
J. Austral. Math. Soc. Ser. B 30(1988), 220-229

SOME ASYMPTOTIC SPECTRAL FORMULAE FOR

THE EIGENVALUES OF THE LAPLACIAN

E. M. E. ZAYED1

(Received 30 June 1987; revised 15 December 1987)

Abstract

In this paper we shall derive some asymptotic formulae for spectra of the third
boundary value problem in Rn,n = 2 or 3, linked with variation of a positive
function entering the boundary conditions. Further results may be obtained.

1. Introduction

The underlying problem is to deduce the precise shape of a membrane from the

complete knowledge of the eigenvalues /^(CT) for the Laplace operator An in

Rn,n - 2 or 3.

Let f2 be a simply connected bounded domain in Rn with a smooth boundary

dQ in the case n = 2, or a smooth bounding surface 5 in the case n = 3.

Consider the third boundary value problem

(An + X)u = 0 in ft, {d/dn + cr)u = 0 on dU (or 5), (1.1)

where d/dn denotes differentiation along the inward-pointing normal to dQ (or

5), and a is a positive function. Denote its eigenvalues, counted according to

multiplicity, by

0 < m(<j) < n2{a) < ••• < Mfc(̂ ) < • •• -> oo asfc-KX>. (1.2)

At the beginning of this century, the principal problem was that of investi-

gating the asymptotic distribution of the eigenvalues (1.2). It is well known (see
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[2] Formulae for eigenvalues of the Laplacian 221

[1]) that, in the case n = 2,

Hk{a) ~ (47r/|n|)fc asfc — oo, (1.3)

while, in the case n = 3,

fik(a) ~ {6n2/V)k)2/3 as k — oo, (1.4)

where |fi| and V respectively are the area and the volume of the domain 17.
The problem of determining further information about the geometry of n as

well as the impedance a from a complete knowledge of the eigenvalues ĵt(<r) has
been discussed recently in [6] when n = 2 and in [8] when n = 3, in the case
a = constant > 0, through the asymptotic expansions of the spectral function

}, (1.5)
fc=i

for small positive t.
Thus in the case n = 2, 0 < CT < 1

while in the case n = 3, 0 < CT

where H = l/2(l/i?i + I/R2), Ri and R? are the principal radii of curvature.
With reference to Section 11 of [6], (1.6) may be interpreted as:
(i) f2 C R2 is a convex domain and we have the impedance boundary condition

of (1.1) with small impedance CT, or
(ii) f2 C R2 is a convex domain with 3a/ir\dfi\ holes and has area |D| and

its boundary has length |dfi| together with the Neumann boundary condition,
provided 3a/7r|dfi| is an integer.

Similarly, with reference to Section 11 of [8], (1.7) may be interpreted as:
(i) fi C R3 is a convex domain and we have the impedance boundary condition

of (1.1) with small impedance <r, or
(ii) fi C R3 is a convex domain, has volume V and its surface S has the mean

curvature (H — 3a) together with the Neumann boundary condition.
In Theorem 1, we generalise the results (1.6) and (1.7) to the case when a is

a positive function satisfying the Lipschitz condition, by using the expression

> 2 , (1.8)
i

where P is a positive constant.
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In Theorem 2, we show that this generalisation plays an important role in
establishing a method to study the asymptotic behaviour of the difference

for large values of A, where a{Q), o~i{Q) and 02 (Q), Q e dCl (or Q e S) are three
distinct functions satisfying the Lipschitz condition, and the summation is taken
over all values of k for which Hk{o~) < A. The method uses an interesting and
important Tauberian theorem due to Hardy and Littlewood and developed by
Titchmarsh [7].

Theorems 3 and 4 contain further results which can be considered as a gen-
eralisation of the results of Theorem 2.

2. Statement and proofs of results

THEOREM 1. / / the function o{Q) satisfies the Lipschitz condition and if P
is a positive constant, then in the case n = 2,

as P -»• 00, (2.1)

while, in the case n = 3,

as P -» 00. (2.2)

Note that the expression (1.8) is just the Laplace tranform of the function
t0(t) with respect to t, and P > 0 is the Laplace transform parameter. With
this connection we deduce that the formulae (2.1) and (2.2) can be considered
as a generalisation of the formulae (1.6) and (1.7) respectively.

Note also that Eastham [2] had a similar expression to (1.8), where the eigen-
value parameter appears in the boundary condition.

THEOREM 2. Ifo-(Q),ai(Q) and a-2 (Q) are three distinct functions satisfying
the Lipschitz condition, then in the case n = 2,

V as A-+00

(2-3)
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while, in the case n = 3,
\3/2 r

as X —> oo .

(2.4)
/ .

Formulae (2.3) and (2.4) can be considered as a generalisation of the familiar
formulae of Gel'fand and Levitan [3] for the difference of traces of two Sturm-
Liouville operators.

PROOF OF THEOREM 1. Let G(M,Mi;«) be the Green's function for the
heat equation

(An - d/dt)u = 0, (2.5)

subject to the third boundary condition of (1.1) and the initial condition
G(M,Mi;«) -> 6(M - Mi) as t -> 0, where 6(M - Mi) is the Dirac delta
function located at the source point M = Mi. The points M and Mi belong to
the domain fi.

Let us write

^t), (2.6)

where
G0(M, Mi ; t) = (47rt)-"/2 exp(-|M - Mx \

2/(4t)), (2.7)

is the "fundamental solution" of the heat equation (2.5), while g{M,M\\t) is
the "regular solution" chosen in such a way that G{M, Mi; t) satisfies the third
boundary condition of (1.1).

In what follows, we shall use Laplace transforms with respect to t, and use s2

as the Laplace transform parameter; thus we define

G(M,Mi ; - s 2 )= / e-s2tG(M,Mi;t)<ft- (2.8)
./o

An application of the Laplace transform to the heat equation (2.5) shows that
G(M,Mi; — s2) satisfies the membrane equation

(An - s2)G(M, Mi; - s 2 ) = -6(M - Mi) in Q, (2.9)

together with the third boundary condition of (1.1). Consequently, if n = 2 we
deduce that

G(M,Mi;-s2) = (l/27r)tfo(s|M-Mi|) - £(M,Mi;-s2) , (2.10)

where Ko is the modified Bessel function of the second kind and of zero order.
As Mi —* M the equality

(2.11)
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where {<f>k(M)} are normalised eigenfunctions, implies

(1/2TT) log ( ^ ) + g(M, M; -s2) - g{M, M; -s2)

L f 4>\{M) (2-12)

(see, for example [4]). Thus we get the formula

^2{Hk(cr) + s2}-2 = |fi|/(47rs2) + (l/2s) f f gl
s{M,M;-s2)dM. (2.13)

Using methods similar to those used in [6], we can show that

as s —• oo. (2.14)

On inserting (2.14) into (2.13) and letting s2 = P, we arrive at the formula (2.1).
Similarly, if n = 3 we deduce that

G{M,Mi\-s2) = e x p ( - s | M - M I | ) / ( 4 T T | M - A f i | ) - <j(M,Mi; - s 2 ) . (2.15)

As Mi —> M, the equality (2.11) implies

(5l ~ s) -u 0(Af, M; -s\) - g(M, M; - s 2 )
4TT

(2.16)

(see, for example [5]). Thus we get the formula

/ (M,M;-32)dM. (2.17)

Using methods similar to those used in [8] we can show that

g'3{M,M;-s2)dM

= S/{8TTS) + (1/(12TT5
2)) ls{H{Q) - 3<r(Q)} dQ + O (J^

as s —> oo. (2.18)

On inserting (2.18) into (2.17) and letting s2 = P, we arrive at the formula
(2.2). Note that the proof of either (2.14) or (2.18) is omitted here since it is
very similar to those obtained in [6] or [8] respectively.
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[6] Formulae for eigenvalues of the Laplacian 225

PROOF OF THEOREM 2. First we derive (2.3) as follows: Let us assume that
02(Q) > 0i{Q):(Q € 9f2) and introduce the non-negative and non-decreasing
function

*(*)= £
moreover we let

Using formula (2.1) first for the function 0i(Q), then for the function 02 (Q)
and subtracting the second one from the first, we find after some reduction that

as P —* 00,

which can be rewritten for any a < /x 1(172) in the equivalent form

as P -> 00. (2.21)

Further, noting that ^i(P) = o{/a
+o°(A + P)~3 d$(A)} when P -• 00, we get

Applying a Tauberian theorem of Hardy and Littlewood (see, for example [7],
page 364), we find that

(A/(2TT)) f {a2{Q) -<n{Q))dQ as A - 00. (2.23)
Jen

Analogously, one establishes the asymptotic formula

as A -» 00. (2.24)

Further, noting that

( 2 2 5 )
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where a*{Q) = max{CT(<2),er2(<2)},MQ) = min{<r(Q),ai(Q)}, and the fact that
as A —• oo the functions:

E Wfo) - Mfc(̂ i)}
A ^ ^ (2-26)

= E O**(O-A*(*I)}- E { M O M }

and likewise for CT, are asymptotically equal to

( A / 2 T T ) / W Q )

we obtain (2.3) for the special case <72(<3) > o'i(Q)-
Similarly, we derive (2.4) as follows. Using formula (2.2) first for the function

<7i(Q), then for the function <J2(Q) and subtracting the second one from the first,
we find, for any a < //i(<72), that

a s P - » o o , (2.27)

and consequently

As we have done before, we see that

{(T2{Q) - *I{Q)} dQ as\->oo. (2.29)[
Js

Analogously, one establishes the asymptotic formula

7r2) ( {o2{Q) - <>i{Q)}dQ as A ^ oo.
JS

(2.30)
On using (2.25) and the fact that as A —* oo the functions (2.26) for a* and
likewise for <r» are asymptotically equal to

/
s

we obtain (2.4) for the special case &2(Q) > 0i{Q)-

In order to prove the theorem in the general case it is sufficient to apply the
equality

E iVkfa) -A*fc(̂ i)}

(2.31)
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where oo{Q) = max{ai(Q),(T2(Q)} and we apply the special case of the theorem
which we just proved.

3. Further results

In this section we establish some results which can be considered as a gener-
alisation of the formulae (2.3) and (2.4). Using Theorem 2, we easily prove the
following theorems:

THEOREM 3 . Let the functions cr(Q),ai{Q),o2(Q) and the quantity I =
/an{<72(Q) — cri{Q)}dQ ^ 0 be the same as in (2.3). Furthermore, on the half-
axis [a, +00) let a function /(A) of constant sign be given which is absolutely
continuous on each interval [a, b], b < 00; further we assume that the expression
A/'(A)//(A) is bounded almost everywhere and fa °°/(A)dA = 00. Then as
A —• 0 0

E ( ^ } fX (3.1)

THEOREM 4. Let the functions o-(Q),ai(Q),a2(Q) and the quantity
J = fs{o2{Q) — 0i(Q)}dQ ^ 0 be the same as in (2.4). Furthermore, on the
half-axis [a, +00) let a function /(A) of constant sign be given, which is absolutely
continuous on each interval [a, b], b < 00; further we assume that the expression
A/'(A)//(A) is bounded almost everywhere and / a

+ o° A1/2/(A)dA = 00. Then as/ a
+ o °

00

f (3.2)

PROOF. On setting a(A) = Eo<^( f f )o{w( ( 7 2)-wK)}, we deduce for any
a < ni{a) that

r+00

= /(A)da(A). (3.3)
Ja

On inserting (2.3) and (2.4) into (3.3), we get easily the formulae (3.1) and
(3.2) respectively.

COROLLARY 1. Assuming that the function /(A) of Theorem 3 has the form

/(A) = Am, m > - 1
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we find as A —» oo that

(//(2JT(TO + l)))Am+x + o(Am+1), t/m > - 1 ,

(J/(2ir))/nA + o(lnA), ifm = -l.

COROLLARY 2. Xsaumtn^ t/iat </ie function /(A) 0/ Theorem 4 Aos Me /orm

/(A) = Am, m > - 3 / 2 ,

as A —• 00 that

(J/(27T2(m + §)))Aro+3/2 + o(Am+3/2), i/ m > -3/2,

(J/(27r2))fnA + o(JnA), ty m = -3/2.

4. Discussions and conclusions

The spectral function 0{i) = JZfcLi exP(—^Mfc(̂ ))) where {Atfc(c)}^=i are the
eigenvalues of the Laplacian in Rn, n = 2 or 3, is studied for a variety of domains.
The dependence of 9(t) on the connectivity of a domain and the third bound-
ary condition is analysed. Particular attention is given to a simply connected
bounded domain with a positive function a entering the boundary condition of
(1.1).

In this paper we have shown that the formulae (1.6) and (1.7) which have
been obtained in [6] and [8] when a is a positive constant can be generalised to
the formulae (2.1) and (2.2) respectively when a is a positive function satisfying
the Lipschitz condition. We also have shown that the formulae (2.1) and (2.2),
together with the Tauberian theorem for Hardy and Littlewood, play an impor-
tant role in the derivation of the asymptotic formulae (2.3) and (2.4), as well as
their generalisations (3.1) and (3.2).
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