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SEMI-STABLE AND STABLE CACTI

K. L. McAVANEY

(Received 21 May 1974)

1. Introduction

Holton (1973) introduced the following concept. A graph G is semi-stable
if there exists a point v in G for which Y(Gv) = Y(G)l: where F(G) is the
automorphism group of G, Gv is the graph G with v deleted and F(G)t is the
subgroup of F(G) that fixes v. We say G is semi-stable at v. A partial stabilising
sequence in G is a sequence v,, v2, • • • vk of its points such that r(G)t|U,...„, =
F(G„,„,„,) for i = 1,2, • • •, k. If there exists a partial stabilising sequence in G
for which k equals the number of points of G then G is said to be stable
(Holton (1973a)). Most notation and terminology in what follows is explained in
Harary (1969).

It is known (Heffernan (1972), Robertson and Zimmer (1972)) that all trees
except the paths Pn with n > 3 and the smallest identity tree (T2 in Figure 6) are
semi-stable. We showed in McAvaney, Grant and Holton (1974) that the
only unicyclic graphs that are not semi-stable are those in Figure 1. In Section 3
we show that these are the only cacti with a cycle that are not semi-stable. (A
cactus is a connected graph in which each line lies on at most one cycle).

Figure 1.

If a graph is stable then it has a transposition automorphism, Holton and
Grant (to appear). The converse is true for trees, Holton (1973b) and unicyclic
graphs, McAvaney, Grant and Holton (1974). In Section 4 we show that it is
true for all cacti.

Throughout the following sections, we use implicitly a characteristic
of semi-stability demonstrated in Holton and Grant (1975): a graph G is
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semi-stable at v if and only if v is an isolated point or the set of points adjacent
to V is a union of orbits of F(Gt). We also use the following terminology. If v,,
v2, • • -,vk is a partial stabilising sequence in a graph G and H = GVlv,-vk, we say
G is reducible to H. The distance between a point v in G and a disjoint set A
of points in G is the minimum d(v,a) over all points a in A A penultimate
point v in G is a point in G such that Gv contains just two components one of
which is a single point. If the number of points in graph G is less than the
number of points in graph H, we say G is smaller than H. We denote by Pn, a
path Pn rooted at its endpoint.

2. Preliminaries

Before proving our main results we need to establish three lemmas. They
require the following ideas. A branch at a point b of a cactus C is a maximal
subcactus B of C with two or more points such that just one block of B
contains b. A branch at a block D of C is a maximal subcactus of C with two
or more points and which has just one point b in common with D. In both cases
b is called the root of the branch.

LEMMA 1. A rooted cactus C is semi-stable at a point c which is not a
cutpoint or the root.

PROOF. Let b, be the root of C and B, a smallest branch at b,. Let B
denote the block in B, that contains b,. Let b2 be a cutpoint in B closest to b,
and let B'2 be the branch at B containing b2. If b2 is another cutpoint in B such
that d(b,,b2) = d(b,,b2) we assume B'2 is not larger than the branch at B
containing b'2. If B'2 is P2 and C is not semi-stable at its endpoint we redefine b2

as a next closest cutpoint (if it exists) to b, and redefine B2 accordingly. Let B2

denote a smallest branch at b2 that does not contain b\. Thus, repeating this
procedure, we generate a sequence of cutpoints b2,bj,- • -,bn with associated
branches B,,B2,- • -,Bn, where Bn has just one cutpoint bn.

Now every automorphism of C maintains the distance of each point from
b,. Moreover, a path between b, and a point a of C contains all the cutpoints w
such that bt and a lie in different components of Cw. Hence, from the choice by
size of Bi, if B, is semi-stable at a point c then C is semi-stable at c. Therefore
C is semi-stable at a point in Bn that is adjacent to bn, unless Bn is P2 and the
block D that contains bn and fcn_, is a cycle and contains no other cutpoints. To
examine the latter case let m and / denote the number of consecutive points in
D between bn and &„_,. We may assume m > / , for if m = / then Bn-t, and
hence C, is semi-stable at the endpoint of Bn. Then BnU hence C, is semi-stable
at c defined as follows:
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if / = 0, m^2, the bare point adjacent to &„_,,
if / = 0, m = 2, the bare point adjacent to bn,
if / = 1, the bare point adjacent to bn~, and bn,
if / > 1, the bare point adjacent to bn_, and farthest from bn.
The next lemma requires the following concepts. A cactus C rooted at b

and containing at least one copy of a cycle U is called a U-pole if (i) all blocks
in C are U or P2, (ii) all points in the block-cutpoint tree (Harary (1969)) of C,
bc(C), have degree at most 3 and (iii) if u is a point in bc(C) of degree 3 then u
is a copy of U and of the three branches at u one contains b, one contains a
copy of U and one is P2. C is called a U-pillar if, for all pairs of points in the
block-cutpoint tree of C that are copies of U, one lies on the path between the
other and the block containing b.

LEMMA 2. A U-pillar is reducible to a U-pole.

PROOF. Let C be the (/-pillar and b, its root. By Lemma 1, we reduce to
b,, in increasing order of size, each branch at b, that does not contain a copy of
U. Let D be the block that contains b,. We define b2 and B'2 as in the proof of
Lemma 1. If B2 does not contain U we reduce it to P2. If C is now semi-stable
at the endpoint of B'2, we remove it. Otherwise we redefine b2 as the next
closest cutpoint to b, and redefine B'2 accordingly. Then we reduce B'2 to b2 and
repeat this procedure until all branches (except possibly for a single P2) that do
not contain U are removed from D. Finally, let b2 denote the root of the branch
(if it exists) at D that contains (7. Then b2 is fixed in C and we repeat the above
procedure on all branches at b2 except the branch containing b,. In this way we
generate a sequence of cutpoints b2, b>, • • •, bn where bn lies in a copy of U.

If the block containing b, and b,^, is a cycle which is not U and has P2 as a
branch, let b\ denote the root of that P2. Then, for each / in turn for which b\ is
defined, we remove b't followed by the isolated point and reduce the resulting
path branches at b, and b^, to their roots. Similarly, if the cycle containing b,
and bi+l is not U and has no branch P2, we remove a point adjacent to b, and
reduce the resulting path branch at fo,., to its root. The resulting cactus is a
U- pole.

LEMMA 3. A U-pole is semi-stable at a non-cutpoint c in the copy of U
farthest from the root.

PROOF. Define c as in the proof of Lemma 1.

3. Semi-stable Cacti

Our aim in this section is to show that the graphs in Figure 1 are the only
cacti with a cycle that are not semi-stable. We shall use the following notation.
Let C denote a cactus with at least one cycle. For a cycle R in C, let n(C,R)
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denote the number of copies of R in C. Let m(C) be the minimum n(C,R) over
all cycles R in C. Finally, let U denote the smallest cycle in C for which
n(C,U) = m(C).

We first establish

THEOREM \.lfm (C) = 1 then C is semi-stable unless it is one of the cacti in
Figure 1. Moreover C is semi-stable at a point which is a penultimate point or
non-cutpoint.

PROOF. We assume m(C) = 1 and that C is not semi-stable. If there is only
one branch B at U then its root b is fixed in C and hence, by Lemma 1, B is P2.
But then C is semi-stable at b. Hence there are at least two branches at U.

We shall call a point in U of degree 2 a bare point. Let t denote the
maximum number of consecutive bare points in U. Then t >0; otherwise a
smallest branch at U is reducible to its root, by Lemma 1. Let S denote the
collection of branches at U whose roots are adjacent to a string of t
consecutive bare points. Let B, denote a smallest branch in S and b\ its root.
Let B2 denote a smallest branch in S whose root b2 is adjacent to the same
string of t consecutive bare points as is the root of a branch in S that is
isomorphic to B,. We may assume b2 is adjacent to the same string of /
consecutive bare points as b,. Noting that the set of roots of the branches in S
is a union of orbits of F(C), Lemma 1 implies that B, is P2.

Let B, denote the branch at U whose root b, is the closest to b,. Let
r = d(b,, by) - 1 (the number of bare points between b, and b,). Note that r <t,
for if r = t then C is semi-stable at the endpoint e of B,. It follows from the
definition of t that the removal of e introduces the "reflection" automorphism g
that maps b2 into by. Hence B2 and By are isomorphic if not the same branch
(see Figure 2).

Figure 2.
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It follows from Lemma 1 and the definition of B2 that B2 has at most 3
points, otherwise C is semi-stable at a point in B2. Thus B2 is P2, P3 or one of
the branches in Figure 3.

b2

Figure 3.

If b2^ by and B2 is not P2, then the removal of one of its non-cutpoints
introduces the "reflection" automorphism / that maps b, into b2. Define
inductively the points b4, b5,-- on U as follows: b2, = f(b2i-,) and b2i + , =
g(b2i) for i = 1,2,3, • • •. Then the branch at U with root b, is isomorphic to B2

for j / h and (excluding b,) all other points on U are bare. But then C is
semi-stable at a non-cutpoint in B3. Hence B2 is P2 or b2 = b3. Thus, if b2 = b3, C
falls into one of the three cases indicated in Figure 4 which we now examine in
turn. (By the definition of U,B2 is not isomorphic to the second branch in
Figure 3.)

Ill

Case I:

Figure 4.

If r = 0 and t = 1, C is the first graph in Figure 1.
If r = 0 and t = 2, C is the third graph in Figure 1.
If r = 0 and ( = 3, C is semi-stable at the bare point adjacent to b2

If r = 0 and t = 4, C is the fifth graph in Figure 1.
If r = 0 and t >4, C is semi-stable at the bare point adjacent to b2

If r = 1 and t = 2, C is semi-stable at the bare point adjacent to b,
but not b2.
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If r = 1 and t > 2, C is semi-stable at b,.
If r - 2, C is semi-stable at the bare point adjacent to b,

that is closer to b2.
If r >2, C is semi-stable at &,.

Case II:

If r = 0 and f = 1, C is semi-stable at the bare point.
If r = 0 and f > 1, C is semi-stable at b,.
If r = 1, C is semi-stable at the bare point adjacent

to bx and b2.
If r > 1, C is semi-stable at b,.

Case III:

If r = 0 and f = 1, C is semi-stable at the bare point.
If r - 0 and f = 2, C is the second graph in Figure 1.
If r = 0 and t = 3, C is the fourth graph in Figure 1.
If r — 0 and J > 3, C is semi-stable at the bare point adjacent to b,.
If r = I, C is semi-stable at the bare point adjacent to b, and fr2-
If r > 1, C is semi-stable at 6,.

If b2^by and B2 is P2 then the removal of its endpoint introduces the
"reflection" automorphism h that maps b, into a4, the point in U that is closest
to b2 and which is not a bare point. Thus we define inductively the points cu, a?,
ah, • • • in £/ as follows: g(b2) = fe3, h(b,) = a4, g(fl4> = a,, h(bi) = a6, etc. Then
the branches at U with roots b,, b2, b,, a, (j g 4) are P2 and all other points in U
are bare (see Figure 5). If s = d(b2,at)- 1 then s <t and we may assume that
s^r. Thus:

IV

Figure 5.
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Case IV:

If r = 0 and t = 1, C is semi-stable at the bare point.
If r = 0 and / > 1, C is semi-stable at b3.
If r = 1, C is semi-stable at the bare point adjacent to

b, and by.
If r > 1, c is semi-stable at fo,.

This completes the proof of Theorem 1.
Our second main result is

THEOREM 2. // m(C)> 1 then C is reducible to a cactus C for which

PROOF. The rationale of this proof is to remove a sufficient number of
branches of C in order to allow us to remove a point of some copy of U. The
resulting cactus suffices for C". A variety of cases present themselves
according to the distribution in C of its copies of U.

Let bc(C) denote the block-cutpoint tree of C. Let N be the set of points
in bc(C) which are either copies of U or points of degree 3 or more and at
which there exists 3 or more distinct branches each containing a copy of U. Let
T(C, U) denote the tree whose points are the points in JV and in which two
points a, b are adjacent if and only if the path in bc(C) joining a to b does not
contain a point in TV. Finally, let E be the centre of T(C, U).

T,

Figure 6.

We now assume for the moment that T(C, U) is not a path Pn(n g 2) or
one of the trees T, or T2 in Figure 6. Heffernan (1972) has shown that all trees T
except Pn(n >2), T, and T2 are semi-stable at an endpoint u. His argument is
constructive and ensures that u lies in a smallest branch at each point v on the
path in T from u to the closer centre point in T. We tighten this condition for
T(C, U) by choosing from the smallest branches at v a branch that corresponds
to a smallest branch at v in C. We note that u is a copy of U.

Let w be the point in T(C, U) that is adjacent to u. If w is not in E, let a
denote the point of C in w that is closest to E in C. If w is in E and T(C, U) is
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bicentral, let a denote the point of C in w that is closest to E\{w} in C. In both
cases let b denote the point of C in w that is closest to u in C. If w is a cycle in
C, let b' denote the point of C in w for which d(a,b) = d(a,b'). Let B(B')
denote the maximal subcactus of C that contains b(b') but not the rest of the
branch at b that contains E. If B' contains one copy of U, then by the definition
of u, we may assume B' is not smaller than B. Thus we may regard b as fixed in
C and use Lemma 2 to reduce B to a (7-pole at fc. If B' contains no copy of U,
we use Lemma 1 to reduce B' to its root. By Lemma 3, B is semi-stable at a
non-cutpoint c in M. Hence, from the definition of u, C is semi-stable at c.

If w is in £ and T(C, U) is unicentral, let b denote the point of C in w that
is closest to u. By Lemma 2, we may assume the branch B at w that contains u
is a t/-pole. (Also, if tv is a point in C, we use Lemma 1 to reduce to b the
branches at w, in increasing order of size, that do not contain a copy of U.) Let
c be a point in u at which B is semi-stable. Then two cases present themselves.

Case I: w is not fixed in C Then there are just three branches in T(C, U)
at w. Let v and v' be the other two points in T(C, U) adjacent to w. Let A (A')
be the branch in C at w that contains v (v1) and let a(a') be its root. Let e(e')
denote the point in v(v') that is closest to a(a'). Let w map into w' in Cc. We
assume that w' h'm A'. Thus d(a',e')> d(a,e) and a' is therefore fixed in C.
Then by the methods of Lemma 2, we reduce A' so that all points between a'
and e' have degree 2 and no branches remain at e' that do not contain a copy of
U. Note that, while reducing A' in this way, d(a',e') is non-decreasing. Thus
we may assume the w', and hence w, is a point in C But then w( = b) can not
map into w' as Bc is a branch that does not contain a copy of U and is not
smaller than P2 and no such branch exists at a point between a' and e'. Hence
C is now semi-stable at c.

Case II: w is fixed in Cc. If w is a point in C we reduce, in increasing order
of size, all the branches at w that do not contain U. Then C is semi-stable at c
or Case I applies.

If w is a cycle in C, we use the methods of Theorem 1. Define a bare point
as a point in w of degree 2 or a root of a branch at w that contains U. Then, as
in the proof of Theorem 1, several cases present themselves. Note that there
are at least three branches at w containing U.

Case II. 1: There is no branch at w not containing U. Then C is semi-stable
at c.

Case II. 2: There is only one branch A at w not containing U and it is P2. If
C is not semi-stable at c then Bc is P2 and B is (?, the second branch in Figure
3. If B is the only branch at w isomorphic to Q and C is not semi-stable at the
endpoint of A, then a "reflection" argument similar to that in the proof of
Theorem 1 guarantees at least three isomorphic branches at w containing U.
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Let B' be one of these branches with its root closest to the root of A. Then,
noting that the root of A is fixed in C, we use Lemma 1 to reduce B' to Q or
until a point in a copy of U is removed. If there are at least two branches at w
isomorphic to Q and C is not semi-stable at a point with degree 2 in any of
them, then another "reflection" argument shows that their roots together with
the root of A are distributed uniformly in w a constant distance apart. Hence
we may remove the endpoint of A and then Case II. 1 applies.

Case II.3: There are only two branches A and A' at w not containing U; A
is P2 and A' is P2, P< or one of the branches in Figure 3. If C is not semi-stable
at c then Bc maps into A or A'. If the former, we may remove the endpoint of
A and then Case II.2 applies. If the latter, then because B is a [/-pole, A' is
either P2 or P3. Hence we may remove respectively the endpoint or point of
degree 2 in A' and then Case II.2 applies.

Case II.4: There are three or more branches at w not containing U. These
are distributed about w as in Case IV of Theorem 1. If C is not semi-stable at c
then B is C3 (rooted at one point) and b is one of the t consecutive bare points
at distance r + 1 from b2 or distance s + 1 from b,. But then C is semi-stable at
the endpoint of B, or B2 respectively, giving a contradiction.

To complete the proof of Theorem 2 we now investigate the cases where
T(C, U) is Pn(n i=2), T, or T2 (Figure 6).

If T(C, U) is P2, let M and M ' be the copies of U. Let b '(b) be the point of C
in u(u') closest to «'(«). Let B(B') be the maximal subcactus of C that
contains b(b') but no other point in the branch A(A') at b(b') that contains
u'(u). We assume B is not larger than B' and use Lemma 2 to reduce B to a
[/-pole. Then, by the methods of Lemma 2, A is reducible to u' with at most
two other points, that is, at most one more point than A'. Let c be a point in u
at which B is semi-stable. If C is not semi-stable at c then Bc maps into a
branch at «'. Then B, is P2, Pi or one of the branches in Figure 3. The cacti that
satisfy these constraints consist of just two copies of either C\ or C4 together
with at most three other points. It can be shown exhaustively that all such cacti
are semi-stable at some point in u or u'.

If T(C, U) is Pn with n > 2 let u and u' be the endpoints of T(C, U). Let
v(v') be the point in T(C, U) adjacent to u(u'). Let b(b') be the point of C in
v(v') closest to u'(u). Let B(B') be the maximal subcactus of C containing
b(b') but no other point in the branch at b(b') that contains u'(u). We assume
B is not greater than B' and use Lemma 2 to reduce B to a [/-pole. Let a(a')
be the point of C in w'(«) closest to u(u') and let A(A') be the maximal
subcactus of C that contains a (a1) but no other point of the branch at a (a1)
that contains u(u'). Then, by the methods of Lemma 2, A is reducible to u'
with at most two other points, that is, at most one more point than A'. Let c be
a point in u at which B is semi-stable. If C is not semi-stable at c then B, maps
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into A. Hence Bc consists of v with a branch that is P2, P3 or one of the
branches in Figure 3. Hence U is C% or C4, and it can be shown exhaustively
that all cacti satisfying these constraints are semi-stable at some point in u, u'
or v.

If T(C, U) is T, (Figure 6) let w be the point in T(C, U) of degree 3 and v
the point of degree 2. Let a denote the point of C in w closest to v. Let A
denote the branch of C at w that contains v. Since a is fixed in C, we may use
Lemma 2 to reduce A to a t/-pole. Let B and B' be the branches at w, with
roots b and b' respectively, that contain one copy of U. Assuming B is not
larger than B' we reduce B to a U-pole. Let e be the point of C in w for which
d(a,b) = d(a,e). In increasing order of size, the branches at e that do not
contain U are reduced to e using Lemma 1. Let c be a point in u, the copy of U
in B, at which B is semi-stable. Suppose C is not semi-stable at c. If w is a
poinf in C, then w = a = b and maps, in C, into a point w' between v and the
end copy of U in A. But B, is not smaller than P2 and no branch exists at w'
that does not contain U. Hence w is a cycle, and w maps into v in C Then
there is a branch P2 at D, Br is P2 and therefore £/ is d . Hence, in reducing /4 to
a [/-pole, we can reduce P2 at u to its root. This contradiction ensures C is
semi-stable at c.

If T(C, U) is 7\ (Figure 6) let w be the point in T(C, U) of degree 3. Let
A(B) be the branch at w, with root a(b), that contains one (two) copy(ies) of
U. Using Lemma 2 we may reduce A and B to U- poles. Let c be a point in the
end copy of U in B at which B is semi-stable. If C is not semi-stable at c then
Bc maps into A, there is a branch P? at the end copy of U in A and [/ in C3.
Then C is semi-stable at the point of degree 2 in the penultimate copy of U in
B.

This concludes the proof of Theorem 2.
As a corollary to Theorem 2 we have

THEOREM 3. All cacti C with at least one cycle are semi-stable except those
in Figure 1. Also, C is semi-stable at a point which is a penultimate point or
non-cutpoint.

PROOF. If m(C) = 1 then the result follows immediately from Theorem 1.
In the case where m (C) > 1 the proof of Theorem 2 tacitly secures the required
point.

4. Stable Cacti

Our aim now is to show that a cactus with a transposition automorphism is
stable. We first characterise these cacti. To do this, we define a certain class of
subcacti. A cactus C is said to contain a transfig at a point b if there is (i) a
branch at b isomorphic to C, (rooted at one point), or (ii) a branch in which the
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block D containing b is Ct and in which the two points in D adjacent to b have
degree 2, or (iii) two or more branches at b isomorphic to P2, or (iv) any
combination of (i), (ii) and (iii).

We note that, in this section, the cacti include trees.

THEOREM 4. A cactus C with at least three points has a transposition
automorphism if and only if it contains a transfig.

PROOF. If C contains a transfig and a and a' denote its points of degree 2
(in types (i) and (ii)) or its endpoints (in type (iii)), then clearly the transposition
(aa') is an automorphism of C.

Conversely, suppose g=(aa') is a transposition automorphism of C.
Then, because C is connected and it has at least three points, there is another
point u of C adjacent to a or a'. Suppose u ~ a. Then g(u)~g(a), that is
u —a'. If a —a', then u is unique, otherwise the line (a,a') lies on more than
one cycle in C. If a-/- a', then there is at most one other point u' of Cfor which
u' ~ a and u' ~ a', otherwise the line (M, a) lies on more than one cycle in C.
Either way u is a root of a transfig.

Using this characterisation we can now prove

THEOREM 5. A cactus containing just one transfig is stable.

PROOF. Let C denote such a cactus and b the root of the transfig. Let A
denote the maximal subcactus of C that contains b but not the rest of the
transfig. If Ah is empty and C is C3 or C4 then clearly C is stable. If Ah is empty
and C is neither C3 nor C4 then b is fixed and, by Lemma 1, C is reducible to
one of the cacti in Figure 7. These cacti are stable; we delete the points in the
indicated order.

V
Figure 7.

Suppose now that Ah is not empty. Since A contains no transfig it is
reducible, by Lemma 1, to P, or the rooted cactus A' (Figure 8). In the latter
case we then remove the cutpoint u followed by the isolated point, thus leaving
P3. We assume in the case where the transfig is of type (ii), that A is not larger
than the other branch at d .
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If the resulting cactus is B in Figure 8, we continue the stabilising
sequence as indicated. Otherwise we remove the point of degree 2 in A
followed by the isolated point. Then, as before, C is reducible to one of the
cacti in Figure 7 and hence stable.

A-
b

B A'
Figure 8.

Combining Theorem 5 and Theorem 3 we have

THEOREM 6. A cactus C is stable if and only if it has a transposition
automorphism.

PROOF. We may assume from Theorem 4 and Theorem 5 that C has at least
two transfigs. Then, by Theorem 3 and the analogous result (Heffernan (1972))
for trees, C is semi-stable at a non-cutpoint or penultimate point i;. If C
contains just one transfig (after removing any isolated point), the result follows
from Theorem 5. Otherwise we continue reducing C until only one transfig
remains.
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