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Abstract

Existence principles are given for systems of differential equations with reflection of the argument. These
are derived using fixed point analysis, specifically the Nonlinear Alternative. Then existence results are
deduced for certain classes of first and second order equations with reflection of the argument.
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0. Introduction and Preliminaries

This paper establishes some general existence principles for systems of differential
equations with reflection of the argument. Then applications are given to certain
classes of first and second order equations with reflection of the argument. For a
detailed account on the above subject see [1, 2, 11, 12] and their references. The
problems we consider have the form

Q J y(k)(t) = f{t, y(t), y(-t), • • •, y^l\t), y«-l)(-t)), -T < t < T
\ y e SB

where 38 specifies certain initial and/or boundary conditions and where / is either
continuous or a Caratheodory function.

For this paper R" denotes Euclidean n-space and |x| denotes the Euclidean norm,
Cm = Cm([-T, T], R"), where the range space of the functions will be clear from the
context, is the Banach space of functions u such that w(m) is continuous on [—T, T]
with norm

|«U =max{|« |0 , •••, |«(m>|o}
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238 Donal O'Regan [2]

where |u|0 = max{\u(t)\ :-T<t<T}. We also define Q 1 = {u e Cm : K(0) = 0}
and of course as usual C = C° and C$ = Co. For 1 < p < oo, Lp[-T, T] is the
Banach space of functions u such that |M|P is Lebesgue measurable on [-T, T] with
norm

-\f> (x)\"dx

and L°°[—T, T] is the Banach space of essentially bounded functions u with ||«||oo
the usual essential supremum norm. For simplicity when p — 2, we write ||w|| =
||M||2. Finally Wk-p[—T, T] is the Sobolev class of functions u with u(k~l) absolutely
continuous and u(k) e Lp[-T, T].

We will use the following version of the change-of-variable theorem; see [5] for
proof.

LEMMA 0.1. Let g : [a, b] ->• [A, B] and h : [A, B] - • R, where g is absolutely
continuous, h is measurable and (h o g)g' is Lebesgue measurable on [a,b]. Then h
is integrable on the interval with end points g(a) and g(b) and

r h(U)du=i higimg'iodt.
Jg(a) Ja

Now in (0.1) we assume the nonlinear term / is either a continuous function or a
Caratheodory function.

DEFINITION. Letm be a positive integer and p e [1, oo]. Afunctiong : [-T, T] x
Rmn -> R" is an Lp-Caratheodory function (or a Caratheodory function for short)
provided:
ifg = g(f, z), then

(a) the map z i-»- g(t, z) is continuous for almost all t e[-T, T]\
(b) the map t i->- g(t, z) is measurable for all z e Rmn;
(c) for each r > 0 there exists hr e LP[—T,T] such that \z\ < r implies that

\g(t, z)\ < hr(t) for almost all t e [-T, T].

Each Caratheodory function g : [-T, T]xR^2k)n —> R" induces an operator (called
the Caratheodory operator associated with g) Ng : Ck~l ->• Co defined by

) = I g(s, y(s), y(-s),
Jo

(Ngy)(x) = I g(s, y(s), y(-s), • • •, /'""(s), y<*"1)(-*)) ds.
Jo

The condition (a) and (b) in the above definition imply that g(s, y\(s), y2(s), • • •,
)>2k(s)) is measurable for any measurable functions y\(s), • • •, y^is)- Thus if v e
Ck~\[-T, T], R"), then (c) implies that the integrand is integrable on [-T, T] and
consequently Ng : Ck~] -*• Co as asserted. Essentially the same reasoning as in [7]
or [9, 10] immediately yields:
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[3] Existence results for differential equations with reflection of the argument 239

THEOREM 0.2. Let g : [-T, T] x Rm)n -> Rn be a Caratheodory function and
Ng : Ck~l -> Co its associated operator. Then Ng is continuous and completely
continuous.

If / is continuous, by a solution to (0.1) we mean a classical solution y with a
continuous k'h derivative, while if / is a Caratheodory function, a solution will mean a
function y which has an absolutely continuous (k — l)sl derivative such that y satisfies
the differential equation almost everywhere in [—T, T]. Of course v must also satisfy
the stated boundary conditions. If / is Lp-Caratheodory then any solution to (0.1) will
automatically have its k'h derivative in Lp and hence be an element of Wkp[—T, T].

In (0.1) we treat initial and/or boundary conditions 88 of the following type. For
each i = 1, • • •, k let Ut : C

k~l([-T, T]; Rn) -+ R" be a continuous linear form such
that Ui(8(t)v) = Uj(9(t))v for each k — 1 times differentiable, real valued function 9
and for each vector v in R". We say a function u e Cm[—T, T]form > k — l satisfies
the boundary conditions 08 and write u € 88 if £/,(«) = yi for i = 1, • • • ,k where
Yi are given constants. The corresponding homogeneous boundary conditions where
each Yi — 0 are denoted by 8§0. Thus, u € 88$ if £/,•(«) = 0 for i = 1, • • •, k. Finally,
given a space & of suitably differentiable functions, we denote by &'& the subset of
those functions in & which satisfy the boundary conditions 88.

Our analysis of (0.1) involves two related operators A and L defined as follows:

A : C%a - • C, Ay = y w

L : C%-1) - • Co, (Ly)(t) = y » - » ( 0 - ^ " " ( O )

where 8$ denotes the boundary conditions £/,(y) = y,^ for i = 1, • • •, k. Notice that
A is a linear operator while L is affine.

LEMMA 0.3. Let {zj(x)}k
j=l be a basis of solutions for the scalar equation z m = 0.

Then A : C^o -> C is invertible if and only ifdet [Ut(zj)] ^ 0.

PROOF. The equation Ay = 0 holds precisely when y = £ - = 1 Zj (x)aj where
as € R" satisfy

0 = U'\

for each / = 1, • • •, k, and the result follows.

LEMMA 0.4. If A : C^o ->• C is invertible then so is L : Ck&1 -> Co.

PROOF. The equations y(k~l)(x) — y(*-1)(0) = g(x) with g e Co have general
solution y(x) = 5^-=, z;(x)a7 + G(JC). Where of course G(x) = g(x) when ^ = 1,
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240 Donal O'Regan [4]

G(x) = f* g(si)dsi when k = 2 and G(x) = f* /„'* ' • • • f*2 gis^ds^ds^ • • • dsk.x
when k > 3, and Zj(x) are as in Lemma 0.3. The function y(x) satisfies the boundary
conditions SB if and only if (/, (y) = yt for i = 1,2, • • •, k; that is £ y = 1 U, (zj (x))a; =
Yi — Uj(G(x)), i = 1,•••,&. In view of Lemma 0.3 there are unique choices for the
vectors a,- e R" such that y(x) solves Ly = g. Therefore given g € Co there always
exists y e C^"1 such that Ly = g. The difference of two such solutions, say z, clearly
belongs to Ck

m and satisfies Az = 0. Thus z = 0 and we conclude that L is both
one-to-one and onto and hence invertible.

The general existence principles for differential equations with reflection of the
argument are derived using topological methods, specifically the Nonlinear Alternat-
ive [4, 9, 10, 14]. We note first, however, that by a map being compact we mean it is
continuous with relatively compact range. Let K denote a convex subset of a normed,
linear space E. U is an open subset of K and U and dU are the closure of U in K
and the boundary of U in K.

THEOREM 0.5. (Nonlinear Alternative) Let N : U ->• K be a compact map, p e U,
and Nk(u) = N(u, X) : U x [0, 1] -> K a family of compact maps with N{ = N and
N0(u) = p, the constant map to p. Then either

(i) N has a fixed point in U; or
(ii) there is a point u e dU and A. e (0, 1) such that u = Nku.

Now associated with the system (0.1) we have a family of problems

m n f y(k)(t) = kf (t, y(t), y(-t), •••, y«-l\t), y ^ ' H - r ) ) , -T < t < T
{0A)k \

where X e [0,1]. Evidently, y is a solution to (0.1 )x if and only if it satisfies the
equation

= k f f (s,
Jo

y(s), y(-s), •••, y^is), /k'l)(-s)) ds

and y e C ^ 1 . Assume that A : C^o -> C is invertible so Lemma 0.4 leads
immediately to the equivalence

(0.2) (0.1)x is equivalent to Ly = XNfy is equivalent to y = Nxy

where Nx = L~lXNf : C*"' —> Ck~l is continuous and completely continuous by
Theorem 0.2. Now, an application of the Nonlinear Alternative yields:

THEOREM 0.6. Let f : [-T, T] x Rm)n -*• R be continuous or a Caratheodory
function. Assume furthermore that A : C^o ->• C is invertible and that h is the unique
solution to Lh = 0 . Then each of the following three statements is valid.
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[5] Existence results for differential equations with reflection of the argument 241

(A) Let U c C^"1 be a bounded, open set with h e U. Then either

(i) (0.1) has a solution y in U; or
(ii) there exists A. € (0, 1) and a solution y to (0.1 )x such that y € dU.

(B) Let & be a bounded open set in R&)n with (h{x), h{-x), • • •, h(k~l){x\ h(k-l)(-x))
e Slfor all x in [-T, T]. Then either

(i) (0.1) has a solution y with (y(x), y(-x), •••, y(k-l)(x), y«-V)(-x)) e ?2
forx e [-T,T];or

(ii) there exists k e (0, 1) and a solution y to (0A)k such that (y(x), y(—x),
• • •, y{k~u(x), y^'^i—x)) e £2 for all x in [-T, T] and for some x0 in
[-T, T], (y(x0), y(-x0), • • •, y(k-l)(-x0)) € 3Q.

(C) Suppose there is a constant M such that for every k e (0, 1), any solution y
to (0.1)x we have \y\u-\ < M. Then (0.1) has a solution y such that \y\k-\ <
max{M, |/i|t_i}.

PROOF. TO prove (A), let E = Ck~x and K = C^"1 which is a convex subset
of E. Let N : L~lNf : TJ -+ K and Nku = N(u, k) = L~lkNfu define maps from
U x [0, 1] -> K. Since U is bounded the comments following (0.2) show that all
these maps are compact. Also we have Nou = L"'O = h, the constant map to h e U.
Thus Theorem 0.5 applies to these compact maps, but by (0.2), alternative (i) and (ii)
in Theorem 0.5 are precisely alternative (i) and (ii) in (A) above. This establishes (A).

To verify (B), let U = {y e C^1 : (y(x), y(-x), • • •, ^ " " ( J C ) , y(k-l)(-x)) e Q
forx e (-T, T)}. Apply (A) with this U to obtain (B).

Final ly , apply ( B ) w i t h £2 = {w = {wu • • • ,w2k) e R(2k)" : \wt\ < m a x { M , \h\k.x}}

and observe that that choice of Q. excludes (ii) in (B) to confirm (C).

The next few sections develop existence results for interesting classes of first and
second order differential equations with reflection of the argument or systems of such
equations.

1. Initial Value Problems

Consider a first order differential system with reflection of the argument of the form

y'(t) = r]{t)f{t, y(t), y(-t)), -T < t < T

where r € R".
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242 Donal O'Regan [6]

THEOREM 1.1. Let \/p + l/q = I, f : [-T, T] x R2" -+ R" be an Lp-
Caratheodory function, r\ e Lq[—T, T] with r\ > 0. Assume ty : [0, oo) —*• (0, oo) is
a nondecreasing Borel function such that

\f(S,UuU2)\ < ^ ( | M i | + |«2|)

for almost all s in [-T, T] and all U\,u2 € R". Then (1.1) has a solution y defined
on [-T, T] provided T satisfies

f [r)(s) + r1(-s)]ds < f
J0 J2\r\

du

PROOF. First recall that by a solution to (1.1) we mean a function y e C&([-T, T],
R") which is absolutely continuous on [—T, T] and satisfies the differential equation
almost everywhere on [-T, T]. Theorem 0.6 (C) implies that a solution to (1.1) will
exist if we can establish an a priori bound independent of A. € (0, 1) for any solution
to the family of problems

I /(O = WO fit, y(0, y(-0), -T <t <T
1 y(0) = r.

Note that Theorem 0.6 applies because rjf is an L'-Carathe'odory function by Holders
inequality and for 38 we may take the initial condition U\(u) = u(0) — r. Then
A : Cl

m —>• C given by Ay = y' is clearly invertible. In view of Theorem 0.6 (C) we
need an a priori bound for solutions to (l.l)x in the C[—T, T] norm. Let ;y(0 be a
solution to (1.1)*. Then for almost all t e [-T, 7]

1/(01 < ri(t)H\y(t)\ + ly(-Ol) and \y'(-t)\ < r,(-t)f(\y(-t)\ + \y(t)\).

Consequently, for almost all t e [-T, T]

(1.2) |y'(OI + l/(-0l < MO + ni-tMilyiOl + \y(-0\).

Let t e (0, T] so -t e [-T, 0) and so y(t) = y(0) + /„' y'(s)ds with y(-t) =
y(0)+f;'y'(s)ds yields

(1.3) |y(/)| <\r\+ [ \y'(s)\ds and \y(-t)\ < \r\ + f \y'(s)\ds.
Jo J-t

Combining (1.2), (1.3) and the fact that x/r is a nondecreasing function yields for
almost all t e [0, T]

\y'(s)\ds \
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[7] Existence results for differential equations with reflection of the argument 243

Integration from 0 to T and use of Lemma 0.1 gives with p(?) = 2\r\ + f'_, \y'(s)\ds,

Jl\r\ l\r\ 'AC")

and we conclude that there is a constant M independent of X e (0, 1) such that
p{t) < M for 0 < t < T. Consequently for t e [0, T], (1.3) implies

\yit)\ < Pit) < M and \yi-t)\ < pit) < M

and so |>>(0l < M for t e [-T, T] that is the C[-T, T] norm of y is bounded by M.
Hence (1.1) has a solution on [-T, T].

COROLLARY 1.2. Assume r\ e Ll[—T, T] with r\ > 0 and continuous on (-T, T),
that f is continuous and the growth rate restriction of Theorem 1.1 holds. Then (1.1)
has a solution y e C[—T, T] D Cl(—T, T). Moreover, this result is best possible for
the class of initial value problems with reflection of the argument satisfying the growth
condition \fit, uu u2)\ < ^(l^il + l«2l)» with \jf continuous.

PROOF. By Theorem 1.1 there is a solution yit) which is absolutely continuous on
[-T, T] and satisfies the differential equation in (1.1) almost everywhere. Hence,

yit) - yiO) = [ ri(s)f(s, y(s), yi~s))ds.
Jo

Since the integrand is continuous on (—T, T) it follows that the differential equation
with reflection of the argument holds at each ( e ( - 7 , 7") and so (1.1) has a solution
y e C[-T,T]nCli-T,T).

To see the best possible nature of this result, consider the initial value problem

\ y(0) = 0
1 4 ) , j y . , - . , v , j y.,y«),yi-t)), - T < t < T

where f(t, y(t), y(-t)) = (f(\y(t)\ + \y(-t)\), 0, • • •, 0). Suppose (1.4) has a
solution y = (yu • • •, yn) on the interval [—T, T]. Then y,(0 = 0 for i = 2, • • •, n
and hence y[(t) = r)(t)ir(\yi(t)\ + \yi(-t)\) withj^O) = 0. It follows that yx (t) > 0
on [0, T] and y,(0 < 0 on [-T, 0]. In addition for t e [0, T] we have

(1-5)

and

(1.6) y[(-t) = r,(
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Now (1.5) and (1.6) yield

= r)(t) + r](-t)
O-y.(-O)

and integration from 0 to T gives

Jo

-fT"
du_

O f(u)

EXAMPLE. (Linear and sublinear growth)
Consider

y'(t) = f(t,y(t),y(-t)), -T<t<T
(1.7)

where / is continuous and \f(t,uu u2)\ < A(O(l"il + \u2\V + B(t), p < 1 for
bounded functions A{t), B{t) > 0. If Ao and Bo are upper bounds for A(t) and B(t)
respectively then,

\f(t, y(t), y(-t))\ < Ao (\y(t)\ + \y(-t)\)p + Bo.

Let \[r(u) = Aou
p + Bo and since f™. du/ift-(u) = 00, (1.7) has a solution on [—T, T]

for all T > 0.

2. Scalar Boundary Value Problems

In this section we firstly consider second order differential equations with reflection
of the argument, in just the function, with Sturm-Liouville boundary conditions at
t = — 1 and t = 1, namely

I fit) = f(t, y{t), y(-t), /(?)), -1 < t < 1
(2.1) • — ay{— 1) + t$y'{— 1) = r; a > 0, fi > 0

ay{\) + by'{\) = s; a > 0, b > 0

where / : [—1, 1] x R3 -> R is continuous. For simplicity we take T = 1 in this
section, corresponding results hold on any bounded interval [-T, T]. To establish
existence results for (2.1), we introduce the related family of problems, for 0 < A < 1,

(2.1),
y"(t) = kf(t, y(t), y(-t), /
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[9] Existence results for differential equations with reflection of the argument 245

In view of Theorem 0.6 (C), (2.1) will have a solution v e C^[—1, 1], with v'
absolutely continuous on [—1, 1] and such that the differential equation in (2.1) holds
for almost all t in [—1, 1], where 98 signifies the boundary conditions U\(u) =
—au(—l) + J8M'(—1) = r, U2(u) = au{\) + bu'{\) = s provided there is ana priori
bound, independent of X in (0, 1), on solutions of (2.1)x in the C'[—1. 1] norm.

COROLLARY 2.1. In fact y e C^ [ - l , 1].

PROOF. TO see this note that if y is a solution to (2.1) then y' is absolutely continuous
on [—1, 1] and y satisfies the differential equation in (2.1) almost everywhere. Hence

y'(0 - y'(0) = f f(s, y(s), y(-s), /(«)) ds.
Jo

Since the integrand is continuous on [—1, 1] it follows that (2.1) holds at each t e
[—1, 1] and consequently y e C2[—1, 1].

LEMMA 2.2. Let f : [—1, 1] x R3 ->• R be continuous and satisfy:

I there is a constant K > 0 such that whenever y € C2(—1, 1) and
\y(s)\ achieves its maximum at t e (—1,1) and \y(t)\ > K then
y(t)f(t,y(t),y(-t),0)>0.

Then each solution of (2A)x satisfies \y(s)\ < Mo = max{K, \s\/a, \r\/a}on [— 1, 1].

PROOF. Let y(s) be a solution of (2.1);,. If |y(s)| achieves its maximum at a point
t0 e ( - 1 , 1) then y'(t0) = 0 and y(to)y"(t0) < 0. Consequently

0 > y(to)y"(to) = ky(to)f(to, y(f0), y(-r0), 0)

and by (2.2), |y(fo)| < K. Now assume \y(s)\ takes its maximum at t0 = 1. Then
l) >0andso

0 > - 6 y ( l ) y ' ( l ) = y ( l ) [ay(I) -s]> a \ y ( l ) \ 2 - \ s \ \ y ( l ) \ ;

that is
0>Lv(l)|{aLv(l)l-M}

andso|y(/)| < |y(l)| < \s\/a for t e [—1- !]• Similarly if |y(i)| takes its maximum at
t0 = - l . then |y(f)l < |y ( - l ) | < \r\/a for/ e [ -1 , 1]. Consequently, |y(OI < Mo,
( € [ - 1 , 1], as claimed.

We now place a Bernstein-Nagumo type growth restriction on / to obtain a bound
on y'. Once this is done the existence of a solution to (2.1) is guaranteed by the above
ideas. Specifically we obtain the following theorem:
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THEOREM 2.3. Suppose f : [ -1 , 1] x R3 ->• R is continuous and satisfies (2.2).
In addition, assume there is a function \}r : [0, oo) —• (0, oo) such that l\\j/ is locally
integrable on [0, oo),

\f(t,uuu2,p)\<xlr(\p\) for (r, m, u2) e [ -1 , 1] x [-Mo, M0]
2

and f™(x/\jf{x))dx > 2M0 where Mo = max{K, \s\/a, \r\/a) and

ifb>0

c = < :_L___^ ifb = 0andp>0
b

\r\+aM0

s r
_i_

a a
Then (2.1) has a solution y e C 2 [- l , 1].

PROOF. Once we show that there is a constant Mx independent of X such that
1/(01 < Mion[—1, 1] for each solution y(0 to (2.1)x, then Corollary 2.1, Lemma2.2
and the above discussion guarantees a C2[— 1, 1] solution to (2.1). Firstly, by
Lemma 2.2, \y(t)\ < M0fort e [-1,1]. If b > 0, then | / (1) | = \s - ay(\)\/b <
{\s\ +aM0)/b, while if P > 0, | / ( - l ) | = \r + ay(-l)\/p < (|r| + aM0)/p and
finally, if 6 = j6 = 0, y(l) = s/a and y(— 1) = —r/a, so there is a point r e ( - 1 , 1)
at which | / ( f ) | = \ \s/a + r/a\. Thus, with c defined as above, each t € [— 1, 1] for
which | / ( 0 l > c belongs to an interval [/x, v] such that / maintains a fixed sign on
[/x, v] and 1/001 and/or | / (v) | equals c. To be definite, suppose / > c on (/x, v)
and / 0 0 = c-

Then the differential equation and the above growth condition yield

/(*)/'(*)
VK/W)

Integration from /x to t yields

for < x < v.

rf« < y(0 - y(M) < 2M0 < / du

and we conclude that there is a constant M* independent of A. 6 (0, 1) such that
y'(t) < At*. The same bound is obtained by virtually identical reasoning if y(v) = c
and in the cases when / < —c. Thus we conclude that | / (0 l < M\ — max{c, M*}
on [-1,1].
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EXAMPLE. The second order boundary value problem

/ ( 0 = f(t, y(t), y(-t), /(0) = a + by{t) - cy(-t)
+ [y'(t)f £;=1W,y(O + /,-y*(0/'(-0 + ffi-t)

- i < t < l
(2.3)

has a solution provided b > c > 0, d{, /,, f, g,, p, > 0, qt > 0, r, > 0, s, > 0 and a
are constants.

To see this we apply Theorem 2.3. First b = c + q for some q > 0. Suppose
y e C2(—1, 1) and the maximum of \y(s)\ occurs at some t e (— 1, 1).

Then

y(t){y(t) - y(-t)} > 0

and thus

y(t)f(t, y(t), y(-t), 0) = ay{t) + by2(O - cy(-t)y(t)

= ay(t) + c{y(t) - y(-t)}y(t) + qy2{t)

>ay(t) + qy\t) >0

for |y(OI > \a\/q- Hence / satisfies condition (2.2). In addition it is clear that the
growth rate restriction in Theorem 2.3 holds for f{p) = Ao + B0p

2 for appropriate
constants Ao and Bo. Now since

f00 x J f°°
/ T7~Tdx = / AJc f{x) Jo A0

dx = + o o >

B0x

fip) satisfies all the conditions of Theorem 2.3 and so (2.3) hasaC2[— 1, 1] solution.
Small modifications in the proof of Theorem 2.3 permit the nonlinearity to be

singular at t = — 1 or t = 1 or both. Consider

1 / (0 = viOf it, j(0, y(-0, /(0), - l < t < 1
-ay{-l) + py'(-l) = r; a > 0, p > 0

by'il)=s; a>0,b>0

where / : [— 1, 1] x R3 -> R is continuous.

THEOREM 2.4. Le? 1/rj : [ -1 , 1] - • [0, oo) be continuous with r\ > 0 on ( - 1 , 1)
and x] integrable on [—1, 1]. Suppose f satisfies condition (2.2) and that there is a
continuous function \j/ : [0, oo) —»• [0, oo) vv/f/j

\f(t,uuu2,p)\<ir(\p\) for it, uuu2) e [ - 1 , 1] x [—Af0, M0]2
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[12]

Mo and c are as in Theorem 2.3. r«e« (2.4) has a solution y e C'[— 1, 1] n

PROOF. AS usual, the proof reduces to establishing an a priori bound in Cx[—\, 1]
on solutions of

y"(t) = kr,(t)f(t, y(t), y(-t), ?
(2.4),

- 1 < t
-cry(- l ) r; a > 0, fi > 0

a > 0, b>0

where 0 < A < 1. Once this is done (2.4) has a solution y and the reasoning of
Corollary 2.1 applies to show that y will have the added smoothness claimed above.

Now the bound |y(r)| < Mo on [—1, 1] for solutions to (2.4) .̂ follows by the
reasoning in Lemma 2.2 because r\ > 0 on (— 1, 1). Given this bound on y, just as in
Theorem 2.3, each? e [—1, l]for which \y'{t)\ > c determines an interval /* < s < t
(or t < s < fi) such that |/(.s)| > c except at fi and | / ( / A ) | = c. To be definite
assume the interval is fj, < s < t. Then

V(s)v"(s)
\y'(s)\' = ^ | "y < \y"(s)\ provided y'(s) # 0

and use of this estimate, yields

< [ir(\y'(s)\)

Thus there is a constant M* such that \y'(t)\ < Mi and \y'(t)\ < max{c, M*} = Mx

on [-1 , 1]. Thus, solutions to (2.4)^ are bounded independent of X in (0, 1) in the
Cx[—\, 1] norm and existence follows.

Finally, in this section we consider boundary value problems with reflection of the
argument in both the function and its first derivative, namely

fit) = f(t, y(t), yi-t), y'(t), /(-?)), -1 < t < 1
(2.5) -ayi-l) + fiy'i-l) = r\ a>0mdfi>0

ay(l) + by'(l) = s; a > 0 and b > 0

where / : [ — l , l ] x / ? 4 - * / ? i s continuous. Once again we establish existence of a
solution to (2.5) by finding ana priori bound in Cx[—l, 1] on solutions to

fit) = Xf(t, y(r), yi-t), y'it), y'i-t)), -\<t
(2.5)x

forO < X < 1.

https://doi.org/10.1017/S1446788700037538 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700037538


[13] Existence results for differential equations with reflection of the argument 249

THEOREM 2.5. Let f : [— 1, 1] x R4 -> R be continuous. In addition assume:

There is a constant K > 0 such that wherever y € C2(—1, 1) and
(2.6)

(2.7)

(2.8)

\y(s)\ achieves its maximum at t € (—1,1) and \y(t)\ > K then
y(t)f(t,y(t),y(-t),O,y'(-t))>O

There exists a constant A ^ — 1 and continuous functions g : [—1, 1] x
R2 - • R, h : R -+ R and k : R -H» R such that

f(t,y(t),y(-t),y'(t),y'(-t))

= Af(-t, y(-t), y(t), / ( - ? ) , y'(t)) + g(t, y(t), y(-t))

+h{y{t))y'{t) + k(y(-t))y'(-t)

for all t e (0, 1) and for any function y e Cl[—1, 1]. In addition let
L > 0 be the smallest constant such that for u, v, w e [—MQ, MQ],

I h(s)ds + /
J U J U!

lc(s)ds <LM0.

Here Mo = max{K, \s\/a, \r\/a}.

There is a continuous function \js : [0, oo)
decreasing on (0, oo) and such that

\f(t,u,v,p,w)\ < x/t(\p\-

for (t, u, v) e [—1, 1] x [-Mo, M0]2 andalso that

du

(0, oo) which is non-

2 < r
JlN

where

N = •

Q +

Q +

Q +

i + x

a

l i
ot

_£l
a

+

Ar

a I
+ |A|M0

+ |A|M0
:

\A\Y}

'/̂
i / ^

if P

= b

= 0,

>o,

>o,

= 0

b >

6 >

0

0

0.
+ A\

Here R = LM0 + M*/2, Q = R + \A - l\M0, X = (\s\ + aM0)/b,
Y = (\r\ + aM0)/P and M* = sup|g(?,M, u)| with the supremum
computed over [—1, 1] x [—MQ, MQ]2-
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Then (2.5) has a solution y e C2[- l , 1].

PROOF. For any solution y to (2.5)x assumption (2.6) implies that \y{t)\ < Mo,
t e [—1, 1 ] by essentially the same reasoning used in Lemma 2.2. We turn next to put
a bound on y' and the idea is to first bound / (0) . Now (2.7) implies

y"{t) = Af(-t) + kg(t, y(t), y(-t)) + Xh(y(t))y'(t) + kk(y(-t))y'(-t)

for t e (0, 1) and with M* as defined above,

|y"(0 - Af(-t) - Xh(y(t))y'(t) - Xky(-t)y'(-t)\ < M*.

Integration from 0 to t, with the fact that \ f0 j (s) ds\ < f0 \j (s)\ ds for any integrable
function j on [0, 1], yields,

< M*t.
( ry(0 /•>«>) I

Ay'(-t) - (1 + A)y'(0)] -X\ h(s)ds + / k(s)ds

Also since ||a| — \b\\ < \a — b\ we have

(2.9) |/(?) + Ay'(-t) - (1 + A)/(0)| < LM0 + M*t.

Integrate finally from 0 to 1 to obtain

1 f M* \
(2.10) |/(0)| < iY-j-^i UM0 + — + \y(l) - Ay(-l) + (A - l)y(0)| j .

If/3 = & = 0, /8 = 0 a n d * > 0 o r J 6 > 0 a n d f t = 0, then clearly (2.10) implies
l/(0)| < N. On the other hand if fi > 0 and b > 0, (2.9) with ? = 1 implies

1/(0)1 < — - — {LM0 + M* + |/(1) + A/(-l) |} < N
\i + A\

since j ' ( l ) = (s — ay(l))/b and /(—I) = (r +«}'(—1))/)3. Consequently in all
cases

iV.

Now following the ideas of Theorem 1.1 we see immediately that for f € (0, 1)

1/(01+ l / ( - 0 l < 2 7 V + / \y"(s)\ds

and consequently
1/(01 + I/'C-OI < 2

\y"(s)\ds \
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Integration from 0 to 1 gives with p(t) = 2N + f_t \y"(s)\ ds,

fp(l) du [°° du
/ < 2 < /

JlN tU*) J2N V(U)

and we obtain a bound on v' independent of X e (0, 1) just as in Theorem 1.1.

REMARK. It is also possible to replace the equation that / has to satisfy in (2.7) by

f{t,y(t),y(-t),y'(t),y'{-t))

= Af(-t, y(-t), y(t), y'(-t), /(*)) + g{t, y(t), y(-t))

where 0 < a,-, /J,- < 1 and obtain existence of a solution to (2.5) with appropriate
adjustments in the assumption. However, we choose to omit the details; the trick is to
use Holders integral inequality if an a, or # is less than 1.

REMARK. We can use similar techniques to obtain an analogue of Theorem 2.5 for
problems of the form

y"(t) = r){t)f(t, y(t), y(-t), y'{t), y'(-t)) - 1 < t < 1
-ary(-l)+ /?/(-1) = r\ a>0and/3>0
ay(l) + by'(l) = s; a > 0 and b > 0

where / : [— 1, 1] x R4 —> R, - : [— 1, 1] —> [0, oo) are continuous with r) > 0
on (—1, 1) and r] is integrable on [—1, 1]. However, since the ideas and strategy are
more or less the same (the only major difference is that we replace h(y(t))y'(t) and
k(y(-O)y'(-t) in (2.7) by h(y(t))[y'(t)]l/p and k(y(-t))[y'(-t)]l/p where p > 1
and assume x] e Lq[—\, 1] with q — p/(p - 1) and r)(t) = r}{-t) for t e (0, 1); of
course the trick in the proof is now to use Holder's integral inequality) we choose to
omit the details.

3. Boundary Value Problems for Systems

Consider systems of second order differential equations with reflection of the
argument in both the function and its first derivative and with Dirichlet boundary data,

(3.1)
y"(t) = / ( / , y(0, y(-0, y'(t), / (-*)) , - l < t < l
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and the related family of problems

y"(t) = Xf(t, y(t), y(-t), y'(t), y'(-t)), -1 < t < 1
j ( - l ) = 0
>>(l) = 0

where / : [ -1 , 1] x /?4" -* Rn is an Lp-Caratheodory function, 0 < X < 1. For
x, y e /?" let x.y denote the usual inner product. First however recall Wirtinger's
inequalities:

LEMMA 3.1.

(i) Ifu(x) € Cl[a,b]andu(a) = u{b) = 0,then \\u\\2 < (b - a)2/n2\\u'\\.
(ii) Ifu(x) € Cx[a,b]andu(a) = 0, then \\u\\2 <4{b-a)2/n2\\u'\\2.

THEOREM 3.2. Assume f(t, u, v, p, w) = g(t, u, v, p, w) + h(t, u, v, p, w) with

(3.2)

u.g(t, u, v, p , w) > A\u\2 + Bu.p + C\u\\v\ + D\u\\p\ + E\u\\w\

for all (t, u, v, p , w) e [ - 1 , 1] x R4n and

\g(t, u, v, p , w)\ < F(t, u, v)\p\2 + G(t, u, v)\w\2 + H{t, u, v)

where F', G and H are bounded on bounded sets

and

\h(t,u,v,p,w)\ < Af(|«r + \v\p + \p\Y + \w\T) for constants M, a,
\ f},y and r with 0 < a, fly, r < 1.

Then (3.1) has a solution y e W2p[—l, 1] in each of the following cases:

(a) A > 0, 4 |C| + 2n{\D\ + \E\) < n2

(b) A<0, 4\C\+2n(\D\

PROOF. AS usual, we need only establish a priori bounds in C' [—1, 1 ] on solutions
y(t) to (3. l)^. Now integration-by-parts and use of the boundary data yields

[ y{t)-y"{t)dt = - f \y'(t)\2dt and f y{t) • y'(t)dt = 0.
J-\ J-i J-i

Thus taking the dot product of the differential equation in (3.1)x with y(t) and us-
ing (3.2) leads to
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f \y'(t)\2dt<-Akf \y(t)\2dt + \C\ I \y(t)\\y(-t)\dt

(3.4) +\D\ \y(t)\\y'(t)\dt + \E\ \y(t)\\y'(-t)\dt
J-\ J-\

\y{t)\ \h (t, y(t), y(-t), y'{t), y'(-t))\ dt.

Now using Cauchy's inequality, ab < |a2 + ^b2, we find

j \y(t)\ \h (t, y(t), y(-t), y'(t), / ( - * ) ) | dt

/.I 1 I"1

< - / \y(t)\2dt + — \h(t,y(t),y(-t),y'(t),y'(-t))\2 dt.
2. J-\ l€ J_x

Also since (a + b + c + d)2 < 8(a2 + b2 '+ c2 + d2), (3.3) yields

\h(t,y(t),y(-t),y'(t),y'(-t))\2

< 8M2 UyiOl2" + \y(-t)\2p + \y'(t)\2y + | /(-OI2rl,

2S dt<2 ( 7 \y(0\2dt\ = 2\\y(t)\\2S 2\\y\\2S

and Holder inequality gives

\y(t)\2S dt<2 ( 7 \y(0\2dt\ = 2\\y(t)\\2S = 2\\y\\

for any S in [0, 1]. In addition the change-of-variables formula yields

(3.5)/" \y(-t)\2Sdt= f \y(t)\2Sdt and [ \y'(-t)\2Sdt = I \y'{t)\2Sdt
J-\ J-\ J-\ J-\

for any S in [0,1]. Use of these estimates gives

\y{t)\\h(t, y(t), y(-t), y'(t), y'(-t))\ dt
(3.6) ^-'

+ \\y'\\2y

In addition Holder's integral inequality and (3.5) gives

+ — { I W I 2 " + llyll2^ + \\y'\\2y +

I

\C\J \y(t)\\y(-t)\dt < IdlMI (f \y(-t)\2dtY = \C\\\y\\2,

(3.7) \D\[\y(t)\\y'(t)\dt<\D\\\y\\\\y'\\ and

\E\ J \y(t)\\y'(-t)\dt <\E\\\y\\\\y'\\.
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Substitute (3.6) and (3.7) into (3.5) to obtain

II/ I I 2 < -Ax\\y\\
2 + \c\\\y\\

2 + iDiiijiniyii +

+\\\y\\2 + ^ - {WyW2" + \\y\\2p + l l / l l 2 "

Next apply Wirtinger's inequality, ||y||2 < A II/II2.to get

8M2 f /2\2" /2\2p

<-AX\\y\\2+ — Uj \\>\\*>+\

Now consider Case (a) with A > 0 and 4|C| + 2n(\D\ + \E\) < n2 that is
1 - 4|C|/7r2 - 2(|D| + |£ | ) / JT > 0. With these assumptions we can delete the AX
term from (3.8) and then fix e > 0 suitably small so that the term is brackets on the
left hand side of (3.8) is positive. This done, (3.8) and a, fi, y, x < 1 implies there
exists a constant M\ independent of X such that

(3.9) II/II < Mi.

Now consider Case (b) with A < 0 and 4|C| + 2n(\D\ + \E\) < n2 + 4A that is
1 - 4 | C | / T T 2 - 2 ( | D | + |£|)/7r+4A/7r2 > 0. Since A < Owe have -AX < -A and
applying Wirtinger's inequality yields

4A
-AX\\y\\2 < -A\\y\\2 < -~\\y'\\2.

Substitute this estimate in (3.8) to obtain

(3.10)

Now fixe > 0 suitably small so that the term in brackets on the left of (3.10) is
positive. As above this leads to (3.9) for a certain constant M\ independent of X
in (0,1).

From (3.10) and )>(-!) = 0, we find that

\y(t)\ =
/>

(s)ds
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for all t e [—1, 1], which is the required a priori bound on y(t). Given this bound
and (3.2), we can determine constants F, G and H (dependent only on Mi) such that

\g{t, u, v, p, w)\ < F\p\2 + G\w\2 + H for all (t, u, v) e [ -1 , 1] x [-Mo, Mo]
2.

This estimate, the boundedness of v, and the differential equation yields |y"(OI <
I\y'{t)\2 + / |y ' (-OI2 + K for almost all t in [ -1 , 1] and constants /, J and
K (depending only on M,a,p,y,x and Mo). Integration from —1 to 1 gives
/! , \y"(t)\dt <lf_x \y'(t)\2dt + jf\ \y'(-t)\2dt + 2K < (I + J)M2 + 2K = M2.
Let v = (v,, • • •, yn). Since Jl_x \y"(t)\dt < f^ \y"{t)\dt and y\{Ci) = 0 for some
c, e (0, 1), we infer that

y"(s)ds\ < M2 forf e [ -1 , 1].

andso|y'(OI < «JnM2fort € [—1, 1]. Thus, all required a priori bounds are obtained
and a solution to (3.1) exists.

We next examine systems of second order equations with reflection of the argument
with a Sturm-Liouville boundary condition at t = 1 and a Dirichlet condition at

REMARK. Similar results can be obtained if we have a Sturm-Liouville condition
at t = — 1 and a Dirichlet condition at t = 1.

Now consider the Sturm-Liouville problem

f y"(0 = / ( / , j (0, y(-t), y'(t), y'(-t)), - l < t < l
(3.11) J v ( - l ) = 0

I av(l) + by'(1) = 0; a > 0, b > 0

and the related family of problems

(3.11)x
y"(t) = Xf(t, y(t), y(-t), y'(t), y'(-t)), - 1 < t < 1
y(-D = 0

where / : [ -1, 1] x R4" - • 7?" is an Lp-Caratheodory function and 0 < A. < 1.

THEOREM 3.3. Assume f satisfies (3.2), with 5 = 0, and (3.3). Then (3.11) was a
solution v € W^2'p[0, 1] //i each of the following cases:

(a) A > 0, 16|C| + 4n(\D\ + \E\) < n2

(b) A < 0 , 16|C|+47r(|D| + |£|) < n2 + 16A.
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PROOF. Integration by parts yields for any solution y(t) to (3.11)^,

- / ;
y(t) • y " ( t ) d t = - y ( l ) • y ' ( l ) + \\y'f = - | y ( l ) | 2 + Hy'll2 > | | / | |

and (3.5) holds as before. In addition as in the proof of Theorem 3.2 we notice
that (3.5), (3.6) and (3.7) hold, so we have

ll/H2<-AX||y||2 + |C|||;

8M2 , ,
+ i lUII

Now apply Lemma 3.1 (ii) to get

(^ 16|C| 4(|D| + |£|) 8<

y||2 + {|£>|-

2a + llj||2M

€ \ IK/I|2

V\E\\\\y\

- \\y'ty H

III/II

HI/

+ ^ l l / l 2

II21}.

2a

and the result follows by essentially the same reasoning as in Theorem 3.2.
The only change in the argument occurs at the very end. Obtain Mo, Mx and M2

as in Theorem 3.2 and let y — (ji, • • •, yn). Now since aj,(l) + by[{\) = 0 we have
1/(1)1 < aM0/b and consequently

1/(01 < ^ + f \y'!{s)\ds < ^ + M2 forte [-1, 1]
b J, b

and so 1/(01 < -Jn {aM0/b + M2] for t e [-1,1].

REMARK. A similar result can be obtained for the boundary value problem (3.11)
ifa = O(thatis/(l) = O).

REMARK. It is possible to combine the ideas in Theorems 3.2, 3.3, together with
the ideas in [15] to obtain theorems similar to those deduced in [15] for problems of
the form (3.1), (3.11) when / is singular at f = Oor? = 1 or both.

REMARK. One can improve the results in Theorem 3.3 if the Raleigh Ritz minim-
ization theorem is used instead of Lemma 3. l(ii).
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4. Systems of boundary Value Problems of Bernstein-Caratheodory Type

In this section we obtain analogues of the results in Section 2 for systems of
boundary value problems where our nonlinear term is a Caratheodory function. In
particular, consider

y"(t) = kf(t, y(t), y(-t), y'(t)), - 1 < t
-ay(-l) + £/(-!) = r

y"{t) = f{t, y(t), y(-t), y'(t)), -1 < t < 1
(4.1) { -ay(-l) + py'(-l) = r; a > 0, £ > 0

<ry(l) + 6/(1) = 5; a > 0, b > 0

where/ : [—1, l]xR3n —> /?" is an Lp-Caratheodory function. As usual the existence
of a solution to (4.1) follows once a priori bounds in Cl[— 1, 1] are established for
the related family

(4.1)1

forO< A < 1.

THEOREM 4.1. Suppose

(a) There is a constant M such that \u\ > M implies u • f(t,u,v, p) > 0
(b) The equations in (4.1) can be listed so that for the j ' h equation, there are func-

tions Aj(t, u,v, p \ , • • •, Pj-\) and Bj(t, u, v, p u • • •, Pj-\) which are bounded
on bounded sets of'[—1, 1] x R2n x R'~r and satisfy

\fj(t, u, v,p)\< Aj(t, u,v,pu---, Pj-i)pj + Bj(t, u,v,pu---, Pj~\)

where / = ( /1 , • • - , / „ ) and p = (pu • • •, pn) and for j = 1, A\ and Bx do not
depend on the p variables.

Then (4.1) has a solution in W2p[-l, 1].

PROOF. Let;y(0beasolutionto(4.1)xandsupposer(?) = i|y(f)|2hasamaximum
on [—1, 1] which is greater than Mo = max{M2, \s\2/a2, \r\2/a2}. Now if the max-
imum of r(t) occurs at l , theny(l) - / ( I ) = r'(l) > Oandsoay(l) • y(l) + by'(l) •
y(l) = s • y(l) implies \y(l)\ < \s\/a. Similarly, if the maximum of r{t) occurs at
— 1, then \y{—1)| < \r\/a. Hence, by choice of Mo, r(t) achieves its maximum at c
in (—1, 1) at which r'{c) = 0. Now (a) implies

(4.2) r"(t) = ky(t) • f(t, y(t), y(—t), y'(t)) + |/(0l2 > 0
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for almost all t in [c, c + d] where d > 0 is fixed so that \y(t)\ > M on [c,c + d\.
Thus for t e [c, c + d],

r'{t) = I r"(s) ds > 0 and r(t) - r(c) = f r'(s) ds > 0,
Jc Jc

which contradicts the maximality. Thus \y(t)\ < Mo on [—1, 1]. It remains to
bound y' on [—1, 1]. By (b) with j — 1 there are constants ax and b\ such that
\y'\\ < <*\(y[)2 + bx almost everywhere on [—1, 1], here y — (yu • • •, yn). Moreover,
since y{ is bounded by Mo, the mean value theorem implies there exists rx e (—1, 1)
such that | j j ( r i ) | < Mo. Now following the ideas in Theorem 2.3 we see that there
exists a constant M[ independent of A such that |;yJ(OI < M[ on [—1, 1]. Arguing
inductively, we deduce bounds of M\ on y\ for each i = I, • • •, n and hence obtain a
bound M' such that | / ( 0 l < M' for t in [ - 1 , 1].

REMARK. In assumption (a), u • f > 0 can be replaced by u • f > 0. To see this
let S = sup{d € [c, 1] : \y(t)\ > M on [c, c + d]}. Then \y(c + S)\ = M. From (4.2)
on [c, c + S) we have r"(>) > \y'{t)\2 and we get a contradiction, as before, unless
y'it) — 0 almost everywhere on [c, c + 8); however, in the latter case y(c + S) = y(c),
so |y(c + <5)| > M, a contradiction.

Combining the ideas of Corollary 2.1, Lemma 2.2 and Theorem 4.1, we immedi-
ately obtain:

THEOREM 4.2. Let f : [—1, 1] x R3n -> R" be a continuous function and as-

sume:

(a) There is a constant M such that \u \ > M and u • p = 0 implies

u • f(t,u,v,p) > 0.

In addition, suppose (b) of Theorem 4.1 is satisfied. Then (4.1) has a solution

y e C 2 [ - l , l ] .

Next, we consider a system in which / may be singular at t = — 1 or t = 1 or both.
Consider

fit) = rjit) f(t, y(t), y(-t), y'(t)), - 1 < t < 1
l)+/}/(-l)=0; a > 0, £ > 0
by'(l) = 0; a>0,b>0

(4.2)

where / : [ - 1 , 1] x R3n -> / ? " , - : [ - 1 , 1] - • [0, oo) are continuous with r/ > 0 on
(—1, 1) and r\ integrable on [—1, 1].
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THEOREM 4.3. Let f and r\ be as above and suppose (a) of Theorem 4.2 is satisfied.
In addition, suppose f(t, u, v, p) is bounded for (t, u, v) varying in a bounded set.
Then (4.2) has a solution y in C ' [ - l , 1] n C 2 ( - l , 1).

PROOF. The proof reduces to establishing a priori bounds in the Cl[—l, 1] norm
on solutions of

= kr1(t)f{t,y(t),y(-t),y'(t)), - 1 <t < 1
(4.2),

where 0 < k < 1 and, of course, the added smoothness follows from the ideas of
Corollary 2.1. Combining the ideas of Lemma 2.2 and Theorem 4.1 with the fact
that x] > 0 on ( - 1 , 1) immediately yields \y(t)\ < Mo = max [M2, \s\2/a2, \r\2/a2}
on [—1, 1] for solutions y = (yu •• •, yn) to (4.2)x. In addition, there exist M*
independent of A. such that \f(t, y(t), y(-t), y'(t))\ < M*. Then | / ' (0l < r)(t)M*
for t e ( - 1 , 1). Since \y'f(t)\ < \y"(t)\ and |^(r,) | < Mo for some x, e ( - 1 , 1) we
find for each i,

|jy,'(OI<Mo r){s)ds M* <M0 r](s)ds =

Consequently, | / (0 l < *Jh~M**, t € [ -1 , 1].

In the case of scalar equations we can sharpen the result in Theorem 4.1.

THEOREM4.4. Let f : [ - l , l ] x f l 3 ->• R be an Lp-Caratheodory function and
assume

(a) There exist, M > 0 such that \u\ > M implies

uf(t,u,v,0) > 0 a.e. on [-1,1].

(b) There is a Borelfunction f : [0, oo) ->• (0, oo) such that \f(t, u,v, p)\ <ifr(\p\)
for a.e. t in [—1,1] and all u,v € [—Mo, Mo] and such that f™ (x/i/r (x)) dx >
2M0 where Mo = max{M, \s\/a, \r\/a] and

c =

\s\+aM0

b
\r\+aM0

P
s r
a a

if b>0

if b = 0 and & > 0

if b = 0andfi = 0
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Then (4.1) has a solution in W2p[-1, 1].

PROOF. Since the proof of this theorem involves only minor alterations in the
corrsponding proof in [7] or [9,10] for regular second order boundary value problems,
we choose as a result to omit the details.
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