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Abstract

This paper is a continuation of the study of the rings for which every principal right ideal (respectively,
every right ideal) is a direct summand of a right annihilator initiated by Stanley S. Page and the author in
[20,21].
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Introduction

In this paper, we continue the study of left AP-injective and left AGP-injective rings
which were introduced and discussed in [20]. Following [20], a ring R is called left
AP-injective if every principal right ideal is a direct summand of a right annihilator,
and the ring R is called left AGP-injective if, for any 0 ^ a e R, there exists
n > 0 such that a" ^ 0 and a"R is a direct summand of rl(a"). Recall that a ring
R is left principally injective (fP-injective) if every principal right ideal is a right
annihilator, and the ring R is left generalized principally injective (GP'-injective) if,
for any 0 ^ a e R, there exists n > 0 such that a" ^ 0 and a"R is a right annihilator.
The detailed discussion of left P-injective and left GP-injective rings can be found
in [3, 7, 12, 15, 16, 17, 22, 23, 24, 26]. Clearly, every left AP-injective ring is left
P-injective and every left AGP-injective ring is left GP-injective. But there exist left
AP-injective rings which are not left GP-injective [20]. In fact, a left AP-injective
ring is not necessarily a left mininjective ring. (The ring R is left mininjective if,
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336 Yiqiang Zhou [2]

for any minimal left ideal Ra, aR is a right annihilator [18], and every left GP-
injective ring is left mininjective.) In [20], several results which are known for left
P-injective (respectively, left GP-injective) rings were shown to hold for left AP-
injective (respectively, left AGP-injective) rings. It has been noted that it is unknown
whether there exists a left GP-injective ring that is not left P-injective (see [6, 24]).
This may put a bit more weight on our excuse for carrying on the study of the left
AGP-injective rings. In this paper, we discuss left AGP-injective rings with various
chain conditions.

It is well known that a ring R is quasi-Frobenius (QF) if and only if R is left self-
injective and left (or right) noetherian. In [9], Faith proved that any left self-injective
ring satisfying the ACC on left annihilators is QF. BjoVk [2] extended this result from
a left self-injective ring to a left f-injective ring, and then Rutter [23] further proved
that, if R satisfies the ACC on left annihilators, then R is QF if and only if R is left
2-injective, where the ring R is called left f-injective (respectively, left 2-injective)
if, for any finitely generated (respectively, 2-generated) left ideal / of R, every R-
homomorphism from I to R extends to an /?-homomorphism from R to R. Note that a
left f-injective rings need not be left self-injective, and a left P-injective ring need not
be left 2-injective. It was also proved in [23] that any left P-injective ring satisfying
the ACC on left annihilators is right artinian. The latter result was extended from a left
P-injective ring to a left GP-injective ring in Chen and Ding [7]. It is clear, by Rutter's
example in [23], that a left P-injective ring satisfying the ACC on left annihilators
need not be left artinian, and hence not be QF. The main result in Section 2 states that
a left AGP-injective ring with the ACC on left annihilators is always semiprimary, but
is not necessarily right artinian.

A ring is called a right dual ring if every right ideal is a right annihilator. The
study of right noetherian, right dual rings was initiated by Johns [14], and continued
by Faith and Menal in [10, 11] where they gave a counterexample to Johns' result that
every right noetherian, right dual ring is right artinian. Recently, Gomez Pardo and
Guil Asensio [12] proved that if R is right noetherian and left P-injective, then J(R)
is nilpotent and!(/(/?)) is essential both as a left and a right ideal of R, and this result
allows them to show that every left Kasch, right noetherian and left P-injective ring is
right artinian. In Section 2, among other things, we prove that, for a right noetherian
and left AGP-injective ring R, J(R) is nilpotent and 1(7(R)) is essential both as a left
and a right ideal of R. As a corollary of this, we show that every right noetherian, left
AGP-injective ring with right (GC2) is right artinian.

In Section 3, we consider right quasi-dual rings. A ring R is called right quasi-dual
if every right ideal of R is a direct summand of a right annihilator [21]. The right
quasi-dual rings form an interesting class of left AP-injective rings. In Section 3, it
is proved that, for a right quasi-dual ring, J(R) = r(5r), 5r = r(Zr) and \(J(R))
is essential in KR. Consequently, for a two-sided quasi-dual ring /?, the left socle
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coincides with the right socle and is essential both as a left and a right ideal of R.
We also improve a result of [21] by showing that a ring R is a two-sided PF-ring if
and only if every right Goldie torsion ^-module is cogenerated by RR and every left
Goldie torsion /?-module is cogenerated by RR.

Throughout, R is an associative ring with identity and modules are unitary. We
use MR (respectively, RM) to indicate that M is a right (respectively, left) module
over R. For a subset X of R, \(X) (respectively, r(X)) is the left (respectively, right)
annihilator of X in R, and we write l(x) (respectively, r(x)) for l({x}) (respectively,
r({x})) when x e R. The left socle, right socle, left singular ideal, right singular ideal
and Jacobson radical of R are denoted by Si, Sr, Zi, Zr and J(R), respectively. For a
submodule N of M, we use N <e M to mean that N is essential in M.

1. Left AGP-injective rings with left chain conditions

Following [20], the ring R is left AF'-injective if, for any a e R, aR is a direct
summand of rl(a), and R is left AGP-injective if, for any 0 ^ a € R, there exists n > 0
such that a" ^ 0 and a"R is a direct summand of rl(a"). Every left P-injective ring is
left AP-injective and every left GP-injective ring is left AGP-injective. The rings R in
[21, Examples 2.3, 2.4] are commutative AP-injective rings, but not mininjective and
hence not GP-injective.

In this section, we prove several results of left AGP-injective rings with some chain
conditions on left ideals.

A module M is said to satisfy the generalized C2-condition (or (GC2)) if, for any
N c. M and N = M, N isa summand of M. Note that the GC2-condition is the same
as the (*)-condition in [20, page 713].

LEMMA 1.1. Let RM satisfy (GC2). If M is finitely dimensional, then End(M) is

semilocal.

PROOF. Let a : M ->• M be a monomorphism. Then M = o(M) ® N for
some N c M. It must be that N = 0 since M is finitely dimensional. So, a is an
isomorphism. Therefore, M satisfies the assumptions in Camps-Dicks [5, Theorem 5],
and so End(Af) is semilocal. •

The next corollary extends [21, Proposition 2.12].

COROLLARY 1.2. Let R be a left AGP-injective ring.

(1) If RR is of finite Goldie dimension, then R is semilocal.
(2) R is left noetherian if and only if R is left artinian.
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PROOF. (1). By [20, Proposition 2.13], RR satisfies (GC2). Since RR has finite
Goldie dimension, R is semilocal by Lemma 1.1.

(2). If R is left noetherian, then R is semilocal by (1). By [20, Corollary 2.11],
J(R) is nilpotent. So, R is left artinian. •

LEMMA 1.3 ([20]). If R is a left AGP-injective ring, then J(R) = Z,.

LEMMA 1.4. Let R be a left AGP-injective ring and a € R. If a £ J(R) then there
exists r e R such that the inclusion l(a) C \(a — ara) is proper.

PROOF. Let a € R but a £ J(R). By Lemma 1.3, a <£ Z, and hence \(a) is not
essential in RR. So, wehavel(a)D/ = OforsomeO ^ / c RR. TakeO / be I. Then
ba £ 0. By the hypothesis, there exists n > 0 such that (ba)" ^ 0 and r\((ba)n) —
(ab)"R © X where X is a right ideal of R. Since l(a) D / = 0, \{{ba)n) = l((ba)"-lb).
It follows that (baY^b e rl((ba)"-lb) = rl((ba)n) = (ba)"R®X. Thus, there exists
r e R such that {ba)"~*b = (ba)"r + x where r € R and x G X. This gives that
{ba)n-lb(,\ -ar)=x and hence (ba)"-lb(a - ara) = xa e (ba)nR n X. It follows
that (ba)"'lb(a - ara) = 0. Let c = a - ara. Then l(a) c l(c). Since (bay'b is
in l(c) but not in \(a), the inclusion l(a) C l(c) is proper. •

The next result extends [7, Theorem 3.4, Corollary 3.6]. Following [1], a module
M is called finitely projective (respectively, singly projective) if, for each epimorphism
f : N —y M and each finitely generated (respectively, cyclic) submodule Mo of M,
there exists g e HomR(A/0, A0 such that the restriction of g of to Mo is the identity
on Mo.

THEOREM 1.5. The following are equivalent for a left AGP-injective ring R:

(1) R is a left Perfect ring.
(2) Every flat left R-module is finitely projective.
(3) Every flat left R-module is singly projective.
(4) For any infinite sequence xu JC2, Jc3,.. • of elements in R, the chain \(x\) C

C • • • terminates.

PROOF. (1) implies (2) and (2) implies (3) are obvious. (3) implies (4) is by [1,
Corollary 25].

(4) implies (1). Firstly, we prove R/J(R) is a von Neumann regular ring. For any
x e R, l e t i =x + J(R). Leta, e Rbuta, £ J(R). We want to show that a, = atxai
for some x € R. By Lemma 1.4, there exists r{ e R such that 1(^0 c l(a2) where
a2 = Q\ — fli^iOi- Iffl2 € ./(/?), thenai = a i^a i and we are done. lfa2 £ ./(/?), then,
by Lemma 1.4, there exists r2 e R such that l(a2) C l(a.i) where a3 = a2 — a2r2a2.
The induction principle and the hypothesis ensure the existence of a positive integer
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n and two sequences {a, : i = 1 , . . . , « + 1} and {r,•. : i = 1 , . . . , n) of elements in R
such that an+i € J(R) and a,+1 = a, — ajia, for i = 1 , . . . , n. Thus, an = anrnan. It
follows that

an-\ = an+ an_irn_ian_!

so «„_! is also a regular element. Continuing this process, we see that a\ is a regular
element.

Secondly, we prove that Z, is left T-nilpotent. Let a, e Z, for / = 1, 2 , . . . . We
have a chain l(ai) c \{a.\a2) c • • •. By our assumption, there exists n > 0 such
that Ka, • • • an) - \{ax • • • anan+x). Thus, \{an+x) D Ra{ • • • an = 0. Since l (a n + 1 )

is essential in RR, we have ax • • -an = 0, so Z; is left T-nilpotent. Therefore, by
Lemma 1.3, we have proved that R/J(R) is a von Neumann regular ring and J(R)
is left T-nilpotent. So, it suffices to show that R/J(R) is an artinian semisimple
ring. By [13, Corollary 2.16], we only need to show that R/J(R) contains no infinite
sets of nonzero orthogonal idempotents. This can be proved by arguing as in [7,
page 2107]. •

COROLLARY 1.6. / / R is a left AGP-injective ring with ACC on left annihilators,
then R is semiprimary.

PROOF. It is well known that Z, is nilpotent for any ring R with ACC on left
annihilators. By Lemma 1.3 and Theorem 1.5, R is semiprimary. D

COROLLARY 1.7. Let R be a left AGP-injective ring with ACC on left annihilators
and Sr C 5;. Then R is right artinian if and only if Sr is a finitely generated right
ideal of R.

PROOF. By Corollary 1.6, R is semiprimary. By [20, Corollary 2.7], 5, c Sr, and
so 5 = Si = Sr by the hypothesis. Now the result follows from [4, Lemma 6]. •

A left GP-injective ring with the ACC on left annihilators is always right artinian
[7, Theorem 3.7]. The ring R [21, Example 2.4] is a commutative AP-injective ring
with the ACC on annihilators, but R is not artinian.

Recall that a ring R is called left Kasch if r(K) j± 0 for every maximal left ideal K
of R.

COROLLARY 1.8. Let R be a left AGP-injective ring with ACC on left annihilators.
If every minimal right ideal is a right annihilator, then R is right artinian. Moreover,
R is left artinian if and only ifSt is finitely generated as a left ideal of R.
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PROOF. By Corollary 1.6, R is semiprimary. By [18, Corollary 3.15], R is right
finite dimensional with Sr = Si. Now, by [4, Lemma 6], R is right artinian. The last
assertion follows from [4, Lemma 6] again. •

Now the following result, [7, Theorem 3.7], is an immediate corollary of the above:

COROLLARY 1.9 ([7]). Every left GP-injective ring with ACC on left annihilators
is right artinian.

PROOF. If R is a left GP-injective ring, then every minimal right ideal is a right
annihilator. For, if / is a minimal right ideal of R, then I = eR where e2 = e e R
or I2 = 0. If / = eR, clearly / is an annihilator. On the other hand, if / = xR
for some x € R with I2 = 0, it follows from the definition of left GP-injectivity that
I =XR = rl(/). Now the result follows from Corollary 1.8. •

2. Left AGP-injective rings with right chain conditions

In this section, we first consider right noetherian, left AGP-injective rings. We
prove that, for a right noetherian, left AGP-injective ring R, J(R) is nilpotent and
1(7 (/?)) is essential as a left and as a right ideal of R. As a corollary of this, we prove
that every right noetherian, left AGP-injective ring R such that RR satisfies (GC2) is
right artinian. We next prove that every maximal left (respectively, right) annihilator
of a semiprime left AGP-injective ring is a maximal left (respectively, right) ideal
generated by an idempotent.

The next result extends [12, Theorem 2.7] from a left P-injective ring to a left
AGP-injective ring.

THEOREM 2.1. Let R be a right noetherian, and left AGP-injective ring. Then J(R)
is nilpotent and l(J(R)) is essential both as a left and as a right ideal of R.

PROOF. Let J = J(R). First we prove that 1(7) <e RR. Let 0 ^ x € R. Since
R is right noetherian, the non-empty set & — {r((ax)k) : a 6 R,k > 0 such that
(ax)k ?t 0} has a maximal element, say r((yx)").

We claim that {yx)"J = 0. If not, then there exists t e J such that (yx)"t ^ 0.
Since R is left AGP-injective, there exists m > 0 such that ((yx)"t)m ^ 0 and
((yx)"t)mR is a direct summand of rl(((yx)"t)m). Write ({yx)"t)m = (yx)"s where
i = tdyxyt)1"-1 € J. Then r\((yx)"s) = (yx)"sR @X for some right ideal X of R.
We proceed with the following two cases.

Case 1. rl((^jc)") = rl((>u:)".$). Then (yx)" e rl((^)") = (yx)"sR®X. Write
(yx)" = (yx)"sv + z, where v e R and z € X. Then (yx)"s = (yx)"svs + zs and
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so zs € (yx)"sR n X. Thus, zs = 0 and hence (yx)"s = (yx)"svs. It follows that
(yx)"s(l — vs) = 0. Since s e 7, 1 — vs is a unit in fl. So, we have (yx)"s = 0.
This is a contradiction.

Case 2. rl((yx)n) ^ rl((yx)ns). Then l((;yjt)n) ^ KCyx)"*). It follows that there
exists u € l((yx)ns) but u i \{{yx)n). Thus, u(yx)"s = 0 and M^JC)" ^ 0. This gives
thats € r(K(>>;<:)'')ands £ r((yjc)"). So, the inclusion r((yx)n) c r ^ y x ) " ) is proper.
This is a contradiction because 0 ^ w(y.x)" = («(;y;c)n~1y);c and r(u(yx)n) e < \̂

We have proved that {yx)"J = 0, and so Rx n 1(7) ^ 0. Therefore, 1(7) is an
essential left ideal of R.

Next we prove that 7 is nilpotent. Since R is right noetherian, there exists k > 0
such that 1(7*) = l(7t+n) for all n > 0. Suppose 7 is not nilpotent. Then 7* ^ 0
and so MR = R/l(Jk) is a nonzero /^-module. Since fl is right noetherian, the set
{rR(m) : 0 ^ m € M] has a maximal element, rR(/ni) say. Write wi! = x + 1(7*)
where x e R. Thenx7* ^ 0. Since 1(72*) = 1(7*), we seejc7* 2 1(7*). So, there
exists b e 7* such thatxb $ 1(7*). Since 1(7) <e RR, Rxbni(Jk) ^ 0 . So, we have
0 ^ axb € 1(7*) for some a e R. Let m2 = ax + 1(7*) e M. Then m2 ^ 0 and
b e rR(/n2). But, b £ r^mO. So, the inclusion rs(m,) C rs(m2) is proper. This
contradicts the choice of mi.

Finally, for any 0 £ x € R, xJ = 0, or xJ" £ 0 and x7"+1 = 0 for some n > 0.
It follows that *fl fl 1(7) ^ 0. So, 1(7) is an essential right ideal of R. •

The next result extends [12, Corollary 2.9]. (Note that, if R is left Kasch, then RR

satisfies (C2) (see [25]) and hence satisfies (GC2)).

COROLLARY 2.2. Every right noetherian, left AGP-injective ring R such that RR

satisfies (GC2) is right artinian.

PROOF. Since R is right finitely dimensional and RR satisfies (GC2), R is semilocal
by Lemma 1.1. By Theorem 2.1, J(R) is nilpotent. So, R is semiprimary. Since R is
right noetherian, R is right artinian. •

Next, we consider semiprime left AGP-injective rings.

LEMMA 2.3. Let R be an arbitrary ring and a € R such that l(a) is a maximal left
annihilator or r(a) is a maximal right annihilator. Then \(at) — \(a)for any t $ r(a)
and Zi C r(a), and r(ta) = r(a)for any t £ l(a) and Zr c \(a).

PROOF. Let x e Zh Then l(x) is essential in RR. So, 1(JC) n Rr £ 0 for any
0 ^ r € R. Thus, there exists y € R such that 0 ^ yr and yrx = 0 . So, the inclusion
\{r) C \(rx) is proper.
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Case 1. Let l(a) be a maximal left annihilator. As above, l{a) c l{ax) for all
x e Z/. It must be that ax = 0. This shows that a e 1(Z;). Clearly, in this case
l(at) = l(a) for any t £ r(a).

Case 2. Let r(a) be a maximal right annihilator. If t £ r(a), then at ^ 0. For
x e l(at), t € r{xa) and so the inclusion r(a) C r(xa) is proper. By the maximality
of r(a), xa = 0. Thus, l(at) - l(a). It follows that Ra n 1(0 = 0. Thus, t i Zh

Therefore, Z; c r{a).
The remaining part is by the left-right symmetry of the hypothesis. D

The next theorem extends [7, Theorem 3.1].

THEOREM 2.4. Let R be a semiprime left AGP-injective ring. Then every maximal
left {respectively, right) annihilator is a maximal left {respectively, right) ideal of R
which is generated by an idempotent.

PROOF. Let L be a maximal left (respectively, right) annihilator. Then L = l{a)
(respectively, r(a)) for some 0 ^ a e R. Since R is semiprime, Zt n 1(Z/) = 0.
Claim: a $ Zt. Otherwise, a $ 1(Z,), that is, aZ, ^ 0. Take x e Z( such that
ax £ 0. Since x <£. r{a), \{ax) = l{a) by Lemma 2.3. Thus, l{x) n Ra = 0, a
contradiction, since x e Z/. Therefore, a £ Zh By Lemma 1.3 and Lemma 1.4, the
inclusion \{a) C \{a — ara) = \[a{l — ra)] is proper for some r e R. It follows from
Lemma 2.3 that a — ara = 0. Therefore, L = \{ar) (respectively, L — r{ra)) with
ar (respectively, ra) an idempotent. So we can assume that a = e is an idempotent.
To see L is a maximal left (respectively, right) ideal, we show that Re (respectively,
eR) is a minimal left (respectively, right) ideal of R. Since R is semiprime, it suffices
to show that eRe is a division ring. Let 0 ^ d e eRe. Since R is left AGP-injective,
there exists n > 0 such that d" ^ 0 and d"R is a direct summand of rl{d"). By
Lemma 2.3, \{d") = \{e) and so r\{dn) = rl(e) = eR. Thus, d"/? is a direct summand
of efl and hence of RR. It follows that d"R = rl{d") = eR. Write e = d"b where
ft € fl. Then e = d{d"~*be) with <f~'6e e <?/?*>. So, e/?e is a division ring. •

A ring R is a left PP ring if every principal left ideal of R is projective. The next
result extends [6, Theorem 2.9] from a left GP-injective ring to a left AGP-injective
ring.

PROPOSITION 2.5. The ring R is a von Neumann regular ring if and only ifR is left
PP and left AGP-injective.

PROOF. One direction is obvious. Suppose that R is left PP and left AGP-injective.
For any nonzero element a e R, there exists n > 0 such that a" •£ 0 and r\{a") =
a"R © X where X is a right ideal of R. Since R is left PP, Ra" is projective, and
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hence 0 -*• l(a") -> R ->• Ra" ->• 0 splits. Thus, l(a") = Re where e2 = e e R. It
follows that rl(a") = r(Re) — (1 - e)R. Thus, a"R is a direct summand of (1 - e)R,
and hence a direct summand of RR. This implies that a" is a regular element of R. If
a ^ 0 but a2 = 0, the argument above shows that a is a regular element. So, by [6,
Theorem 2.9], R is a regular ring. •

3. Right quasi-dual rings

Following [21], a ring R is called right quasi-dual if every right ideal of R is a
direct summand of a right annihilator. As shown in [21 ], the ring R is right quasi-dual
if and only if every essential right ideal of R is a right annihilator if and only if every
singular cyclic right ^-module is cogenerated by R. Every right dual ring is certainly
right quasi-dual, and every right quasi-dual ring is left AP-injective.

LEMMA 3.1. Let R be a right quasi-dual ring. For any right ideal I of R and
a e R, r[Ra n!(/)] = / + (Xa, : a)r with (Xal : a)r n / c r(a) and (Xa, : a)r =
{x e R : ax € Xa,}, where Xa, is a right ideal of R such that rl(al) = al © Xat.

PROOF. Let* e r[RaDl(I)]. Thenl(a/) c l(ax),andsoax e rl(ax) c rl(al) =
al ®Xal. Write ax = at + y where t e / andy e Xal. ThenaQt — t) = ye Xa, and
thus*-; e (Xal : a)r. Therefore,.* 6 I+(Xa, : a)randr[/?anl(/)] c I+(XaI : a)r.
It is easy to see that (Xa/ : a)rni c r(a) and that/ c r[RaDl(I)]. Lety g (Xa/ : a)r.
Then ay € Z^ c rl(a/). For any ra e Ra D 1(1), ral = 0. This gives that
r e l(a/). Since ay e rl(a/), it follows that ray = 0. Thus, y e r[«a n !(/)] and
(Xf l l :a) rc r [ /?f lni( / ) ] . D

THEOREM 3.2. Let R be a right quasi-dual ring and J = J(R). Then

(1) J = Zt = r(Sr), Sr = r(Zr), and R is right Kasch.
(2) 1(7) is essential in RR.

PROOF. (1). Clearly, Sr c r{Zr). Let K be any essential right ideal of R. Then
1(/O c Z, and so A: = rl(A:) 5 r(Zr) . It follows that Sr 2 r(Zr) since S, is the
intersection of all essential right ideals. Thus, 5r = r(Zr) . By [21, Lemma 2.5 and
Lemma 2.6], J — Zt and R is right Kasch. Since R is right Kasch, J = r(5r) .

(2). Let 0 ^ a e fl and assume that Ra n 1(7) = 0. Then, by Lemma 3.1,
R = r [#a n 1(7)] = 7 + (XaJ : a)r where Xfl7 is a right ideal of R such that
rl(a7) = aJ @XaJ. Since 7 is small in RR, R = (XaJ : a)r. It follows that a/? c XaJ

and so aJ <Z aJ H XaJ — 0. Thus, a e RaH 1(7) = 0, a contradiction. •

COROLLARY 3.3. Let R be a quasi-dual ring. Then S = Sr = 5/ is essential as a
left and a right ideal of R.

https://doi.org/10.1017/S1446788700009009 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700009009


344 Yiqiang Zhou [10]

PROOF. By [21, Theorem 2.8] and Theorem 3.2. •

It was proved in [21] that, for a two-sided quasi-dual ring R, every Goldie torsion
right /?-module is cogenerated by RR if and only if the second singular right ideal
Z2(RR) of R is injective. This result can be improved as follows.

THEOREM 3.4. Consider the following conditions on a ring R:

(1) Every Goldie torsion right R-module is cogenerated by RK.
(2) Z2(RR) is injective and R is right Kasch.

(3) R is right self-injective and right Kasch.

Then (3) implies (2) and (2) implies (1). In addition (1) implies (3) if R is left

quasi-dual.

PROOF. (3) implies (2) is obvious, and (2) implies (1) is by the proof of [21,
Theorem 4.1].

Suppose R is left quasi-dual and (1) holds. By [21, Theorem 4.1], Z2(RR) is
injective. Write RK = Z2(RR) © K where K is right ideal of R. It suffices to show
that KR is injective. Note that R is a two-sided quasi-dual ring, so Z, = Zr and
Sr = 1(Z,) by [21, Theorem 2.8]. It follows that K c \{{Z2(RR)) c 1(Z;) = Sr. So,
KR is semisimple. Thus, to show that KR is injective, it suffices to show that K is
Z2(/?ff)-injective. But, this is clear because K is non-singular and Z2(RR) is Goldie
torsion. •

A ring R is right PF if R is an injective cogenerator for Mod-/?. It is known that R
is right PF if and only if R is right self-injective and right Kasch. The next corollary
improved [21, Corollaries 4.4-4.6].

COROLLARY 3.5. R is a two-sided PF-ring if and only if every Goldie torsion right

R-module is cogenerated by RR and every Goldie torsion left R-module is cogenerated

by RR.

Dischinger and Miiller [8] constructed a left PF-ring that is not right PF. By Corol-
lary 3.5, the left PF-ring in [8] does not cogenerate every Goldie torsion right R-
module. Osofsky [19] constructed a non-injective cogenerator for Mod-/?. We note
that Osofsky's ring R has the property that Z2(RR) = R (since J(R)2 = 0 and
J(R)R <<• RR)- This shows the conditions (1) and (2) in Theorem 3.4 are not equiva-
lent.

PROPOSITION 3.6. The following are equivalent for a ring R:

(1) R is right PF.
(2) Z2(RR) is injective, R is right Kasch and R = Z2(RR) + Sr.
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PROOF. (2) implies (1). It suffices to show that R is right self-injective. Since
R = Z2(RR) + Sr, R = Z2(RR) © K where A" is a non-singular semisimple right ideal
of R. Clearly, KR is Z2(/?*)-injective and KVinjective. So, KR is injective. Thus,
RR is injective.

(1) implies (2). We only need to show that R = Z2(RR) + Sr. Since Z2(RR) is
injective, write R = Z2(RR) © K where A: is a right ideal of R. Since R is right PF,
J{R) = Zr c Z2(RR) and Sr is a finitely generated essential right ideal of R. Thus
Soc(KR) is finitely generated and essential in KR. Since every minimal right ideal
contained in K is idempotent, Soc(KR) is a summand of RR and hence of KR. Thus,
K — SOCCA'R) is semisimple. •

We do not know if the condition that R = Z2(RR) + Sr in Proposition 3.6 can be
removed.
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