẑ(ξ)− eiα

2

)
ẑ′(ξ)(Ω̂(ξ))2 dξ

}
, (D10)

which follows from (5.2), where we can take Cξ to be a circle centred on the origin, of any
radius between Im{ξ∞} and 1 (so that it lies in Dξ and contains ξ∞ in its interior), and we
integrate around Cξ in the clockwise direction.

D.3.1. Vanishing period (λ→ 0)
As a special case of the above, let us now consider a row of hydrofoils at an infinite depth
with λ→ 0 and, in particular, consider CL (as given by (D8)) in this limit. In this case,
one may deduce from (D3) (or (D6)) that to satisfy the condition |ẑ(ξ2)| = 1, ξ∞ and one
of ξ1 and ξ2 must tend to i (recall that ξ∞ is purely imaginary with 0 < Im{ξ∞} < 1 (as
q → 0) and ξ1 and ξ2 lie on the unit ξ -circle). To determine which of ξ1 and ξ2 it is to
which ξ∞ tends, note first that it is evident from (D4) that if ξ∞ → i, then ξ+ → i, while
ξ− → i exp(−2iα); so ξ∞ → ξ+. Next, by substituting ξ∞ = (1 − δ)i for small δ > 0 into
the forms for ξ+ and ẑ′′(ξ+) that are given by (D4) and (D3), one finds (after performing
some lengthy but elementary expansions) that

ξ2
+ẑ′′(ξ+) = − λ

πδ2 (sin3 α) eiα + O(λ). (D11)

Then, recalling (D5), one may deduce from (D11) and the above that as λ→ 0 with
−π/2 < α < 0, so ξ∞ → ξ2. More precisely, as follows from (D6), |ξ∞ − ξ2| must tend
to zero like exp(−1/λ) in this limit. It then follows from (D8) that (for a row of foils
at an infinite depth) as λ→ 0 with −π/2 < α < 0, so CL → ∞. (It follows from (D7)
that U0 → ∞ as well, in this limit.) However, one may deduce that as λ→ 0 with
0 < α < π/2, so ξ∞ → ξ1 and hence CL → 0 (and U0 → 0).

REFERENCES

ACOSTA, A.J. 1973 Hydrofoils and hydrofoil craft. Annu. Rev. Fluid Mech. 5, 161–184.
AHLFORS, L.V. 1979 Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex

Variable. McGraw-Hill.

989 A12-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

49
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.497


J.S. Marshall and E.R. Johnson

CROWDY, D.G. 2020 Solving Problems in Multiply Connected Domains. SIAM.
CROWDY, D.G. & GREEN, C.C. 2011 Analytical solutions for von Kármán streets of hollow vortices. Phys.

Fluids 23, 126602.
CROWDY, D.G., LLEWELLYN SMITH, S.G. & FREILICH, D.V. 2013 Translating hollow vortex pairs. Eur. J.

Mech. B 37, 180–186.
FALTINSEN, O.M. 2005 Hydrodynamics of High-Speed Marine Vehicles. Cambridge University Press.
FORD, L.R. 1972 Automorphic Functions. Chelsea Publishing.
GUREVITCH, M.L. 1965 Theory of Jets in Ideal Fluids. Academic Press.
JOUKOVSKII, N.E. 1890 Modification of Kirchhof’s method for determination of a fluid motion in two

directions at a fixed velocity given on the unknown streamline (in Russian). Math. Coll. 15, 121–278.
KAWADA, S. 1930 Theory of mutual interference of propeller blades. J. Zosen Kyokai 46, 19–42.
KIRCHHOFF, G. 1869 Zur Theorie freier Flüssigkeitsstrahlen. J. Reine Angew. Math. 70, 289–298.
KÖNIG, E. 1922 Potentialstömung durch gitter. Z. Angew. Math. Mech. 2, 422–429.
MARSHALL, J.S. & JOHNSON, E.R. 2023 The high-speed submerged hydrofoil. J. Fluid Mech. 954, A45.
MICHELL, J.H. 1890 On the theory of free stream lines. Phil. Trans. R. Soc. Lond. A 181, 389–431.
MOLLAND, A.F. & TURNOCK, S.R. 2022 Marine Rudders, Hydrofoils and Control Surfaces, 2nd edn.

Butterworth-Heinemann.
PLANCK, M. 1884 Zur Theorie der Flüssigkeitsstrahlen. Ann. Phys. 257, 499–509.
SEMENOV, Y.A. & WU, G.X. 2020 Free-surface gravity flow due to a submerged body in uniform current.

J. Fluid Mech. 883, A60.
VASCONCELOS, G.L., MARSHALL, J.S. & CROWDY, D.G. 2015 Secondary Schottky-Klein prime functions

associated with multiply connected planar domains. Proc. R. Soc. A 470 (2173), 20140688.

989 A12-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

49
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.497

	1 Introduction
	2 Problem formulation
	3 A conformal parametrisation
	3.1 Some special functions
	3.2 Constructing the complex potential W()=w(z)
	3.2.1 Properties of W'(), the complex velocity in D

	3.3 Constructing the mapped complex velocity ()=w'(z)
	3.4 Completing the solution: constructing the mapping z()
	3.5 Specifying parameter values

	4 The force on each hydrofoil
	5 Flow properties
	6 Discussion
	Appendix A. The symmetry of [fig04]figure 4(b)
	Appendix B. Determining 0,…,5
	Appendix C. Determining the sum 0+1
	Appendix D. Limiting cases
	D.1 Horizontal hydrofoils
	D.2 Near-vertical hydrofoils
	D.3 Hydrofoils at infinite submergence
	D.3.1 Vanishing period (0)

	References

