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Summary

Let G denote a Hausdorff locally compact Abelian group which is
nondiscrete and second countable. The main results (Theorems (2.2) and
(2.3)) assert that, for any closed subset E of G there exists a pseudomeasure
s on G whose singular support is E; and that if no portion of £ is a Helson set,
then such an s may be chosen having its support equal to E. There follow
(Corollaries (2.2.4) and (2.3.2)) sufficient conditions for the relations

supp s = F, sing supp s = E

to hold for some pseudomeasure s, E and F being given closed subsets of
G. These results are analogues and refinements of a theorem of Pollard [4]
for the case G = R, which asserts the existence of a function in Z.°°(i?)
whose spectrum coincides with any preassigned closed subset of R.

The study of supports and singular supports of pseudomeasures is in
part prompted by the aid afforded by these concepts in handling convo-
lution equations of the type /i* f = g with p e M (G) and /, g e L°°(G),
and of problems concerning spans of translates of bounded functions; see
Remark (2.2.5).

1. Preliminaries

Throughout this note, G denotes a Hausdorff locally compact Abelian
group and X its character group. Pseudomeasures on G are here defined as
continuous linear functionals on the space A (G) of functions u on G of the
form

where d£ denotes Haar measure on X and v e L1^), the norm on A (G) being
given by
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cf. Appendices II, III of [1] and [2], pp. 8—9. We denote by P{G) the space
of pseudomeasures on G. It is known, and quite easy to verify, that the
Fourier transformation can be defined for functions in L°°(X) in such a way
as to realise a linear isometry of L°°(X) onto P{G).

There is a natural injection of M(G), the space of bounded Radon meas-
ures on G, into P{G) (though in general P(G) will embrace also certain
unbounded Radon measures on G).

Pseudomeasures can be studied locally: if U is an open subset of G,
and if s and s' are pseudomeasures on G, we write

s = s' on U

to signify that s(u) = s'(u) for each u e A (G) whose support supp u is con-
tained in U. (It is equivalent to demand that s(u) = s'(u) for each ueA(G)
such that supp u is compact and contained in U).

If s e P{G), the support [resp. singular support] of s, denoted by supp
s [resp. sing supp s], is defined to be the complement, relative to G, of the
open set of all points x e G on some open neighbourhood of which s is equal
to zero [resp. to a measure]. This both supp s and sing supp s are closed
subsets of G, and sing supp s C supp s. Notice that if s is equal on some open
set U to a Radon measure, then, for any relatively compact open set VCU,
one has s = f* on V for some fi e M(G).

Given a closed set ECG, the relation supp s C E signifies that

(1) s(u) = 0

for each u e A (G) for which supp u C E' (the complement of E relative to
G), or, what is equivalent, for each u e A (G) for which supp u is a compact
subset of E'. A generally stronger condition on s is to demand that (1.1)
holds for each u e A (G) which vanishes on E. We shall write

PE(G) = {se P(G) : supp s C E},
P°E(G) = {se P(G) : s(u) = 0 for all u e A (G)

satisfying u(E) = 0} C PB(G).

It follows from known results that PE(G) = P%(G) if and only if £ is a
spectral synthesis set (see [2], pp. 158—161; we are here regarding G as the
character group of X), but we shall make no use of this fact.

2. The main results

Our proof of the existence of a pseudomeasure having as singular sup-
port a given closed set depends on the construction of such a pseudomeasure
for the special case in which the closed set is reduced to a point, say the zero
element of G. Since the latter problem is handled in a relatively constructive
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[3] Supports and singular supports of pseudomeasures 67

manner, we deal with it separately in Theorem (2.1). The general result
appears in Theorem (2.2) and is existential in nature, as also is Theorem
(2.3).

(2.1) THEOREM. Suppose that G is nondiscrete and first countable. Let
No be any neighbourhood of 0 in G. There exists on G a function f with the
following properties:

(i) f is continuous (and even C° if G is a Lie group) on W = G\{0};
(ii)f = 0onN'o;
(Hi) lx'\f\dx < oo for any neighbourhoodN of 0 in G, and la\f\dx = oo;
(iv) there is a decreasing base (Un)%Lx of neighbourhoods of 0 in G such

that the formula

(1) so(u) = l i m . ^ f f(x)u(x)dx (us A(G))
J u n

defines a pseudomeasure s0 e P(G) for which sing supp s0 = {0}. [In distri-
butional language, s0 is thus the Cauchy principal value of the function /.]

(v) the Fourier transform s0 e C0(X) [the space of continuous functions
which vanish at infinity on the noncompact character group X of G].

PROOF. Since G is nondiscrete and first countable, we may choose a
decreasing base {Un)X-i °f °P e n neighbourhoods of 0 in G such that U1 C No

and Vn = Un\Un+1 is nonvoid. Let Kn be a compact subset of Vn having
interior points. Then ([2], Theorem 5.6.10) Kn is not a Helson set and so
([2], Theorem 5.6.3) one can find a measure a.ns M(G) such that supp
<zn C K„ and

j n , na.IL 52 l/n«.

By regularisation, one may assume that daB = fndx, where /„ is a contin-
uous function [even a C°° function, if G is a Lie group] with a compact
support contained in Kn. The series 2£-ian *s t n e n convergent in P(G).
Denote its sum by s0. Then (v) is true, thanks to the Riemann-Lebesgue
lemma and the uniform convergence of the series 2 aB. At the same time,
the series ^Sli/nfc) *s convergent for each xeG, and it is easy to see that
the sum-function / has properties (i), (ii) and (iii). In addition, if u e A (G)
we have

so(u) = limB £ L i j

= limB f fudx,

so that (1) is established. It remains to show that sing supp s0 = {0}.
Now if N is any compact neighbourhood of 0, (iii) combines with the

weak relative compactness of norm-bounded subsets of M(N') to show that
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s0 is equal on N' to a measure /?# e M (G). This shows at once that sing supp
s0CN for any compact neighbourhood N of 0, and so that sing supp s0 C {0}.
On the other hand, if 0 did not belong to sing supp s0, there would exist an
open neighbourhood U of 0 and a measure X e M(G) such that s0 = X on
U. Then, taking N C U, we should have s0 = A on U, s0 = /?# on N', the
open sets U and N' covering G. At this point Lemma (2.1.1) would apply to
show that s0 would be equal globally to a measure (i e M(G). This p would
necessarily coincide on Vn with <xB, so that

jGd\M\ ^ jVmd\fi\ = J K / K | = jgd\an\ => n,

and this for all n. This absurdity shows that 0 6 sing supp s0 and so completes
the proof.

(2.1.1) LEMMA. Suppose that A and B are open subsets of G, that
s e P(G), that a and /3 belong to M(G), and that s = a. on A and s = /? on B.
Then s is equal on Au B to an element of M(G).

PROOF. It suffices to show that

(2) |S(«)| ^ const. IML

for each ue A (G) having a compact support K C A u B.
Now it is easily established that positive functions a, b e A (G) may be

chosen so that supp aC A, supp bC B and a-\-b = 1 onK. Then

(3) s(u) = s(au)+s(bu).

But supp auC A and so

\s(au\=foaud*£jod\*\'\\au\\eo

Similarly,

These inequalities combine with (3) to yield (2), and the lemma is established.

(2.1.2) Remark. If the formula (1) is to yield a pseudomeasure s0

with a singularity at 0, the second clause of (2.1.iii) is necessarily true. This
.^aues from the following remark, which is an analogue of Riemann's theorem
about the removability of isolated singularities of bounded analytic func-
tions:

If s e P{G) is such that, for some neighbourhood U of 0, s is equal on
U\{0} to a bounded measure, then s is equal on U itself to a bounded measure.

For the hypothesis ensures that for some number c > 0 one has
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|s(«)| ^ cIML

whenever u e A (G) and supp u C U\{0}. From a known result ([2], Theorem
2.6.4) it follows first that the same inequality holds for any ueA(G)
for which supp uCU and «(0) = 0, and then by a simple argument that

\s(u)\^2c-\\u\\00

for any u e A (G) satisfying supp uCU. From this the stated conclusion fol-
lows.

The same arguments show that if £ is a C-set in G ([2], § 7.5.1), U a
a neighbourhood of E, and if s e P(G) is equal on U n E' to a bounded
measure, then there exists a measure peM(G) such that

s(u) = jQud/i

for each u e A (G) such that supp uCU and u(E) = 0.
In what follows we denote by ME{G) the set of measures ft e M(G)

satisfying supp /* C E, by ME(G) the set of positive elements of ME(G),

and by LE{G) the set of elements of L1(G) defined by integrable functions
which vanish on E'. Besides this, given a finite or infinite sequence (an)
of points of G, we shall write D for the set of purely discrete measures
p e M (G) of the form

where ea denotes the Dirac measure placed at a, and where the cB are nonne-
gative numbers satisfying 2 c n < °°- I* *s easily verified that D is a closed
convex cone in M(G). If £ is a closed subset of G, and if each an belongs
to E, then DCM%{G).

(2.2) THEOREM. Suppose that G is nondiscrete and first countable.
Let E be a closed subset of G satisfying the following condition:

(C) There exists a sequence {Un)^.x of open subsets of G which meet E
and are such that any open subset of G meeting E contains Un for some n
{i.e., E is a second countable subspace of G).

Let s0 be as in Theorem (2.1) and suppose that the points an (n = 1, 2 , . . .)
form a countable dense subset of E. Then:

(i) There exists numbers cn ^ 0 such that 2 cn < °° an^ suc^ ^na^ ^
measure /* = 2 cnea^ satisfies

sing supp s0 * ft = E.

(ii) If further E nU has strictly positive Haar measure whenever U is
an open subset of G meeting E, there is a positive function f e LE(G) such that

sing supp s0* f = E.
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PROOF, (i) As will be shown in Lemma (2.2.1) infra, sing supp s0 */*
C E for any /i e Ms(G). Thus, using the notation introduced immediately
prior to the statement of the theorem, it suffices to show that a measure
/i e D exists for which sing supp s0* pD E. We will in fact show that the
negation of this leads to a contradiction.

Putting Dnk (», k = 1, 2, • • •) for the set of p e D such that so*p = X
on Un for some X e M(G) satisfying \\X\\x ^ k, the said negation would com-
bine with (C) (and the evident remark that one may in (C) assume each
Un to be relatively compact) to entail that

(4) Z> = U P».» : n, k = 1, 2, . . .}.

In any case, the weak relative compactness of norm-bounded subsets of
M(G) goes to show that each £>Bt is closed in D. Since also D is a convex
cone, the category theorem and (4) would combine to show that some Z?B>t

is a neighbourhood of zero in D. In other words, there is a number c > 0
such that each JU e D satisfies

(5) s0* fi = k on U

where X = k(ji) e M(G) satisfies

(6)

n,

Taking at eUnn E and n = ea(, we see that s0 * co< is a measure on
Un. But then s0 itself would be a measure on Un—a(. Since Un—ai is a
neighbourhood of 0, this contradicts (iv) of Theorem (2.1), and (i) is thereby
established.

(ii) The same type of argument leads to (5) and (6) once more, the sole
difference being that (i is to be replaced by a positive function / eL}E{G).
Owing to the final hypothesis on E, however we can now take a norm-bound-
ed sequence (/r) or positive elements of L\(G) which converges weakly to
eo<. By (6) the corresponding measures Xr may be chosen to have bounded
norms, and so to admit a weak limiting point X e M (G). It would then appear
that again s0 * eO{ is equal on Un to a measure, from which point the proof
proceeds as before.

(2.2.1) LEMMA. Let s0 be as in Theorem (2.1). Then sing supp s0* /iC E
whenever ji e MB(G).

PROOF. We use the fact that s0 * n is representable as the vector-
valued integral

(7) so*fi

Choose any x0 e E' and any compact symmetric neighbourhood N of 0
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such that xo-\-N does not meet E. Then, if a e E, a+N does not contain
x0. An open neighbourhood U of x0 may then be found so that (a+N) n
U = 0 for all a e E. The union V of the sets U—a (a e E) is then open
and contained in N'. Hence as was seen in the proof of Theorem (2.1), s0

is equal on V to a measure /9 e M(G). A fortiori, s0 = /? on U—a for all a € E,
and s0 * ea = /3 *ao on U for all « e E. Reference to (7) shows that

so * J" = L (P *ea)dfi(a) on U.
J IS

The integral on the right here obviously represents an element of M(G),
whence it is plain that x0 does not belong to sing supp s0 * /i. The proof is
complete.

Remark. Similar arguments show that, if s 6 P(G) and peM(G), then
the relation

sing supp s * [i C sing supp s+supp [i

holds provided at least one summand on the right is compact.

(2.2.2) Remark. According to (v) of Theorem (2.1), thepseudomeasure
s = s0* n referred to in Theorem (2.2) is such that s e C0(X).

(2.2.3) Remark. Arguments similar to those used in the proof of Theorem
(2.2) will show that, if G is second countable and nondiscrete, and if s e P(G)
is such that sing supp s ^ 0, then there exists an / e Z-^G) such that sing
supp s * / = G.

(2.2.4) COROLLARY. Suppose that G is nondiscrete and second countable,
that E C F are closed subset of G, and that F is a neighbourhood of E. Then
there exists an s e P(G) such that

supp s = F, sing supp s = E.

PROOF. It is easily seen that there exists a measure X e M (G) satisfying
supp X = F. By Theorem (2.2), there exists sx e P(G) satisfying sing supp
sx = E. Since F is a neighbourhood of E, we may obviously assume that
supp sx C F. (If this is not already the case, it suffices to multiply sx by
an element u of A (G) which is nonvanishing on E and satisfies supp M C P . )
The pseudomeasure s = Sj^+A then satisfies all our requirements.

(2.2.5) Remarks, (i) Suppose that G is noncompact and second count-
able. By interchanging G and X, Theorem (2.2) shows that there exists
/ e C0(G) such that sing supp/ = X. Such an / is characterised by the prop-
erty that X = 0 is the only element of M{G) such that X */ is the Fourier-
Stieltjes transform of an element of M(X). If G = Rn, one can even choose
such an / which is analytic and such that it and each of its partial derivatives
belong to C0(R

n).
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As a consequence the function / possesses the following remarkable
translational properties: if g is the Fourier-Stieltjes transform of an element
of M(X), then the span of translates of f-\-g is strictly dense in the space of
all bounded continuous functions on G; and if further geC0(G), the said
span is unformly dense in C0(G). (Both assertions follow from a direct ap-
plication of the Hahn-Banach theorem; the strict topology is that defined
by the seminorms Nk(h) = Ĥ AHa, when k ranges over C0(G). The dual
of C0(G) relative to the uniform topology, and that of the space of bounded
continuous functions relative to the strict topology, is identifiable with
M(G). See [7].)

(ii) Suppose that G is nondiscrete and second countable and that X
contains at least one infinite discrete subgroup. Then it is shown in Theorem
2.5 of [5] that there exists a pseudomeasure s1eP{G) such that singsupp
s1 = G and such that sx is the inverse Fourier transform of a function
in L9(X) for all p satisfying 2 < p ^ oo. On the other hand, if U is any
open subset of G, there exists a function / e L.X{X) such that U is the non-
zero set of the inverse Fourier transform F of f (see the remark preceding
Theorem (6.2) of [6]). We can moreover arrange that / is bounded, and so
belongs to L"(X) for every q satisfying 1 ^ q :g oo. Then s = F • sxe P(G),
sing supp s = U, and s is the inverse Fourier transform of a function be-
longing to C0(X) and to L*(X) for every f> > 2. As before, if G = R",
we may arrange that this latter function is even analytic and has partial
derivatives in C0(R

n).
This result constitutes a variant of Theorem (2.2) for the case in which

E is the closure of an open subset of G.
We turn next to considering when a pseudomeasure s exists satisfying

supp s = sing supp s = E for a given closed subset E of G.

(2.3) THEOREM. Let E be a closed subset of G which satisfies (C) of Theo-
rem (2.2) and also the following condition.

(NH) For any relatively compact open subset UofG which meets E.EnU
is not a Helson set ([2], p. 114).

Then there exists an s e P%(G)[C PE(G)] such that sing supp s = E.

PROOF. This proceeds by contradiction, starting from the assumption
that the assertion of the theorem is false.

On the basis of this last assumption it follows that to each s e P%[G)
corresponds a point x e E and a neighbourhood U of x on which s is a meas-
ure. According to (C), there exists an n such that s is equal on Un to a
measure in M(G).

For n,k~l,2,'", denote by PB>t the set of s € P%(G) such that s = ft
on Un, where fi e M(G) and \\/t\\u ^ k. (We are here using || • \\M to denote
the usual norm on M{G).) Now P%(G) is easily seen to be a closed subspace
of the Banach space P(G), the norm on the latter space being that dual to
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the norm on A(G), and denoted hereafter by || • | |P. Moreover, Pnk is closed
in P(G), as follows from the weak relative compactness of norm-bounded
subsets of M(G). Since, as we have seen, P%(G) is the union of the Pnk,
Baire's category theorem affirms the existence of a pair (n, k) such that
Pnk contains some nonvoid relatively open subset of P%(G). This signifies
that, for some n and some number c ^ 0, to each s e P%(G) corresponds a
measure /* e M (G) such that

(8) s = /*on*7B, I H I K ^ C I I S H , .

Take now a relatively compact open set U meeting E and such that
UCUn, and then a function u e A (G) such that u = 1 on UandsuppuCUn.
Then, if H = U n E, and if s e P%(G), (8) entails that s = u-s = u-fi
globally. Thus each s e P%(G) is globally equal to a measure in M(G). But,
by Lemma (3.1) infra this implies that H is a Helson set, contrary to (NH).
This contradiction completes the proof.

(2.3.1) Remark. Condition (NH) is essential for the validity of Theorem
(2.3). Indeed, if U is a relatively compact open subset of G which meets E
and which is such that U n E is a Helson set, and if s e PB[G), then no point
of U n E can belong to the singular support of s.

In proving this we may (since the problem is local) assume that E is
compact. It then suffices to show that if V is an open set meeting E and such
that V C U, then no point xoeV n E belongs to sing supp «. However the
open sets U and V' cover G and elements u and v of A (G) may be chosen so
that supp uCU, supp v C V, and u-\-v = 1 on a neighbourhood of E.
Then s = us-\-vs. Here

supp MS C supp u n supp s C U n E,
supp vs C supp v C V.

Since U n E is a Helson set, MS is a measure (Lemma (3.1)); and in any case
vs = 0 on a neighbourhood of x0. Thus s is equal on a neighbourhood of x0

to a measure.

(2.3.2) COROLLARY. The conclusion of Corollary (2.2.4) holds whenever
E C F are closed subsets of G and E satisfies condition (NH) of Theorem (2.3).

PROOF. Take sa e P°E(G) C PB(G) such that sing supp sx = E, and let
X be as in the proof of Corollary (2.2.4). Then s = sx+A again satisfies all the
demands.

3. A lemma and its proof

The lemma used in the proofs of Theorem (2.3) and Remark (2.3.1) has
its own interest. It is almost certainly known, but I know of no suitable
reference.
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(3.1) LEMMA. Let H be a closed subset of G. The following statements
are equivalent:

(i) H is a Helson set.
(ii) P%(G)CM(G).

Note. We diverge from Rudin's convention ([2], p. 114) by not insisting
that a Helson set be compact; we ask only that it be closed. Provided C(H),
the space of continuous functions on H, is replaced by C0(H), the subspace
formed of those elements of C(H) which tend to zero at infinity on H, this
change of footing involves no essential changes.

PROOF. Define
AB(G) = {u\H:ueA(G)},

where u\H signifies the restriction of u to H; AH(G) is thus a subspace of
C0(H). We norm AH(G) by setting

= inf{\\u\\A:ueA(G),u\H = f}
for feAH(G).

We shall consider the injection map T of AH(G) into C0(H). It is clear
that T is continuous. The Weierstrass-Stone theorem shows that the range
of T is dense. Statement (i), which evidently means that T is onto, is
thus equivalent to the statement that T has a continuous inverse.

On the other hand it is easily verified that the dual of AH(G) can be
identified with Pa(G) in such a way that the adjoint T of T carries each
bounded Radon measure on H (regarded as a linear functional on C0(H))
into the pseudomeasure on G which it defines, this pseudomaesure being
automatically a member of Pg(G). (In this connection it should be remembered
that a bounded Radon measure on H may be identified with an element
of M{G) whose support is contained in H.) Accordingly, statement (ii)
signifies that T' is onto.

Finally, a well-known theorem (see, for example, [3], Corollary 8.6.15)
says that T has a continuous inverse if and only if T' is onto. Whence the
equivalence of (i) and (ii).

Remark. Save for the case in which H is known to be a spectral syn-
thesis set, it is an interesting open problem to know whether one may in
(3.1.ii) replace P°H{G) by PH(G) and still obtain a statement equivalent to
(3.1.i). However, we do have the following (known) corollary.

(3.2) COROLLARY. / / a closed setHCG is such that PR(G) CM(G) {i.e.,
if H supports no true pseudomeasures), then H is a Helson set.

PROOF. This is an immediate consequence of (3.1) and the trivial
inclusion P°H(G) C PH(G).
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