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0. The existence of r-regular graphs such that each edge lies in exactly t triangles,
for given integers t <r, is studied. If t is sufficiently close to r then each such connected
graph has to be the complete multipartite graph. Relations to graphs with isomorphic
neighborhoods are also considered.

1. In this paper we follow the notation of Behzad, Chartrand and Lesniak-Foster
[2] with the exception of the following concepts. The neighborhood N(v) of a
nonisolated vertex v is the subgraph induced by vertices adjacent to v. By a graph with
regular [t-regular, for an integer t > 0] neighborhoods we mean a graph such that the
neighborhood of every vertex is a regular [r-regular, resp.] graph. Clearly G is a graph
with r-regular neighborhoods if and only if each of its edges lies in exactly t triangles.
Graphs with 1-regular neighborhoods were studied by Zelinka [6] and FronCek [3].
Regular graphs with regular neighborhoods were introduced by Antonucci [1] as
quasi-strongly regular graphs.

If every neighborhood in G is isomorphic to a given graph H then G is a locally-H
graph. These graphs have been often studied, after Zykov [7] asked for which H there is a
locally-// graph. Regular graphs with regular neighborhoods play an important role in
the study of line graphs with isomorphic neighborhoods.

Further we obtain the graph Kr U Kr if we join two copies of Kr by t independent

edges. Soltes [5] has proved that a graph G is a locally-(/Cr_, U Kr_x) graph (r - 1 > t > 0)
if and only if it is the line graph of an r-regular graph with r-regular neighborhoods.
Moreover, regular graphs with regular neighborhoods are the only graphs with a triangle
such that their line graphs have isomorphic neighborhoods.

Here we study the question of the existence of r-regular graphs with r-regular
neighborhoods for given integers r and r. The product rt being even and 0 < r < r are two
trivial necessary conditions. In this paper we will prove that all regular graphs with
sufficiently thick regular neighborhoods are complete multipartite graphs.

THEOREM 1. Let t and r be integers such that

4
(1)

holds. Then
(1): every connected r-regular graph with t-regular neighborhoods is the complete

(1 + r/(r — t))-partite graph in which every part has r — t vertices;
(2): the line graph of the r-regular complete (1 + r/(r — t))-partite graph is the only

connected locally-(Kr-{{jKr_A graph if r = 0 mod(r — t). Otherwise there is no locally-

r_,) graph.

Glasgow Math. J. 34 (1992) 215-218.
https://doi.org/10.1017/S0017089500008740 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008740


216 LUBOMIR SOLTES

As Nedela [4] has pointed out, if t S: 1 is a square then the conjunction K2+y/t A K2+y/,
(vertices of the conjunction K2+y/, A K2+y/, are pairs (vuv2) where both u, and v2 are
vertices in K2+^, and two vertices (U!,M2) and (vuv2) are adjacent iff both w ^ u , and
«2 ^ ^2 hold) is a (f + 2\A + l)-regular graph with f-regular neighborhoods which is not a
complete multipartite graph. Hence the coefficient of Vf- 1 in (1) cannot exceed two.

Before proving Theorem 1 we shall introduce the concept of an admissible graph. If
G is a graph then G5 is the complement of the square of G. Two vertices are adjacent in
G5 if and only if their distance in G is at least three. Let G be a regular graph and
suppose the following two conditions hold.

(Cl): Any two vertices with distance two in G_lie in distinct components in GT
(C2): For each pair of components a and /S in G2 there is a number ca(i such that any

two vertices a from a and b from /3, not adjacent in G, have precisely cap common
neighbors in G.
Then G is called an admissible graph.

By \S\ we mean the number of elements in a set 5. The next lemma states that any
neighborhood in a regular graph with regular neighborhoods has an admissible
complement.

LEMMA 2. Let G be an r-regular graph with t-regular neighborhoods. Then the neigh-
borhood of any vertex is the complement of some (r — t — l)-regular admissible graph.

Proof. Let G have n vertices. Then it is easy to see that its complement G is
(« — 1 — r)-regular and every two of its non-adjacent vertices have precisely (i = n — 2r +1
common neighbors.

If jU = 0 then G is a complete multipartite graph and hence every neighborhood has
admissible complement.

If fi s 1 then diam(G) = 2. (If G is a complete graph then r = 0, which contradicts
r > t). Let v be a fixed vertex. The complement of N(v) is the subgraph H of G induced
by all vertices not adjacent to v in G. Clearly H is an (r — t — l)-regular graph. From now
on we shall work only with the graph G. Given a vertex h in H, let f(h) be the ju-element
set of vertices adjacent to both h and v.

First we note that if vertices /*, and h2 are adjacent in H2 then /(/i,) =f{h2) holds. In
fact hx and h2 have no common neighbors in H, hence all /x of their common neighbors
are also neighbors of v and form sets f(ht) and f(h2). Hence whenever vertices h and g
are connected in IP, the equality/(/i) =f(g) holds.

Observe that if vertices h and g have distance two in H then they have a common
neighbor in H and hence f{h) C\f{g) has at most ju - 1 elements which gives f(h) =£f(g)
and so h and g lie in distinct components of H2. This proves (Cl).

Further, two non-adjacent vertices g and h have in H precisely fi-\f(h) C\f(g)\
common neighbors; this is a function depending only on components containing h, resp.
g. Hence (C2) holds, which completes the proof. •

Clearly every graph with diameter at most two is admissible. But due to the following
Lemma, every connected admissible graph has diameter at most three.

LEMMA 3. Let G be a ^-regular admissible graph on n vertices. Then either G is the
union of several K&+1 or diam(G) ^ 3 and we have

9A2 + 2A + 17
11 * 8 • ( 2 )
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Proof. Let G be an admissible graph. If G2 is connected then, due to (Cl), G has no
two vertices with distance two; hence every component of G is a complete graph.

Otherwise, G2 is disconnected, and so G is connected. Note that for every shortest
path P joining two vertices with distance_four there are two of its vertices with distance two
belonging to the same component of G2, which contradicts (Cl). Hence we have proved
that diam(G) ^ 3. If moreover the radius of G is at most two then n < 1 + A2 and so (2)
holds.

Now assume that G has radius three. Let u be a vertex in G such that its
neighborhood has the maximal number of edges, say e, among all vertices. Let A^ be the
number of vertices in G at distance k from v, for an integer k. Clearly

N 2 < A ( A - l ) - 2 e , ( 3 )

Let us say that a vertex is a far-vertex if its distance from v is three and let 5 be the
subgraph of G induced by far-vertices. All far-vertices lie in the same component in G2 as
v. Hence due to (Cl) no two far-vertices have distance two and so every component of 5
is a complete graph. Later on, let a vertex x be adjacent to the maximal number of
far-vertices, say ( j> l vertices, among all vertices which are not far.

Note that far-vertices adjacent to x lie in the same component of S, say F, having/
vertices. Otherwise two non-adjacent far-vertices adjacent to x would have distance two,
which contradicts (Cl). Further

2e>q(q-l) (4)

holds, because the graph F having q(q — l)/2 edges is a subgraph of N(x). Now let A be
the set of neighbors of x having distance two from v and let B be the set of far-vertices
not lying in F. We shall compute the number of edges joining A and B. Note that
\A | = A — q — a, where a is the number of common neighbors of v and x. Further each
vertex from A is adjacent to at most q vertices from B and the condition (C2) gives that
every vertex from B is adjacent to exactly a vertices in A. Hence

holds, and for the number of far-vertices we have

N3 = \B\+f. (6)

Here we distinguish two cases.
Case 1. Let all vertices in F be adjacent to x. Then / = q and, for the order of G,

according to (3), (4), (5) and (6) we have

n < 1 + A + A(A - 1) - q(q - 1)

On putting a = 1 we obtain

The last expression is maximal if 4q = 1 + A. Setting this for q we obtain (2).
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Case 2. Let there be a vertex z in Fnot adjacent to x. T h e n / s 2 and all neighbors
of x which lie in F are also adjacent to z and the condition (C2) gives q^a, which yields
|fl| < A - 2tf. Clearly 2e s ( / - 1)(/ - 2), as the neighborhood of z contains F - z. So for
the order of G, according to (3), (4) and (6) we have

n < A2 + 1 - 2e +f + \B\ < A2 + 1 - ( / - 1)(/ - 2) + / + A - 2q

which is maximal if / = 2 and q = 1; so

A 2 A „ 9A2 + 2A + 17
n < A 2 + A + l <

8
which completes the proof. •

Proof of Theorem 1. (1): Let G be an r-regular graph with ^-regular neighborhoods
which is not a complete multipartite graph. Then Lemmas 2 and 3 give that 8r ^
9A2 + 2A + 17 where A: = r - t - 1. But setting r: = A + t - 1 we get 8(t - 1) < 9(A - ^)2

which gives r s | + < + VI(f — 1)- This contradicts Lemma 2.

(2): It is proved in [5] that a graph G is locally-f/^Cj #,._,) if and only if G is the

line graph of an r-regular graph with f-regular neighborhoods. This together with part (1)
completes the proof. •
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