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1. Introduction

The generation of acoustic disturbances in a fluid of semi-infinite extent by
the motion of a circular piston surrounded by a plane rigid baffle has been
studied quite extensively (see (1), (2), (3), (4) and further references given in
these papers). Attention has been devoted mainly to the case in which the
piston executes a harmonic oscillation of small amplitude, and only compara-
tively recently has Oberhettinger (2) demonstrated how the time-harmonic
solution can be used to solve the more general problem in which the normal
velocity of the piston is an arbitrary function of time. The purpose of the
present paper is two-fold. Firstly, we point out that for arbitrary normal motion
of the piston the * baffled piston problem > can be solved directly, and in a
particularly simple manner, by means of a technique involving integral trans-
forms which has been applied by Mitra (5) and Eason (6) to the study of shear
wave propagation in an elastic half-space. Secondly, we give a more detailed
account than appears to be available in the literature of the structure of the
sound pulse generated by the arbitrary normal motion of a baffled piston.

The problem under consideration may be regarded as a limiting case of the
much more complicated situation in which a sound pulse is generated in the
fluid outside an impermeable sphere by the radial motion of a cap of the sphere.
A detailed investigation of this more difficult problem has been made by one of
the present authors (7).

The content of the later sections of this paper is, in brief, as follows. In §2
the baffled piston problem is formulated and a tentative solution is obtained
by the method mentioned above. The verification of the tentative solution
is then given in outline. § 3 is concerned with the examination of the structure
of the sound pulse and the nature of the wavefronts present in it. The motion
of the piston as a whole gives rise to a disturbance (the direct wave) which is
confined to a circular cylinder having the piston as its base and headed by a
plane wavefront. The discontinuity in the normal velocity of the boundary,
associated with the motion of the edge of the piston relative to the bafile, gives
rise to a second wave which we term the edge wave. The edge wavefront is a
half-torus having as its centre circle the edge of the piston. The inner portion
of the edge wave expands into the region of fluid already disturbed by the direct
wave and eventually overlaps itself. The direct and edge wavefronts are
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singular surfaces of the flow in the sense that they carry discontinuities in partial
derivatives of the velocity potential. Finally, in § 4, we take up the special case
in which the piston moves with constant speed. It now becomes possible to
determine the pressure field in a simple closed form and graphs are presented
showing the variation with time of the pressure at representative points of the
fluid and the distribution of pressure on the piston and baffle at various times.

2. Formulation and solution of the problem

A semi-infinite expanse of homogeneous compressible fluid is bounded by
an infinite impermeable boundary consisting of a circular plane piston of radius
a surrounded by a fixed plane baffle. Initially the fluid is everywhere at rest at
uniform density p, and pressure p, and the piston and baffle are coplanar.
Beginning at time ¢ = 0, an acoustic pulse is generated in the fluid by moving
the piston.

Defining cylindrical polar coordinates (r, 6, z) with the origin O at the centre
of the initial position of the piston and with the z-axis directed perpendicular to
the baffle and into the fluid, we assume that at all times the piston has its centre
on the z-axis and lies in a plane of constant z. It follows that the motion of the
piston is specified by its velocity u(¢) in the positive z-direction and that the
acoustic pulse is axisymmetric about the z-axis, being described by a velocity
potential ¢ which is a function of r, z and ¢.

The initial-boundary-value problem for ¢(r, z, ) consists of the wave equation

0*¢ 109 0°¢ 1 9%¢
— + -+ " ==L forrz20,z>0,1=20, 2.1
orr  ror  0z2  c® at? = 2.1

and the subsidiary conditions

¢=O,aa—(f=0forrgo,z30att=0, 2.2)
Qt_ﬁ _ v(1) for r<a,t=0 at z=0, 2.3)
0z 0 forr>a,t20

¢ being the speed of sound in the fluid.

We obtain a tentative solution of the problem (2.1) to (2.3) by applying the
one-sided Laplace transform with respect to the time 7 followed by the Hankel
transform of order zero with respect to the radial coordinate r (cf. (8), pp.
125-128). As the tentative solution is verified a posteriori, no justification is
given for the various analytic processes employed in its construction.

With the usual notation for Bessel functions of the first kind, let

$(z) = j ” r o(r, z, Drdo(Er)e==dudr,
4] 0

5= J * (e,

[
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Then, multiplying each term in equations (2.1) and (2.3) by rJ,(ér)e”, integrat-
ing over the quadrant r = 0, ¢t 2 0, and making use of (2.2), we obtain

2
Z *¢ (62 2) $ =0 for z>0, 2.9
4 _; 27,(¢a) at z=0. (2.5)
dz 14
The solution of the transformed problem (2.4), (2.5) which remains bounded

as z— o0 is
$)= — %—‘s&/’z),, exp {—2(&2+ 52/,

and formal inversion of the double transform ¢(z) yields

_ _ & Ko ® Jy(Ea)do(&r) o(E2 L 2fa2NE
o, z, 1) > Jn_im be™ds L @i exp { —z(&2+s*[c*)P}dE, (2.6)
k being a positive constant with the property that all the singularities of the
integrand in the complex s-plane lie to the left of the line Res = .

Proceeding now to the simplification of the integral representation (2.6), we
first reverse the order of integration and then use a known result ((9), p. 248)
for the inverse of the Laplace transform

(E2+5%c) "t exp {~z(E2 +52/c?)H).
Since 7 is the Laplace transform of u(f), an application of the convolution
theorem gives

1 x+io 5 ) -
Z_TJ.K—loo mexp{_z(g + 5%/ +st}ds

c Jt o(t— 1:).]0{£c("c2 —22[¢A)H(t—z[c)dt
0

= r‘ v(t—n/c) o{(n* — z°)*}dnH(t - z/c),

z

where H is the Heaviside unit function, and the tentative solution (2.6) reduces to

o(r, z, ) = —af v(t—r]/c)dr;f J(Ea)J o {E(? — 22} o(Er)dEH(t — zc).

27N

This result (with ¢ = 1) can easily be manipulated into the form derived by
Oberhettinger ((2), equations (18) and (19)).

The factor H(t—z/c) on the right-hand side of (2.7) implies that ¢ = O for
z>ct. Hence, as would be expected from the general theory of the three-
dimensional wave equation, the region of disturbed fluid at time ¢ lies between
the boundary z = 0 and the plane z = ct.

E.M.S.—S

z
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The simplification is completed by evaluating the infinite integral in (2.7)
with the aid of the result ((10), p. 411)

f ® J1(Ea)o(ED)T oEe)iE

0
0, 0<ag|b—c|,
) L cos™t (B2 +c?~aD)2be}, |b-c|Sas<bie  (28)
= na
1, azb+ec.
la

On replacing b by (n? —z2)* and ¢ by r and considering the three ranges appearing
in (2.8) in relation to the limits of integration with respect to # in (2.7), it is
found that the “slab” 0 £ z < ¢t divides up into a number of regions in
which the velocity potential ¢ takes different forms. There are six regions in
all and their positions at various times are shown in Fig. 1. Four regions are
present when O< z<a/c, five when ajc<t <2a/c and all six when ¢>2a/c.
Let

pr = {22+ r—al’, p, = Z*+(r+a)’} (2.9
be respectively the least and greatest distances of a typical point of the fluid
from the edge of the piston and let

k(r, z; n) = L cos {
T

2_ .2, .2_ .2
n—z+r "}. (2.10)

2r(n* - z*)*
Then the boundaries of the regions and the expressions for ¢ obtained by
combining equations (2.7) and (2.8) are as follows.

Regionl 0=r=<a,z=ctZpy,

o(r, z, )= — Jm v(t—n/c)dn. (2.112)

Region2 0<r<a,p, Sct=p,,

¢(r’ z, t) = - fﬂ

z

ot —njc)dn— fa v(t—n/c)k(r, z; m)dn. (2.11b)

£1
Region3 0=<r=<a,ct=p,,

o620 = = [ se—nion— [ e=ntokzs . @110
z P

1
Region4 r =z a, 0= ct < py,

o(r, z, 1) =0. (2.11d)
RegionS rz a, p; £ ct £ p,,
ct
¢(r, z, )y = — f v(t—n/c)k(r, z; n)dn. (2.11¢)
p1

https://doi.org/10.1017/50013091500011901 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500011901

GENERATION OF AN ACOUSTIC PULSE 267

(a) O0<t<a/c

(b) a/c <t <2ajc

(c) t>2a/c

’
z =ct
4
L py-=ct
S | r
r=a
z =ct
Outer edge
Wavefront

LA

Fi6. 1.—Structure of the pulse: (a) 0<z<a/c; (b) ajc<t<2alc; (c) t>2a/c.
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Region 6 r = a, ct = p,,

P2
o(r, z, 1) = — f v(t—n/c)k(r, z; n)dn. (2.11f)
P1

The method used above of reducing the integral (2.6) to expressions involving
only definite integrals has been employed by Mitra (5) and Eason (6) in the
solution of elastic wave problems which have close mathematical similarities
with the problem under consideration.

It remains to verify that the tentative solution (2.11) in fact satisfies the
initial-boundary-value problem (2.1) to (2.3), and for this purpose we suppose
that the excitation function v(¢) is twice continuously differentiable on an
interval 0 < 7 <7, where T is sufficiently large.

First, recalling equations (2.9) and (2.10), we observe that the partial
derivatives k(r, z; n) and k(r, z; n) of k with respect to r and z have integrable
singularities at n = p, and n = p,. The determination of the first partial
derivatives d¢/dr, 0¢/0z and d¢/ot by direct differentiation is therefore per-
missible in each region and it is a simple matter to verify that the subsidiary
conditions (2.2), (2.3) are satisfied.

Inspection of equations (2.11) shows that ¢ is a continuous function of r, z
and ¢ on the domain

H ={r,z,t): r=0,z=20,1t2=0}

and it is found that d¢/or also has this property. The partial derivatives
d¢/0z and o¢/ot are continuous on

$={rnznrz00sz5c,120

and their domain of continuity extends to s if (and only if) v(0) = 0. If this
condition is violated, the expressions (2.11) do not constitute a solution of the
problem (2.1) to (2.3) in the strict sense, but may be regarded as solving this
problem in some generalised sense. We go on to show in § 3 that the properties
of v(?) at t = 0 determine the nature of the discontinuities occurring on the
wavefronts z = ¢t (r £ a)and p, = ct, p, = ct.

The second partial derivatives k,,(r, z; n) and k,(r, z; n) of k have non-
integrable singularities at # = p, and n = p, and the calculation of 2%¢/ar?,
d%¢joz* and 9*¢/or* by direct differentiation therefore leads to divergent
integrals. A procedure which avoids this difficulty is to make the substitutions

(n?—z))(n?—z*—r’—a?)
2 2 2 2 k
nr(n*—z*—r“+a”)

k(r,z; n)= — o« 23 1),

ki(r,z; )= — gk,,(r, z; m,

in the expressions for d¢/or and 0¢/0z and then use integration by parts to
replace the factor k, by k in the integrands. Direct differentiation is then valid
and the verification that ¢ satisfies the wave equation (2.1) in each region is
completed by a straightforward, but tedious, calculation.
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The second partial derivatives of ¢ are continuous on & if and only if
v(0) = 0: if, in addition, v(0) = 0 they are continuous on 7.

3. The structure of the pulse

We have shown in §2 that at time ¢ the region of disturbed fluid is the
union of Regions 1, 2, 3, 5and 6. The outer boundary of this composite region
and the internal boundaries separating Regions 1 and 2, 2 and 3, and 5 and 6
are wavefronts and it is instructive to confirm the structure of the pulse, as
given by the analysis of §2 and illustrated in Fig. 1, by the methods of geometrical
acoustics (11). :

The pulse is made up of two components which we term the direct wave
and the edge wave (cf. 7). The direct wave arises from the motion of the piston
and is confined to the cylindrical region 0 £ r £ a, being bounded in front
by the plane direct wavefront z = ¢t (0 £ r £ a) and at the rear by the piston.
The edge wave is due to the motion of the edge of the piston relative to the
baffle and its outer boundary is the set of all points distant ¢t from the edge.
This edge wavefront is a half-torus having the edge of the piston as its centre
circle and connecting to the perimeter of the direct wavefront as shown in Fig. 1.
When ¢t = a/c the edge wave begins to overlap itself and at subsequent times it
is necessary to distinguish between outer and inner edge wavefronts.

It is of interest to note that the solution of the problem (2.1) to (2.3) in the
limiting case a— o0, namely

ct
Pz, )= — j v(t~n/c)dnH(t—z/c),
coincides in Region 1 with the solution found in § 2 (see equation (2.11a)).
This is because the fluid in Region 1 is unaware of the size of the piston having
not yet been reached by a signal from its edge (the edge wave).

In the remainder of this section, we investigate the nature of the direct and
edge wavefronts by examining the discontinuities in the partial derivatives of ¢
which occur on them. In view of the compatibility conditions connecting
discontinuities (jumps) in partial derivatives on a singular surface, it is only
necessary to consider the behaviour of one partial derivative of given order.
The most convenient choice is the time derivative.

The direct wavefront divides Region 1 from the undisturbed fluid ahead of
the pulse. In Region 1 we have, from equation (2.11a), assuming that v(¢) is
sufficiently often differentiable,

gtf = —co™ V(t—zfc), n=1,2, ... (3.1)

With the usual notation for jumps, the discontinuity in &"¢/dt" on the direct

wavefront is hence
[0 ¢] =" V0), n=12,...
or"
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It follows that if the derivative of the excitation function v(f) of lowest order
which does not vanish at ¢ = 0 is v'¥(¢) (N = 0), then the direct wavefront is a
singular surface of order N+ 1. In particular, if N = 0 (i.e. v(0) # 0) the direct
wavefront is a shock wave, and if N =1 (i.e. v(0) = 0, v'(0) # 0) it is an
acceleration wave.

Turning to the edge wavefront, we require expressions for 8"¢/0t" in Regions
2 to 6. These are derived from equations (2.11b to f) as follows.

Region 2
3? = " (t—p,/e)— """ D(t—z[c)— Z c ,,("—s)(()){ }
= n=ct
- J v®(t—n/c)k(r, z; n)dn.
Region 3 o
" P2
%—;—f = v D(t—p,Jc)— o (t—z[c)— f v®(t—n/k(r, z; n)dn.
(43
Region 4
o _
ar*
Region 5
a" “ S n=—-s as_ o n
‘f =- X ¢ oS ’(0){ z; n)} - f vt —nfc)k(r, z; n)dn.
ot = on’~ n=ct p1
Region 6
a" P2 .
?,S= - f vt —nfc)k(r, z; n)dn,
ot o1
where in each case n = 1, 2, .... Using the results
1,0 r<a,
k(r, z; py) = k(r,z; p2)=0
0, r>a,

which follow from equations (2.9) and (2.10), together with (3.1), we obtain for
the outer edge wavefront, p, = cf,

n n s—1
Iia_d) = Y " 9(0) lim 9 — k(r, z; n), (3.2
ar" s=2 n—p1 ON°
and for the inner edge wavefront, p, = ct,
n n s—1
[5 P1-_ 3 c@90) lim 2 — k(r, z; 1), (3.3)
a" s=2 n-p2 6113
where n = 1, 2, .... Now all the partial derivatives of k with respect to y are
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singular at n = p, and n = p,. We therefore conclude from equations (3.2)
and (3.3) that if the derivative of v(¢) of lowest order which does not vanish at
t = 0 is v'™(¢), then both the inner and outer edge wavefronts are singular
surfaces of order N+2 on which the partial derivatives of ¢ of order N+2
suffer infinite jumps. In particular, if N = 0 (i.e. v(0) # 0) the edge wavefronts
are infinite acceleration waves.

4. A special case

In this section we discuss in some detail the special case of the foregoing
analysis in which v(¢) = v, a constant. Defining the function

n
K(r, z; n) = f k(r, z; 0dC,
P1
where k is given by equation (2.10), the solution of this particular case, obtained
by specialising equations (2.11), can be stated in the concise form

¢(r, 2, t) = v{{z—ct+(ct—p,)H(t—p,/c)}H(a—Tr)
—K(r, z; ct)H(t—py/c)
—{K(r, z; p;)—K(r, z; cO}H(t—p,/c)>H(t—z[c). (4.1)

It should be noted that a motion of the piston with constant velocity can be
maintained for only a finite time without violating the assumptions upon which
the acoustic linearisation is based. Accordingly the solution (4.1) has a limited
range of validity at a given point of the fluid. If, at some time, the piston is
brought to rest, a further system of wavefronts is generated having the same
structure as those shown in Fig. 1. The analysis may readily be extended to
include these events, but in order to preserve a maximum of simplicity we suppose
here that v is sufficiently small to ensure the validity of all our results.
For the particular excitation function chosen, the pressure

_ a¢
P= Po—Po Py

can be evaluated in the simple closed form

P = po+ pocv{{l — H(t—p;/c)}H(a~T)
+k(r, z; ct){H(t—py/c)—H(t—p[e)}>H(t—z/c).
The nature of the pressure-time profile at a point P(r, z) of the fluid depends upeon
the number of wavefronts which pass through that point. Two cases arise.
If 0 £ r £ a, there are three wave arrivals at P. The direct wavefront

arrives first, at ¢ = z/c, and produces a discontinuous increase in pressure of
amount pgcv. P then enters Region 1 and the pressure remains constant until
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the arrival, at t = pifc, of the outer edge wavefront. At this instant, the
derivative 8p/ot suffers an infinite negative discontinuity. P next passes into
Region 2 and the pressure decreases, regaining its initial value p, at the instant,
t = p,/c, when the inner edge wavefront arrives. Thereafter P is situated in
Region 3 and p = p,.

If r>a, there are only two wave arrivals at P. Prior to the arrival, at
t = p,/c, of the outer edge wavefront, P is in Region 4 and p = p;. The first
arrival is associated with an infinite positive jump in dp/dt and the arrival, at
t = p,/c, of the inner edge wavefront also results in an infinite positive jump in
this derivative. During the intervening period, P lies in Region 5 and the
pressure increases to a maximum value of p,+(pcv/n) sin~! (afr), reached at
time (r*—a? +22)*/c, before decreasing to the initial value p,. For t>p,/c, P
is situated in Region 6 and p = p,.

Curves showing the variation of the reduced pressure increment (p —p,)/pocv
with the reduced time ct/a at the points r = 3a,z =aand r = 3a, z = q are
presented in Fig. 2.

Also of interest is the distribution of pressure on the boundary z = 0, and
curves showing the variation of (p —p,)/pocv Wwith r/a at various reduced times
are given in Fig. 3. For 0 £ r<ajc, part of the piston adjoins Region 1 and is
subject to a uniform pressure increment of amount pocv. In the annular region
a—ct £ r £ a+ct, the pressure decreases as r increases, reaching its initial
value p, on the outer edge wavefront. For #>a/c, there is a circular region of
uniform pressure p, associated with Region 3 and later with Regions 3 and 6.
In the annulus ¢t—a < r £ ct+a, the pressure increases, with increasing r,
to a maximum value of py+(pocv/n)sin™! (ajct) at r = (c*t* —a®)* before
decreasing to its initial value p, on the outer edge wavefront. The change-over
between the two types of pressure distribution occurs at 1 = a/c when the edge
wave begins to overlap and is associated with a sudden drop in pressure of
amount pocv at 0. Curves indicating the manner in which the transition takes
place are shown in Fig. 3c.

It is evident from Figs. 2 and 3 that the sound pulse produced by pushing
the piston info the fluid with constant speed is purely compressive in the sense
that p > p, for all ¢ > 0 at all points of the flow. This property is apparently
due to the presence of a plane baffle. In the problem studied in (7) the piston
and the baffle are convex towards the fluid, and it is found that the sound pulse
produced by an outward motion of the piston with constant speed is not
entirely compressive on account of the appearance in the flow of diffracted
waves ((7), § 8). If the baffle is removed there results a situation having some
affinity with a problem discussed by D. S. Jones ((12), pp. 520-522).f Jones
considers the head-on impact of a plane sound pulse with the end-face of a
rigid semi-infinite circular cylinder of radius a and obtains an approximate
expression for the variation with time of the mean pressure increment, say g,

t The authors are indebted to a referee for this reference.
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on the end-face. Taking the incident sound pulse to be a uniform shock wave
producing a pressure increment ¢ at all points behind its front, § = 2q at the
instant of impact (# = 0) and §—¢q as £—o0. g decreases rapidly to a minimum
value, less than g, at £ = 2q/c and thereafter approaches the steady-state value
g from below. The scattered pulse is, therefore, not wholly compressive.

One of us, G. E. Tupholme, wishes to thank the Science Research Council
for the award of a Research Studentship.

(P —Po): = o/ Poc
10
7 =095 =0
0-5—
Note: = = ct/a
r f T rla
0 0-5 1-0 1-5 20

FIG. 3A.—Pressure distribution on z = 0: 1(a(210/< t<aje; (b) t>alc; (c) t = 0-99a/c and
t=1- ajc.
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